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Abstract The present paper deals with analysis of reli-

ability characteristics of a two-unit parallel system under

classical and Bayesian set ups. The system consists of two

non-identical units arranged in parallel configuration.

System failure occurs when both the units stop functioning.

Failure and repair time distributions of each unit are taken

as Weibull with common shape parameter but different

scale parameters. Using regenerative point technique, var-

ious measures of system effectiveness useful to system

designers and operating managers have been obtained.

Further, since the life testing experiments are time con-

suming and as such the parameters representing the reli-

ability characteristics of the system/unit are assumed to be

random variables. Therefore, a Monte Carlo simulation

study is also carried out to illustrate the results for con-

sidered system model.

Keywords Mean time to system failure (MTSF) �
Highest posterior density (HPD) intervals � Fisher

information matrix � Regenerative point technique

1 Introduction

In real life situations the systems are becoming complex

day by day due to their automation and ever increasing

demand of society. The improvement in effectiveness in

respect of reliability, availability and net expected profit

has therefore become important in recent years. Incorpo-

ration of redundancy is one of the methods to enhance the

reliability of such types of systems. Standby redundant

systems (Goel et al. 1983, 1985a, b; Goyal and Murari

1984; Gupta et al. 1983, 1986, 1988) have been analyzed

under different set of assumptions such as random shocks,

delayed replacement in repair and post repair, two types of

operation and repair and imperfect switch etc., Gupta and

Chaudhary (1992) also analysed a two non-identical pri-

ority unit cold standby system model by taking Rayleigh

distribution only of the failure time of non-priority unit.

But, sometimes when standby system takes some signifi-

cant time to start the operation due to imperfect or slow

switching device, then it will be wisable to use redundant

unit in parallel form with the main unit so that the system

does not fail if the main operative unit fails. Keeping this

fact in view, Malik et al. (2000) analyzed a two unit par-

allel system by giving the priority in repair to main unit

over the inspection to duplicate unit. Gupta and Shivakar

(2003) dealt with the analysis of a two-unit parallel system

assuming the concept of waiting time of repairman.

Chaudhary et al. (2007) analyzed two unit parallel system

model in which the repair of failed unit is completed in one

or two phases. It is worth mentioning here that all the

above system models were analyzed by using regenerative

point technique. Regenerative point technique or regener-

ative process is a stochastic process with time points at

which the process probabilistically restarts. It was first

introduced by Smith (1955). Brkic (1990) dealt with the

interval estimation of the parameters of Weibull distribu-

tion. Seo et al. (2003) estimated lifetime and reliability of a

repairable redundant system subject to periodic alternation.

Yadavalli et al. (2005) analyzed a two component system
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with common cause shock failure under Bayesian set up.

However, most of the above studies were mainly concerned

to obtain various reliability characteristics such as mean

time to system failure (MTSF), point wise and steady state

availabilities etc., by using exponential distribution as

failure and repair time distribution of units and not to

estimate the parameter(s) involved in the life time/repair

time distribution of system/unit.

The purpose of the present paper is to analyze a two

non-identical unit parallel system model by using Weibull

distribution for both failure and repair times with common

shape parameter but different scale parameters. For a more

concrete study of the system model, a simulation study is

also carried out.

We evaluate the following reliability characteristics of

interest to system designers as well as operating managers

by using regenerative point technique.

1. Steady state transition probability and mean sojourn

times in different states.

2. Reliability of the system and MTSF.

3. Pointwise and steady state availabilities of the system.

4. Expected busy period of the repairman in time interval

(0, t) and in steady state.

5. Net expected profit incurred by the system in time

interval (0, t) and in steady state.

Further, since no system/unit is perfect, it may fail any

time so parameter representing the life time of the system/

unit is assumed to be a random variable. Therefore, a

simulation study is conducted for analyzing the considered

system model both in classical and Bayesian set ups. The

Monte Carlo simulation technique has been used in con-

ducting the numerical study. In classical setup, the maxi-

mum likelihood (ML) estimates of the parameters involved

in the model and reliability characteristics along with their

standard errors (SE) and width of confidence intervals are

obtained. In Bayesian setup, Bayes estimates of the

parameters and reliability characteristics along with their

posterior standard errors (PSE) and width of highest pos-

terior density (HPD) intervals are computed. In the end, the

comparative conclusions are drawn to judge the perfor-

mances of the MLE and Bayes estimates.

2 System model description, notations and states

of the system

The system consists of two non-identical units (unit-1 and

unit-2) arranged in parallel network. Each unit has two

modes—Normal (N) and Total failure (F). Initially system

starts its functioning from state S0 in which both the units

are in normal mode and operative. When system operates

with only one unit then the operative unit has increased

failure rate in comparison to the situation when both the

units are operative. The system failure occurs when both

the units stop functioning. A single repairman is always

available with the system to repair a failed unit on First

Come First Served (FCFS) basis. Each repaired unit works

as good as new. The failure and repair time distributions of

each unit are taken to be independent having the Weibull

density with common shape parameter ‘p’ but different

scale parameters a and b as follows:

fi tð Þ ¼ aiptp�1expð�ait
pÞ;

and

gi tð Þ ¼ biptp�1expð�bit
pÞ;

where t C 0; ai and bi, p [ 0 and i = 1, 2 respectively for

unit-1 and unit-2.

A real life example based on the system model under

study may be visualized as power supply in a colony by

two transformers: transformer-1 and transformer-2 may be

considered as unit-1 and unit-2 respectively. Both trans-

formers are connected in parallel configuration. Trans-

former-1 and Transformer-2 fails with failure rates h1 (.)

and h2 (.). When transformer-1 has failed, then complete

load falls on transformer-2 and therefore, transformer-2

fails with increased failure rate r2 (.) [ h2 (.). Similarly,

when transformer-2 fails, then increased failure rate of

transformer-1 is taken as r1 (.) [ h1 (.).

2.1 Notations

E Set of regenerative states = {So, S1, S2}

ai/bi (i = 1, 2) Scale parameter of failure/repair time

distribution for ith unit

p Shape parameter of failure/repair time

distribution of each unit

hi(t) Failure rate of ith unit when both the

units are operative in parallel network;

hi tð Þ ¼ aiptp�1; ai; p; t [ 0

ri(t) Increased failure rate of ith unit having

the form; ri tð Þ ¼ liptp�1; li; p; t [ 0

ji(t) Repair rate of ith unit; ji tð Þ ¼ biptp�1;

bi; p; t [ 0

qij �ð Þ
.

Qij �ð Þ Pdf and cdf of one step or direct

transition time from Si 2 E to Sj 2 E

pij Steady state transition probability from

state Si to Sj such that, pij ¼ lim
t!1

QijðtÞ

p
ðkÞ
ij

Steady state transition probability from

state Si to Sj via Sk such that, p
ðkÞ
ij ¼

lim
t!1

Q
kð Þ

ij ðtÞ
Zi (t) Probability that system sojourns in state

Si up to time t
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wi Mean sojourn time in state Si i.e.,

wi ¼
R1

0
P½Ti [ t�dt

Ri tð Þ Reliability of the system at time t when

system starts from Si 2 E

Ai tð Þ Probability that the system will be

operative in state Si 2 E at epoch t

Bi tð Þ Probability that the repairman will be

busy in state Si 2 E at epoch t

lupðtÞ Expected up time of the system during

interval (0, t) i.e., lupðtÞ ¼
R t

0
A0ðuÞdu

lb tð Þ Expected busy period of repairman

during interval (0, t) i.e.,

lb tð Þ ¼
R t

0
B0ðuÞdu

P tð Þ Profit incurred by the system during

interval (0, t)

� Symbol for Laplace Transform of a

function i.e., q�ij ¼
R1

0
e�stqijðtÞdt

� Regenerative point

� Non-regenerative point

2.2 Symbols for the states of the system

N1o Unit-1 is in N-mode and operative

N2o Unit-2 is in N-mode and operative

F1r Unit-1 is in F-mode and under repair

F2r Unit-2 is in F-mode and under repair

F1w Unit-1 is in F-mode and waiting for repair

F2w Unit-2 is in F-mode and waiting for repair

Using these symbols and assumptions stated earlier, the

transition diagram of the system model along with all

possible states and transitions is shown in Fig. 1. From

Fig. 1, we observe that the states S0, S1 and S2 are up states

and S3 and S4 are failed states. We also observe that states

S3 and S4 are non-regenerative since epochs of entrance

from state S1 to S3 and S2 to S4 are non-regenerative

whereas the other states are regenerative states.

3 Transition probabilities and sojourn times

The transition probability matrix (t.p.m) of the embedded

Markov Chain is

pij ¼
p00 p01 p02

p10 p11 p
ð3Þ
12

p20 p
ð4Þ
21 p22

0
@

1
A

with non-zero elements.

As an illustration, to obtain p01, the probability that the

system transits from state S0 to S1 during time interval

(0, ?) we observe as follows1 : p01 = $[probability that the

Fig. 1 Transition diagram

1 The limits of integration are 0 to ? whenever not mentioned.
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operating unit-1 in state S0 fails during time (t, t ? dt) and

unit-2 does not fail up to time t]dt. Thus

p01 ¼
Z

a1ptp�1e�a1tp

e�a2tp

dt ¼ a1

a1 þ a2

Similarly,

p02 ¼
a2

a2 þ a1

; p10 ¼
b1

l2 þ b1

; p
ð3Þ
12 ¼

l2

l2 þ b1

;

p20 ¼
b2

b2 þ l1

; p
ð4Þ
21 ¼

l1

l1 þ b2

and the other elements of t.p.m will be zero.

It can be easily verified that

p01 þ p02 ¼ 1

p10 þ p
ð3Þ
12 ¼ 1; p20 þ p

ð4Þ
21 ¼ 1

ð1Þ

The mean sojourn time wi in state Si is defined as the

expected time for which the system stays in state Si before

transiting to any other state. If Ti is the sojourn time in state

Si, then mean sojourn time in state Si is given by,

wi ¼
Z

PðTi [ tÞdt

As an illustration, to obtain w0, we observe as follows:

w0 = $[probability that the operating unit-1 and unit-2 in

state S0 do not fail up to time t] dt.

w0 ¼
Z

e�a1tp e�a2tp dt ¼
Cð1þ 1

p
Þ

ða1 þ a2Þ1=p

Similarly

w1 ¼
Z

e�b1tp e�l2tp dt ¼
Z

e�ðb1þl2Þtp dt ¼
C 1þ 1

p

� �

ðb1 þ l2Þ
1=p

w2 ¼
Z

e�b2tp e�l1tp dt ¼
Z

e�ðb2þl1Þtp dt ¼
C 1þ 1

p

� �

ðb2 þ l1Þ1=p

ð2Þ

4 Analysis of characteristics

4.1 Reliability and MTSF

Let the random variable ‘‘Ti’’ be the time to system failure

(TSF) when the system starts from Si 2 E, then the reli-

ability of the system is given by

RiðtÞ = P [Ti [ t�

To determine the reliability of the system, we regard the

failed states of the system as absorbing states i.e., those

states in which system once reaches, remain there forever.

By simple probabilistic arguments, we have the following

recursive relations among Ri(t)’s (i = 0, 1, 2).

R0ðt) ¼ Z0ðt) þ q01ðtÞ� R1ðtÞ þ q02ðtÞ� R2ðtÞ ð3Þ
R1ðt) ¼ Z1ðtÞ þ q10ðtÞ� R0ðtÞ ð4Þ
R2ðtÞ ¼ Z2ðtÞ þ q20ðtÞ� R0ðtÞ ð5Þ

where,

Z0ðtÞ ¼ e�ða1þa2Þtp ; Z1ðtÞ ¼ e�ðb1þl2Þtp and

Z2ðtÞ ¼ e�ðb2þl1Þtp

Taking the Laplace Transforms of relations (3, 4, 5) and

simplifying for R�0ðs), omitting the argument ‘s’ for brevity,

we get

R�0ðs) ¼ N1ðsÞ
D1ðsÞ

¼ Z�0 þ q�01Z�1 þ q�02Z�2
1� q�01q�10 � q�02q�20

ð6Þ

where

Z�0ðs), Z�1ðs) and Z�2ðs) are the Laplace Transforms of Z0ðt);
Z1ðt) and Z2ðt):

Taking the inverse Laplace Transform (ILT) of Eq. (6),

we can get the reliability of the system when system starts

from state S0.

The MTSF can be obtained by using the well known

formula-

MTSF ¼ EðT0Þ ¼ lim
s!0

R�0ðsÞ ¼
N1ðsÞ
D1ðsÞ

¼ N1ð0Þ
D1ð0Þ

¼ N1

D1

ð7Þ

Now using the results q�ijð0Þ ¼ pij and Zi*(0) = wi, we

get

N1 ¼w0 þ p01w1 þ p02w2

¼
C 1þ 1

p

� �

ða1 þ a2Þ1=p
þ a1

a1 þ a2

C 1þ 1
p

� �

ðb1 þ l2Þ1=p

þ a2

a1 þ a2

C 1þ 1
p

� �

ðb2 þ l1Þ
1=p

D1 ¼1� p01p10 � p02p20

¼1� a1

a1 þ a2

b1

b1 þ l2

� a2

a1 þ a2

b2

b2 þ l1

4.2 Availability analysis

Let us define Ai(t) as the probability that the system is up at

time t when initially it starts from regenerative state

Si 2 E. By simple probabilistic arguments, we have the

following recursive relation among Ai (t)’s (i = 0, 1, 2).

A0ðtÞ ¼ Z0ðtÞ þ q01ðtÞ� A1ðtÞ þ q02ðtÞ� A2ðtÞ ð8Þ

A1ðtÞ ¼ Z1ðtÞ þ q10ðtÞ� A0ðtÞ þ q
ð3Þ
12 ðtÞ� A2ðtÞ ð9Þ

A2ðtÞ ¼ Z2ðtÞ þ q20ðtÞ� A0ðtÞ þ q
ð4Þ
21 ðtÞ� A1ðtÞ ð10Þ
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Taking the Laplace Transform of relations (8, 9, 10) and

simplifying for A �
0ðs) , omitting the argument ‘s’ for

brevity, we get

A�0ðs) ¼ N2ðsÞ
D2ðsÞ

ð11Þ

where,

N2ðsÞ ¼ Z�0 1� q
ð3Þ�
12 q

ð4Þ�
21

� �
þ q�01 Z�1 þ Z�2q

ð3Þ�
12

� �

þ q�02 Z�1q
ð4Þ�
21 þ Z�2

� �

and

D2ðsÞ ¼ 1� q
ð3Þ�
12 q

ð4Þ�
21

� �
� q�01 q�10 þ q

ð3Þ�
12 q�20

� �

� q�02 q�10q
ð4Þ�
21 þ q�20

� �

Taking the Inverse Laplace Transform of (11), we can

get availability of the system when it starts from state S0

for known values of the parameters.

In the long run, the steady state probability that the

system will be operative, is given by,

A0 ¼ lim
t!1

A0ðtÞ ¼ lim
s!0

s A�ðsÞ ¼ N2

D2

ð12Þ

where,

N2 ¼ w0 p10 � p20 þ p10p20½ �
þ w1 p01 þ p02 1þ p20ð Þ½ �
þ w2 p02 þ p01 1� p10ð Þ½ �

¼
C 1þ 1

p

� �

a1 þ a2ð Þ1=p

b1

b1 þ l2

� b2

b2 þ l1

þ b1

b1 þ l2

� b2

b2 þ l1

� �

þ
C 1þ 1

p

� �

ðb1 þ l2Þ1=p

a1

a1 þ a2

þ a2

a1 þ a2

1þ b2

b2 þ l1

� �� �

þ
C 1þ 1

p

� �

b2 þ l1ð Þ1=p

a2

a1 þ a2

þ a1

a1 þ a2

1� b1

b1 þ l2

� �� �

and

D2 ¼ p10 þ p
ð3Þ
12 p20

� �
w0

þ p01 þ p02p
ð4Þ
21

� �
m1 þ p01p

ð3Þ
12 þ p02

� �
m2

where

m1 ¼
Z

t b1ptp�1e� b1 tp dt ¼
C 1þ 1

p

� �

ðb1 Þ
1=p

and

m2 ¼
Z

t b2ptp�1e� b2 tp dt ¼
C 1þ 1

p

� �

ð b2Þ
1=p

are the mean repair times of unit-1 and unit-2 respectively.

The expected up time of the system during (0, t) is given

by-

l upðtÞ ¼
Z t

0

A 0 uð Þ du

So that

l�upðsÞ ¼
A�0ðsÞ

s
ð13Þ

4.3 Busy period analysis

Let us define Bi(t) as the probability that the repairman is

busy in repair of a failed unit at epoch t when the system

starts from state Si 2 E. Using the probabilistic arguments,

we have the following recursive relation among

Bi(t)’s(i = 0, 1, 2).

B0ðtÞ ¼ q01ðtÞ� B1ðtÞ þ q02ðtÞ� B2ðtÞ ð14Þ

B1ðtÞ ¼ Z1ðtÞ þ q10ðtÞ� B0ðtÞ þ q
ð3Þ
12 ðtÞ� B2ðtÞ ð15Þ

B2ðtÞ ¼ Z2ðtÞ þ q20ðtÞ� B0ðtÞ þ q
ð4Þ
21 ðtÞ� B1ðtÞ ð16Þ

Taking the Laplace Transform of relations (14, 15, 16)

and solving for B0
*(s), omitting the argument ‘s’ for brevity,

we get

B�0ðs) ¼ N3ðsÞ
D2ðsÞ

ð17Þ

where,

N3ðsÞ ¼ q�01ðZ�1Þ � q�02ð�Z�2Þ ¼ q�01Z�1 þ q�02Z�2

and D2(s) is same as given in availability analysis.

Taking Inverse Laplace Transform of (17), we can get

the probability that the repairman will be busy at a par-

ticular epoch for known values of the parameters.

In the long run, the probability that the repairman will be

busy in repair of failed unit is given by

B0 ¼ lim
t!1

B0ðtÞ ¼ lim
s!0

s B�0ðsÞ ¼ lim
s!0

s
N3ðsÞ
D2ðsÞ

¼ N3

D2

ð18Þ

where,

N3 ¼ p01m1 þ p02m2

¼ a1

a1 þ a2

C 1þ 1
p

� �

ðb1 Þ1=p
þ a2

a2 þ a1

C 1þ 1
p

� �

ð b2Þ1=p

and D2 is same as given in availability analysis.
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The expected busy period of the repairman in repair

during (0, t) is given by

lbðtÞ ¼
Z t

0

B0ðuÞ du

So that,

l�bðsÞ ¼
B�0ðsÞ

s
ð19Þ

4.4 Profit function analysis

Let us define

C0 = revenue (in Rs.) per-unit up time of the system

C1 = cost (in Rs.) per unit time when the repairman is

busy in repair of a failed unit

Then, net expected profit incurred by the system during

time interval (0, t) is given by

P tð Þ ¼Expected total revenue in 0; tð Þ
� Expected total cost of repair in 0; tð Þ
¼C0lupðtÞ � C1lbðtÞ

ð20Þ

The net expected profit per-unit time incurred by the

system in steady-state is given by

P ¼ C0A0 � C1B0 ð21Þ

Where A0 and B0 have been given in (12) and (18)

respectively.

5 Estimation of parameters, MTSF and profit function

5.1 Classical estimation

The failure, increased failure and repair times of units of

system are assumed to be independently Weibull distrib-

uted random variables with failure rates h1 (.), h2 (.),

increased failure rates r1 (.), r2 (.) and repair rates j1(.), j2(.)

respectively.

where

hi(t) = aiptp-1, ri(t) = liptp-1, and ji(t) = biptp-1;

t C 0, ai, bi, li, p [ 0 (i = 1, 2)

Here ai, bi, li are scale parameters and p is the shape

parameter.

In our study, we are interested with the ML estimation

procedure as one of the most important classical

procedures.

5.1.1 ML estimation

Let

X
�

1
¼ ðx11; x12; . . .. . .. . .;x1n1

Þ; X
�

2
¼ ðx21; x22; . . .. . .. . .;x2n2

Þ;

X
�

3
¼ ðx31; x32;x3n3

Þ ; X
�

4
¼ ðx41; x42; . . .. . .. . .;x4n4

Þ;

X
�

5
¼ ðx51; x52; . . .. . .. . .;x5n5

Þ; X
�

6
¼ ðx61; x62; . . .. . .. . .;x6n6

Þ

be six independent random samples of sizes ni (i = 1, 2, 3,

4, 5, 6) drawn from Weibull distribution with failure rates

h1 (.), h2 (.), r1 (.), r2 (.) and repair rates j1 (.), j2 (.)

respectively.

The likelihood function of the combined sample is

L X�
1
;X�

2
;X�

3
;X�

4
;X�

5
;X�

6
a1; a2; l1; l2; b1; b2j

� �

¼ an1

1 an2

2 ln3

1 ln4

2 bn5

1 bn6

2 pn1þn2þn3þn4þn5þn6

� Z1Z2Z3Z4Z5Z6e�ða1W1þa2W2þl1W3þl2W4þb1W5þb2W6Þ

ð22Þ

Where,

Wi ¼
Xni

j¼1

x
p
ij and Zi ¼

Yni

j¼1

x
p�1
ij ; i ¼ 1; 2; 3; 4; 5; 6

By using usual maximization likelihood approach, the

M.L. estimates (say â1; â2; l̂1; l̂2; b̂1; b̂2) of the parameters

a1; a2; l1; l2; b1; b2 are

â1 ¼ n1=W1; â2 ¼ n2=W2; l̂1 ¼ n3=W3; l̂2

¼ n4=W4; b̂1 ¼ n5=W5; b̂2 ¼ n6=W6 ð23Þ

Thus, by using the invariance property of MLE, the

MLEs of MTSF and profit function, say, M̂ and P̂ can be

obtained. The asymptotic sampling distribution of

â1 � a1

â2 � a2

l̂1 � l1

l̂2 � l2

b̂1 � b1

b̂2 � b2

0
BBBBBBBBB@

1
CCCCCCCCCA

�N6ð0; I�1Þ

where I denotes the Fisher information matrix with

diagonal elements

I11 ¼
n1

a2
1

; I22 ¼
n2

a2
2

; I33 ¼
n3

l2
1

; I44 ¼
n4

l2
2

; I55 ¼
n5

b2
1

; I66

¼ n6

b2
2

and non diagonal elements are all zero.

Also, the asymptotic distribution of M̂� M
� 	

�
N6 0; A0 I�1A
� 	

and P̂ � P
� 	

� N6 0; B0 I�1B
� 	

where
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A0 ¼ oM

oa1

;
oM

oa2

;
oM

ol1

;
oM

ol2

;
oM

ob1

;
oM

ob2

� �
;

B0 ¼ oP

oa1

;
oP

oa2

;
oP

ol1

;
oP

ol2

;
oP

ob1

;
oP

ob2

� �

5.2 Bayesian estimation

Since the natural family of conjugate priors of scale

parameter in case of Weibull distribution when shape

parameter is known is a gamma distribution. So in our case,

the prior distributions of scale parameters a1; a2; l1; l2;

b1; b2 when the shape parameter p is known are assumed to

be gamma with parameters (ai, bi)(i = 1, 2, 3, 4, 5, 6) and

are given as follows:

a1� Gamma ða1; b1Þ; ð24Þ
a2 � Gamma ða2; b2Þ; ð25Þ
l1 � Gamma ða3; b3Þ; ð26Þ
l2 � Gamma ða4; b4Þ; ð27Þ
b1 � Gamma ða6; b6Þ ð28Þ
b2 � Gamma ða6; b6Þ ð29Þ

Here the parameters of prior distributions are called

hyper parameters. Using the likelihood function in (22) and

prior distribution of a1, a2, l1, l2, b1, b2 (24, 25, 26, 27, 28,

29) the posterior distributions of these parameters are

obtained as follows:

a1 X�
1





 � Gamma ðn1 þ a1; b1 þ W1Þ ð30Þ

a2 X�
2





 � Gamma ðn2 þ a2; b2 þ W2Þ ð31Þ

l1 X�
3





 � Gamma ðn3 þ a3; b3 þ W3Þ ð32Þ

l2 X�
4





 � Gamma ðn4 þ a4; b4 þ W4Þ ð33Þ

b1 X�
5





 � Gamma ðn5 þ a5; b5 þ W5Þ ð34Þ

b2 X�
6





 � Gamma ðn6 þ a6; b6 þ W6Þ ð35Þ

Under squared error loss function, Bayes estimates of

a1; a2; l1; l2; b1; b2are respectively the means of posterior

distribution given in Eqs. (30, 31, 32, 33, 34, 35, 36) and

are as follows:

Fig. 2 Plot of MTSF for fixed b2 = 0.5 and varying a1

Fig. 3 Plot of MTSF for fixed b2 = 0.6 and varying a1

Fig. 4 Plot of MTSF for fixed b2 = 0.7 and varying a1

Fig. 5 Plot of profit for fixed b2 = 0.5 and varying a1
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â1 ¼ b1 þ w1ð Þ= n1 þ a1ð Þ;
â2 ¼ b2 þ w2ð Þ= n2 þ a2ð Þ;
l̂1 ¼ b3 þ w3ð Þ= n3 þ a3ð Þ;
l̂2 ¼ b4 þ w4ð Þ= n4 þ a4ð Þ;
b̂1 ¼ b5 þ w5ð Þ= n5 þ a5ð Þ;
b̂2 ¼ b6 þ w6ð Þ= n6 þ a6ð Þ

ð36Þ

6 Simulation study

We obtained, in the above section, MLE and Bayes esti-

mates of scale parameters a1, a2, l1, l2, b1, b2 when the

shape parameter p is known and hence the estimates of

MTSF and profit function. In order to assess the statistical

performances of these estimates, a simulation study is also

conducted. The SE/PSE of the estimates and width of

confidence/HPD intervals are used for comparison purpose.

Random samples of sizes n1 = n2 = n3 = n4 = n5 =

n6 = 180 have been drawn from the Weibull distribution

for various values of parameters and based on these sam-

ples, the ML estimates of the MTSF and profit function are

obtained. For Bayesian estimation of parameters, we gen-

erated 10,000 realizations from the posterior densities.

Bayes estimates of the parameters with gamma priors are

obtained by setting the values of hyper parameters as

a1 ¼ b1=a1; a2 ¼ b2=a2; l1 ¼ b3=a3; l2 ¼ b4=a4; b1 ¼ b5=a5;

b2 ¼ b6=a6. The results of simulation study have been

Table 2 Values of MTSF for fixed b2 = 0.6, p = 1 and varying a1

Estimates\ a1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

True MTSF 4.089 3.814 3.596 3.417 3.269 3.144 3.037 2.945 2.864 2.793

ðMT̂SFÞMLE
4.168 4.141 3.869 3.462 3.155 2.961 2.839 2.759 2.705 2.668

SE 0.259 0.217 0.19 0.172 0.16 0.151 0.145 0.14 0.136 0.134

Width_CI 1.015 0.851 0.745 0.674 0.627 0.592 0.568 0.549 0.533 0.525

MT̂SF
� 	

Bayes
3.533 3.382 3.149 2.694 2.407 2.255 2.181 2.152 2.149 2.147

PSE 0.24 0.21 0.176 0.12 0.097 0.088 0.085 0.084 0.084 0.078

Width_HPD 0.929 0.807 0.683 0.467 0.375 0.341 0.33 0.325 0.324 0.304

Table 1 Values of MTSF for fixed b2 = 0.5, p = 1 and varying a1

Estimates\a1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

True MTSF 3.922 3.684 3.492 3.333 3.2 3.086 2.989 2.903 2.828 2.762

ðMT̂SFÞMLE
3.851 3.831 3.622 3.296 3.041 2.875 2.768 2.698 2.651 2.617

SE 0.243 0.207 0.183 0.167 0.155 0.147 0.141 0.137 0.133 0.131

Width_CI 0.953 0.811 0.717 0.655 0.608 0.576 0.553 0.537 0.521 0.514

MT̂SF
� 	

Bayes
3.295 3.173 2.981 2.594 2.341 2.205 2.138 2.111 2.108 2.107

PSE 0.214 0.19 0.162 0.115 0.094 0.086 0.082 0.081 0.081 0.076

Width_HPD 0.828 0.73 0.63 0.444 0.362 0.329 0.319 0.315 0.314 0.298

Fig. 6 Plot of profit for fixed b2 = 0.6 and varying a1

Fig. 7 Plot of profit for fixed b2 = 0.7 and varying a1
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summarized in Tables 1, 2, 3, 4, 5, 6. All calculations are

performed by using R.2.14.2 Software.

For a more concrete study of the system behavior, by

using values (Tables 1, 2, 3), we plot curves for true

MTSF, its MLE and Bayes estimate (Figs. 2, 3, 4) w.r.t.

failure rate a1 for different values of repair rate

b2(0.5,0.6,0.7) while the other parameters are kept fixed

(p = 1.0; b1 = 0.4; a2 = 0.9; l1 = 0.5; l2 = 0.6).Curves

Table 4 Values of profit function for fixed b2 = 0.5, p = 1 and varying a1

Estimates\ a1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

True profit 153.373 147.022 141.715 137.215 133.35 129.994 127.054 124.456 122.144 120.074

Prôfitð ÞMLE 165.521 164.944 158.982 149.152 140.975 135.389 131.694 129.215 127.51 126.31

SE 9.462 8.998 8.629 8.323 8.064 7.838 7.639 7.462 7.303 7.159

Width_ CI 37.091 35.272 33.826 32.626 31.611 30.725 29.945 29.251 28.628 28.063

Prôfitð ÞBayes 119.089 116.253 111.339 101.028 93.731 89.619 87.551 86.715 86.632 86.641

PSE 6.789 6.548 6.304 5.724 5.322 5.09 4.97 4.921 4.916 4.802

Width_HPD 26.559 25.572 24.522 22.271 20.741 19.875 19.404 19.192 19.172 18.736

Table 5 Values of profit function for fixed b2 = 0.6, p = 1 and varying a1

Estimates\ a1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

True profit 156.301 149.398 143.64 138.762 134.578 130.949 127.771 124.966 122.471 120.237

Prôfitð ÞMLE 170.98 170.314 163.453 152.232 142.979 136.699 132.562 129.793 127.893 126.558

SE 9.682 9.211 8.836 8.526 8.26 8.028 7.823 7.64 7.475 7.325

Width_ CI 37. 953 36.107 34.637 33.422 32.379 31.47 30.666 29.949 29.302 28.714

Prôfitð ÞBayes 121.638 118.511 113.101 101.808 93.861 89.4 87.162 86.257 86.167 86.176

PSE 6.994 6.746 6.51 5.925 5.51 5.267 5.141 5.089 5.084 4.954

Width_HPD 27.306 26.426 25.322 23.102 21.499 20.559 20.052 19.87 19.854 19.342

Table 6 Values of profit function for fixed b2 = 0.7, p = 1 and varying a1

Estimates\ a1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

True profit 158.471 151.097 144.956 139.762 135.313 131.459 128.088 125.114 122.472 120.108

Prôfitð ÞMLE 173.929 173.205 165.776 153.703 143.813 137.133 132.746 129.815 127.807 126.396

SE 9.873 9.397 9.018 8.703 8.433 8.196 7.986 7.797 7.627 7.471

Width_ CI 38.702 36.836 35.351 34.116 33.057 32.128 31.305 30.564 29.898 29.286

Prôfitð ÞBayes 122.612 119.355 113.726 102.011 93.792 89.186 86.878 85.945 85.853 85.862

PSE 7.087 6.836 6.603 6.015 5.595 5.346 5.217 5.164 5.158 5.023

Width_HPD 27.675 26.813 25.698 23.491 21.831 20.894 20.359 20.134 20.112 19.606

Table 3 Values of MTSF for fixed b2 = 0.7, p = 1 and varying a1

Estimates\ a1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

True MTSF 4.253 3.939 3.694 3.496 3.333 3.197 3.082 2.982 2.896 2.821

ðMT̂SFÞMLE
4.407 4.374 4.051 3.579 3.234 3.019 2.885 2.799 2.741 2.702

SE 0.274 0.227 0.197 0.177 0.164 0.154 0.148 0.143 0.139 0.136

Width_CI 1.074 0.89 0.772 0.694 0.643 0.604 0.58 0.561 0.545 0.533

MT̂SF
� 	

Bayes
3.654 3.487 3.232 2.742 2.437 2.278 2.201 2.171 2.168 2.166

PSE 0.254 0.22 0.182 0.123 0.099 0.09 0.086 0.085 0.085 0.079

Width_HPD 0.981 0.846 0.708 0.477 0.383 0.347 0.334 0.329 0.328 0.307
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for profit function, its MLE and Bayes estimates are also

plotted (Figs. 5, 6, 7) by using values (Tables 4, 5, 6) for

the same values of parameters as in case of MTSF and

assuming the values of C0 and C1 as (C0 = 100; C1 = 50).

7 Conclusions

According to results obtained in Sect. 6, we observe from

Tables 1, 2, 3, that for the fixed values of b2 (0.5, 0.6, 0.7)

and p(0.1) MTSF decreases as the failure rate a1 increases.

From these tables we also observe that for fixed values of

b2 and p, both the SE of ML estimator and PSE of Bayes

estimator of MTSF decrease with the increase in a1. Also

the SE of ML estimator is smaller than the PSE of Bayes

estimator. Besides, the width of HPD intervals is smaller

than the width of confidence intervals. Same trends are also

observed from Tables 4, 5, 6 in case of profit function. It is

also observed from Figs. 2, 3, 4 that MTSF, its MLE and

Bayes estimate decrease with the increase in failure rate a1

while all these increase with the increase in repair rate b2.

Same trends for profit function are also observed from

Figs. 5, 6, 7. Hence, from the above discussion we suggest

to use Bayes approach under squared error loss function

than classical approach based on ML estimation for esti-

mating the MTSF and profit function for the considered

system model.
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