
ORIGINAL ARTICLE

Profit analysis of a 2-out-of-2 redundant system with single
standby and degradation of the units after repair

Jitender Kumar • M. S. Kadyan • S. C. Malik

Received: 5 October 2011 / Revised: 19 July 2012 / Published online: 16 November 2012

� The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and

Maintenance, Lulea University of Technology, Sweden 2012

Abstract The purpose of this paper is to carry out the

profit analysis of a three unit redundant system in which

two units work in parallel and one unit is kept as spare in

cold standby. Each unit has direct complete failure from

normal mode. There is a single repairman (called server)

who visits the system immediately to do repair, inspection

and replacement of the units. The unit does not work as

new after repair and so called a degraded unit. The

degraded unit at its further failure undergoes for inspection

to see the feasibility of its repair. If the repair is not fea-

sible, it is replaced immediately by new unit. The system is

considered in up-state if any two of original and/or

degraded units are operative. The time to failure, repair and

inspection of the units are taken as arbitrary with different

probability density functions. By adopting semi-Markov

process and regenerative point technique, the results for

some measures of system effectiveness are obtained in

steady state.

Keywords 2-Out-of-2 system � Single standby �
Degradation � Inspection � Replacement and profit analysis

1 Introduction

It is proved that parallel redundancy is one of the best

method to improve the performance and reliability of

systems. Therefore, in recent years, reliability and profit

analysis aspects of the systems of two or more units have

been examined by the researchers including Nakagawa

(1980), Gopalan and Naidu (1982), Singh (1989) and

Chander (2005). And, most of these systems have been

analyzed under a common assumption that unit works as

new after repair. Infect, this assumption cannot be con-

sidered always true since the working capability and effi-

ciency of a unit after repair depends more or less on the

repair mechanism adopted. And, a unit may have increased

failure rate if it not repaired by an expert repairman and so

called degraded unit after repair. Chander and Mukender

(2009) have discussed reliability and economic measures

of a 2-out-of-3 redundant system subject to degradation

after repair. In that paper, authors also assumed that repair

of the degraded unit at its further is always feasible to the

system. However, this assumption is not true many times

and it is a known fact that degraded unit can be used further

failure up to some extent. And, the degraded unit may be

replaced by new one in case of its excessive use and high

cost of maintenance which can be revealed by inspection.

In view of the above and considering practical impor-

tance here we analyzed a reliability model for a system of

three identical units in which two units work in parallel and

one unit is taken in cold standby and so called a 2-out-of-2

redundant system with single standby. Each unit has two

modes of failure—normal (N) and complete failure (F).

There is a single repairman (called server) who visits the

system immediately whenever needed and he cannot leave

the system while performing jobs. The original unit does
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not work as new after repair and thus called a degraded unit.

The degraded unit after repair is considered as degraded. The

inspection of the degraded unit at its further failure is carried

out by the repairman to see the feasibility of its repair. If

repair is not feasible, it is replaced immediately by original

unit in order to avoid the unnecessary expanses on repair.

The system is considered in up-state if any two of original

and/or degraded units are operative. The failure, inspection

and repair times of the units are mutually independent and

uncorrelated random variables. The time to failure, repair

and inspection of the units are taken as arbitrary with dif-

ferent probability density functions. By adopting semi-

Markov process and regenerative point technique, the results

for some measures of system effectiveness are obtained in

steady state. The results for a particular case are obtained to

depict the behavior of mean time to system failure (MTSF),

availability and profit incurred to the system model.

2 Methodology

The system has been analyzed using well known semi-

Markov process and regenerative point technique which

are briefly described as:

Markov process: If {X(t), t [ T} is a stochastic process

such that, given the value of X(s), the value of X(t), t [ s

do not depend on the values of X(u), u \ s Then the pro-

cess {X(t), t [ T} is a Markov process.

Semi-Markov process: A semi-Markov process is a

stochastic process in which changes of state occur

according to a Markov chain and in which the time interval

between two successive transitions is a random variable,

whose distribution may depend on the state from which the

transition take place as well as on the state to which the

next transition take place.

Regenerative process: Regenerative stochastic process

was defined by Smith (1955) and has been crucial in the

analysis of complex system. In this, we take time points at

which the system history prior to the time points is irrel-

evant to the system conditions. These points are called

regenerative points. Let X(t) be the state of the system of

epoch. If t1, t2, … are the epochs at which the process

probabilistically restarts, then these epochs are called

regenerative epochs and the process {X(t), t = t1, t2, …} is

called regenerative process. The state in which regenera-

tive points occur is known as regenerative state.

3 Notations

E Set of regenerative states

No/No Original unit in normal mode and

operative/not working

Do/Do Degraded unit is operative/not

working

NCs/DCs Original/degraded unit in cold

standby

p/q Probability that repair of

degraded unit is feasible/not

feasible

a(t)/A(t) Probability density function

(p.d.f.)/cumulative distribution

function (c.d.f) of failure rate

of original unit

b(t)/B(t) p.d.f./c.d.f of failure rate

of degraded unit

f(t)/F(t) p.d.f./c.d.f of failure rate

of original unit when both

are available to use

z(t)/Z(t) p.d.f./c.d.f of failure rate

of degraded unit when both

are available to use

g(t)/G(t), g1(t)/G1(t) p.d.f./c.d.f of repair time

for original/degraded unit

h(t)/H(t) p.d.f./c.d.f of inspection time

NFur/NFUR/NFwr Original unit is failed and under

repair/under continuous repair

from previous state/waiting for

repair

DFur/DFUR/DFwr Degraded unit is failed and under

repair/under continuous repair from

previous state/waiting for repair

DFui/DFwi/DFUI/DFWI Degraded unit is failed and is

under inspection/waiting for

inspection/under continuous

inspection from the previous

state/waiting for inspection

continuously from previous state

qij(t), Qij(t) p.d.f and c.d.f of first passage

time from regenerative state i to a

regenerative state j or to a failed

state j without visiting any other

regenerative state in (0,t]

qij.k(t), Qij.k(t) p.d.f and c.d.f of first passage

time from regenerative state i to a

regenerative state j or to a failed

state j visiting state k once in (0,t]

qij.kr(t), Qij.kr(t) p.d.f and c.d.f of first passage

time from regenerative state i to a

regenerative state j or to a failed

state j visiting state k, r once in (0,t]

PUi(t) Probability that system up

initially in state Si [ E is up

at time t without visiting to any

other regenerative sate]
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Wi(t) Probability that [server is busy in

the state Si up to time t without

making any transition to any other

regenerative state or returning to

the same via one or more non-

regenerative states]

mij Contribution to mean sojourn

time in state Si [ E and non

regenerative state if occurs before

transition to Sj [ E

�/� Symbols for Stieltjes convolution/

Laplace convolution

*|* Symbols for Laplace Stieltjes

transform (LST)/Laplace

transform (LT)
0 Symbol for derivative of the

function

The following are the possible transition states of the

system model

The states S0, S1, S3, S4, S6, S7, S8, S9, S12, S14, S17, S25,

S26, S27, and S28 are regenerative states while the

remaining states are non-regenerative states. Thus E =

{S0, S1, S3, S4, S6, S7, S8, S9, S12, S14, S17, S25, S26, S27,

S28}. The possible transition between states along with

transition rates for the model is shown in Fig. 1.

4 Probability density function (p.d.f.)

Probability density function (p.d.f.) is defined as the

function that gives us the probability per unit interval. This

can be illustrated with the following.

f xð Þ ¼ lim
h!0

p x\X\xþ hð Þ
h

As such, for a continuous random variable X, we define a

p.d.f. A function f(x) is said to be a p.d.f. if it satisfies the

following properties.

(i) f(x) C 0, -?\ x \?

(ii)
R1

�1
f xð Þdx ¼ 1

5 Transition probabilities and mean sojourn times

Simple probabilistic considerations yield the following

expressions for the non-zero elements pij = Qij (?) =

$qij(t) dt as (Medhi 1982)

S0 ¼ No;No;NCsð Þ;l S1 ¼ No;No;NFurð Þ; S2 ¼ No;NFwr;NFURð Þ;

S3 ¼ No;No;DCsð Þ; S4 ¼ No;Do;NFurð Þ; S5 ¼ NFwr;Do;NFURð Þ;

S6 ¼ No;Do;DCsð Þ; S7 ¼ Do;Do;NFurð Þ; S8 ¼ No;Do;DFuið Þ;

S9 ¼ No;Do;NCsð Þ; S10 ¼ NFwr;Do;DFUIð Þ; S11 ¼ NFWR;Do; DFurð Þ;

S12 ¼ No;Do;DFurð Þ; S13 ¼ No; DFwi;DFUIð Þ; S14 ¼ No;No;DFuið Þ;

S15 ¼ No;DFwi;DFURð Þ; S16 ¼ NFwr;Do;DFURð Þ; S17 ¼ No;No;DFurð Þ;

S18 ¼ No;NFwr;DFURð Þ; S19 ¼ No;NFwr;DFUIð Þ; S20 ¼ No;NFWR;DFurð Þ;

S21 ¼ No;DFWI;DFurð Þ; S22 ¼ No;DFwi;NFURð Þ; S23 ¼ Do;DFwi;DFUIð Þ;

S24 ¼ Do;DFWI;DFurð Þ; S25 ¼ Do;Do;DCsð Þ; S26 ¼ Do;Do;DFuið Þ;

S27 ¼ Do;Do;NCsð Þ; S28 ¼ Do;Do;DFurð Þ; S29 ¼ Do; DFwi;NFURð Þ;

S30 ¼ Do; DFwi; DFURð Þ;

ð1Þ
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p01 ¼
R1

0

f ðtÞdt p12 ¼
R1

0

f ðtÞGðtÞdt p13 ¼
R1

0

gðtÞFðtÞdt

p24 ¼
R1

0

gðtÞdt p34 ¼
R1

0

f ðtÞdt p4;22 ¼
R1

0

bðtÞAðtÞGðtÞdt

p4;6 ¼
R1

0

gðtÞAðtÞBðtÞdt p4;5 ¼
R1

0

aðtÞGðtÞBðtÞdt p5;7 ¼
R1

0

gðtÞdt

p6;7 ¼
R1

0

aðtÞBðtÞdt p6;8 ¼
R1

0

bðtÞAðtÞdt p7;29 ¼
R1

0

zðtÞGðtÞdt

p7;25 ¼
R1

0

gðtÞZðtÞdt p8;9 ¼
R1

0

qhðtÞBðtÞAðtÞdt p8;12 ¼
R1

0

phðtÞBðtÞAðtÞdt

p8;10 ¼
R1

0

aðtÞBðtÞHðtÞdt p8;13 ¼
R1

0

bðtÞAðtÞHðtÞdt p9;14 ¼
R1

0

bðtÞAðtÞdt

p9;4 ¼
R1

0

aðtÞBðtÞdt p10;11 ¼
R1

0

phðtÞdt p10;4 ¼
R1

0

qhðtÞdt

p11;7 ¼
R1

0

g1ðtÞdt p12;16 ¼
R1

0

aðtÞBðtÞG1ðtÞdt p12;15 ¼
R1

0

bðtÞAðtÞG1ðtÞdt

p12;6 ¼
R1

0

g1ðtÞAðtÞBðtÞdt p13;14 ¼
R1

0

qhðtÞdt p13;21 ¼
R1

0

phðtÞdt

p14;17 ¼
R1

0

phðtÞFðtÞdt p14;0 ¼
R1

0

qhðtÞFðtÞdt p14;19 ¼
R1

0

f ðtÞHðtÞdt

p15;8 ¼
R1

0

g1ðtÞdt p16;7 ¼
R1

0

g1ðtÞdt p17;18 ¼
R1

0

f ðtÞG1ðtÞdt

p17;3 ¼
R1

0

g1ðtÞFðtÞdt p18;4 ¼
R1

0

g1ðtÞdt p19;1 ¼
R1

0

qhðtÞdt

p19;20 ¼
R1

0

phðtÞdt p20;4 ¼
R1

0

g1ðtÞdt p21;8 ¼
R1

0

g1ðtÞdt

p22;8 ¼
R1

0

gðtÞdt p23;8 ¼
R1

0

qhðtÞdt p23;24 ¼
R1

0

phðtÞdt

p24;26 ¼
R1

0

g1ðtÞdt p25;26 ¼
R1

0

zðtÞdt p26;27 ¼
R1

0

qhðtÞZðtÞdt

p26;28 ¼
R1

0

phðtÞZðtÞdt p26;23 ¼
R1

0

zðtÞHðtÞdt p27;28 ¼
R1

0

zðtÞdt

p28;25 ¼
R1

0

g1ðtÞZðtÞdt p28;30 ¼
R1

0

zðtÞG1ðtÞdt p29;26 ¼
R1

0

gðtÞdt

p30;26 ¼
R1

0

g1ðtÞdt p14:2 ¼ p12
rp24 p47:5 ¼ p45

rp57

p4;8:22 ¼ p4;22
rp22;8 p7;26:29 ¼ p7;29

rp29;26 p8;4:10 ¼ p8;10
rp10;4

p8;8:13;21 ¼ p8;13
rp13;21

rp21;8 p8;7:10;11 ¼ p8;10
rp10;11

rp11;7 p8;14:13 ¼ p8;13
rp13;14

p12;8:15 ¼ p12;15
rp15;8 p12;7:16 ¼ p12;16

rp16;7 p14;1:19 ¼ p14;19
rp19;1

p14;4:19;20 ¼ p14;19
rp19;20

rp20;4 p17;4:18 ¼ p17;18
rp18;4 p26;8:23 ¼ p26;23

rp23;8

p28;26:30 ¼ p28;30
rp30;26 p26;26:23;24 ¼ p26;23

rp23;24
rp24;26

: ð2Þ
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For these transition probabilities, it can be verified that

p01¼p34¼p25;26¼p27;8¼p12þp13¼p13þp1;4:2

¼p45þp46þp4;22¼p46þp4;7:5þp4;8:22

¼p67þp68¼p7;25þp7;29¼p7;25þp7;26:29

¼p89þp8;12þp8;13þp8;10¼p89þp8;12þp8;4:10

þp8;7:10;11þp8;14:13þp8;8:13;21¼p9;4þp9;14

¼p12;6þp12;15þp12;16¼p12;6þp12;8:15þp12;7:16

¼p14;0þp14;17þp14;19¼p14;0þp14;17þp14;1:19

þp14;4:19;20¼p17;3þp17;18¼p17;3þp17;4:18

¼p26;28þp26;27þp26;23¼p26;28þp26;27þp26;8:23

þp26;26:23;24¼p28;25þp28;30¼p28;25þp28;26:30¼1 ð3Þ

The mean sojourn times li in state Si are given by:

The unconditional mean time taken by the system to transit

from any state Si when time is counted from epoch at

entrance into state Sj is stated as (Cox 1962):

mij ¼
Z

tdQij tð Þ ¼ �qij � 0 0ð Þ ð5Þ

and

m01 ¼ l0; m12 þm13 ¼ l1; m13þm14:2 ¼ l1
1 sayð Þ;

m34 ¼ l3; m45 þm46þm4;22 ¼ l4; m46þm47:5

þm48:22 ¼ l1
4 sayð Þ;

m67þm68 ¼ l6; m7;25þm7;29 ¼ l7;m7;25þm7;26:29 ¼ l1
7;

l0 ¼
R1

0

FðtÞdt ¼ l3; l1 ¼
R1

0

FðtÞGðtÞdt; l4 ¼
R1

0

AðtÞGðtÞBðtÞdt;

l6 ¼
R1

0

AðtÞBðtÞdt ¼ l9; l7 ¼
R1

0

ZðtÞGðtÞdt; l8 ¼
R1

0

AðtÞHðtÞBðtÞdt;

l12 ¼
R1

0

AðtÞG1ðtÞBðtÞdt; l14 ¼
R1

0

FðtÞHðtÞdt; l17 ¼
R1

0

FðtÞG1ðtÞdt;

l25 ¼
R1

0

ZðtÞdt ¼ l27; l26 ¼
R1

0

ZðtÞHðtÞdt; l28 ¼
R1

0

ZðtÞG1ðtÞdt:

ð4Þ

S0 S1

S2

S22 S9

S20

S19

S21

S3

S4 S6

S10

S11

S16

S5

S25

S29

S7

S24

S15

S12

S8
S13

S14

S17

S26S28

S30

S23 S27
S18

)t(a)t(f)t(f
b(t)
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a(t) b(t)

f(t)

z(t)
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g(t)

g1(t) g1(t)z(t)

g1(t) g1(t)

qh(t)

qh(t)

qh(t)

ph(t)

ph(t)

ph(t)

ph(t)

ph(t)
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Fig. 1 State transition diagram
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m89 þm8;12 þm8;13 þm8;10 ¼ l8;

m83 þm88:12;20 þm84:9 þm8;11 þm87:9;10

þm8;13:12 ¼ l1
8 sayð Þ;

m12;6 þm12;15 þm12;16 ¼ l12; m12;6 þm12;8:15 þm12;7:16

¼ l1
12 sayð Þ

m14;0 þm14;17 þm14;19 ¼ l14; m14;0 þm14;17 þm14;1:19

þm14;4::19;20 ¼ l1
14 sayð Þ;

m17;3 þm17;18 ¼ l17; m17;3 þm17;4:18 ¼ l1
17 sayð Þ;

m25;26 ¼ l25;

m26;28 þm26;27 þm26;23 ¼ l26; m26;28 þm26;27

þm26;8:23 þm26;26:23;24 ¼ l1
26 sayð Þ;

m28;25 þm28;30 ¼ l28; m28;25 þm28;26:30 ¼ l1
28: ð6Þ

6 Reliability and MTSF

Let /i(t) be the c.d.f of the first passage time from regen-

erative state i to a failed state. Regarding the failed state as

absorbing state, we have the following recursive relations

for /i(t):

/i tð Þ ¼
X

j

Qi;j tð Þr/j tð Þ þ
X

k

Qi;k tð Þ: ð7aÞ

The system equations given in (7a) can be obtained similar

as /0(t) and /1(t)

/0 tð Þ ¼ Q0;1ðtÞr/1 tð Þ for i ¼ 0; j ¼ 1ð Þ ð7bÞ

/1 tð Þ ¼ Q13 tð Þr/3 tð Þ þ Q12 tð Þ
for i ¼ 1; j ¼ 3; k ¼ 2ð Þ ð7cÞ

where j is an operative regenerative state to which the

given regenerative state i can transit and k is a failed state

to which the state i can transit directly

Taking LST of relations (7a) and solving for e/0ðsÞ, we

have

R�ðsÞ ¼ 1� e/0ðsÞ
� �.

s: ð8Þ

The reliability R(t) can be obtained by taking inverse

Laplace transition of (8) and MTSF is given by

MTSF ¼ lim
s!0

R�ðsÞ ¼ Numerator of MTSF ðM11Þ
DenoMinator of MTSF ðD11Þ

ð9Þ

where

M11 ¼ l0þl1ð Þ½ 1� p26;28p28;25

� �

1� p68 p46p89 p94þ p9;14p14;17p17;3

� �
þ p8;12p12;6

� �� �

� p67p7;25p26;27

� �
p46p89 p94þ p9;14p14;17p17;3

� ��

þp8;12p12;6

�
� þ p13l3½ 1� p26;28p28;25

� �

1� p8;12p12;6þ p46p89p94

� �
p68

� �
� p67p7;25p26;27

� �

� p8;12p12;6þ p46p89p94

� �
� þ p13l4 1� p26;28p28;25

� ��

� 1� p68p8;12p12;6

� �
� p67p7;25p26;27

� �
p8;12p12;6

	

þ p13p46 1� p26;28p28;25

� �
l6þ p67l7½ �

þ p13p46½p68 1� p26;28p28;25

� �
þ p67p7;25p26;27

� �
�

� ½l8þ p89l9þ p8;12l12þ p89p9;14l14

þ p89p9;14p14;17pl17� þ p13p46p67p7;25

� l26þl25þ p26;28l28þ p26;27l27

� 	

and D11 ¼ 1� p26;28p28;25

� �
½1� p68 p8;12p12;6

�

þp46p89 p9;4þ p9;14p14;17p17;3

� ��

� p68p46p89p9;14p14;0p13� p67p7;25p26;27

� ½fp8;12p12;6þ p46p89ðp9;4þ p9;14p14;17p17;3Þg
þ p46p89p9;14p14;0p13�:

7 Availability analysis

Let Ai(t) be the probability that the system is in up state at

instant t given that the system entered regenerative state i at

t = 0. The recursive relations for Ai(t) are given by:

Ai tð Þ ¼ PUi tð Þ þ
X

j

q
nð Þ

i;j tð Þ�Aj tð Þ ð10aÞ

The system equations given in (10a) can be obtained

similar as A0(t) and A1(t)

A0 tð Þ ¼ PU0ðtÞþ q0;1ðtÞ�A1 tð Þ for i¼ 0; j¼ 1ð Þ ð10bÞ

A1 tð Þ ¼ PU1 tð Þ þ q13 tð Þ�A3 tð Þ þ q14:2 tð Þ�A4 tð Þ
for i ¼ 1; j ¼ 3; 4ð Þ ð10cÞ

where j is any successive regenerative state to which the

regenerative state i can transit through n C 1 (natural

number) transitions, and

PU0 tð Þ ¼ e�2kt ¼ PU3 tð Þ; PU1 tð Þ ¼ e�2kt �GðtÞ; PU4 tð Þ ¼ e�ðkþk1Þt �GðtÞ;
PU6 tð Þ ¼ e�ðkþk1Þt; PU7 tð Þ ¼ e�2k1t �GðtÞ; PU8 tð Þ ¼ e�ðkþk1ÞtHðtÞ;
PU9 tð Þ ¼ e�ðkþk1Þt PU12 tð Þ ¼ e�ðkþk1Þt �G1ðtÞ; PU14 tð Þ ¼ e�2ktHðtÞ;
PU17 tð Þ ¼ e�2kt �G1ðtÞ; PU25 tð Þ ¼ e�2k1t; PU26 tð Þ ¼ e�2k1tHðtÞ;
PU27 tð Þ ¼ e�2k1t; PU28 tð Þ ¼ e�2k1t �G1ðtÞ:

ð11Þ
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Now taking LT of relations (10a) and solving for A0*(s) the

steady-state availability can be obtained as

A0 1ð Þ ¼ lim
s!0

sA�0 sð Þ

¼ Numerator of Steady State Availability ðA11Þ
Denoinator of Steady State Availability ðD12Þ

ð12Þ

where

A11¼ p26;8:23þp26;27

� �
p8;14:13þp89p9;14

� �

½ðl0p14;0þl1 p14;0þp14;1:19

� �
þl3fp13 p14;0þp14;1:19

� �

þ p14;17p17;3gþl14þl17p14;17�
þ p26;8:23þp26;27

� �
½l4 p89þp84:10þp8;14:13

� �

þl6fðp89þp84:10þp8;14:13Þp46þp8;12p12;6g
þl7f1� p48:22þp46p68ð Þ p89þp84:10þp8;14:13

� �

�p88:13;21�p8;12 p12;8:15þp12;6p68

� �
gþl8

þ p8;9l9þp8;12l12�þf1� p48:22þp46p68ð Þ
� p89þp84:10þp8;14:13

� �
�p88:13;21

�p8;12 p12;8:15þp12;6p68

� �
g½l25 p7;25 p26;8:23þp26;27

� ��

þp26;28p28;25

�
þl26þl27p26;27þl28p26;28�

D12¼ p26;8:23þp26;27

� �
p8;14:13þp89p9;14

� �
½ðl0p14;0

þl01 p14;0þp14;1:19

� �
þl3fp13 p14;0þ p14;1:19

� �

þ p14;17p17;3gþl014þl017p14;17�þ p26;8:23þp26;27

� �

�½l04 p89þp84:10þp8;14:13

� �
þl6fðp89þp84:10

þ p8;14:13Þp46þp8;12p12;6gþl07f1� p48:22þp46p68ð Þ
� p89þp84:10þp8;14:13

� �
�p88:13;21

�p8;12 p12;8:15þp12;6p68

� �
gþl08þp8;9l9

þp8;12l
0
12�þf1�p48:22þp46p68Þ

� p89þp84:10þp8;14:13

� �
�p88:13;21�p8;12 p12;8:15

�

þp12;6p68

�
g½l25 p7;25 p26;8:23þp26;27

� �
þp26;28p28;25

� �

þl026þl27p26;27þl028p26;28�

8 Busy period analysis

Let Bi(t) be the probability that the server is busy at an

instant t given that the system entered regenerative state i at

t = 0. The following are the recursive relations for Bi(t)

Bi tð Þ ¼Wi tð Þ þ
X

j

q
nð Þ

i;j tð Þ�Bj tð Þ ð13aÞ

The system equations given in (13a) can be obtained

similar as B0(t) and B1(t)

B0 tð Þ ¼ q0;1ðtÞ�B1 tð Þ for i ¼ 0; j ¼ 1ð Þ ð13bÞ

B1 tð Þ ¼W1 tð Þ þ q13 tð Þ�B3 tð Þ þ q14:2 tð Þ�B4 tð Þ
for i ¼ 1; j ¼ 3; 4ð Þ ð14Þ

where j is a subsequent regenerative state to which state

i transits through n C 1 (natural number) transitions.

Taking LT of relations (13a) and solving for B0*(s).

Using this, we can obtain the fraction of time for which the

server is busy in steady state as

B0 1ð Þ ¼ lim
s!0

sB�0 sð Þ

¼ Numerator of Busy Period of Server ðB11Þ
Denoinator of Busy Period of Server ðD12Þ

ð15Þ

B11 ¼ p26;8:23þ p26;27

� �
p8;14:13þ p89p9;14

� �

� ½W�
1 0ð Þ p14;0þ p14;1:19

� �
þW�

14 0ð ÞþW�
17 0ð Þp14;17�

þ p26;8:23þ p26;27

� �
½W�

4 0ð Þ p14;0þ p14;1:19

� �

þW�
7 0ð Þ 1� p48:22þ p46p68ð Þ p89þ p84:10þ p8;14:13

� ��

�p88:13;21� p8;12 p12;8:15þ p12;6p68

� ��
þW�

8 0ð Þ
þW�

12 0ð Þp8;12� þ f1� p48:22þ p46p68ð Þ p89þ p84:10ð
þp8;14:13

�
� p88:13;21� p8;12 p12;8:15þ p12;6p68

� �
g

� W�
26 0ð Þþ W�

28 0ð Þ p26;28

� 	

and D12 is already mentioned.

9 Expected number of visits by the server

Let Ni(t) be the expected number of visits by the server in

(0,t] given that the system entered the regenerative state

i at t = 0. We have the following recursive relations for

Ni(t):

Ni tð Þ ¼
X

j

Qi;j tð Þr dj þ Nj tð Þ
� 	

ð16aÞ

The system equations given in (16a) can be obtained

similar as N0(t) and N1(t)

N0 tð Þ ¼ Q0;1 tð Þr 1þ N1 tð Þ½ � for i ¼ 0; j ¼ 1ð Þ ð16bÞ

N1 tð Þ ¼ Q13 tð ÞrN3 tð Þ þ Q14:2 tð ÞrN4 tð Þ
for i ¼ 1; j ¼ 3; 4ð Þ ð16cÞ

where j is any regenerative state to which the given

regenerative state i transits and di = 1, if j is the regener-

ative state where the server does job afresh otherwise

di = 0.

Taking LST of relations (16a) and solving for ~N0ðsÞ.
The expected number of visits per unit time as
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where

N11 ¼ p26;8:23 þ p26;27

� �
p8;14:13 þ p89p9;14

� �

� p14;0 þ fp13 p14;0 þ p14;1:19

� �
þ p14;17p17;3g

� 	

þ p26;8:23 þ p26;27

� �
p89 þ p84:10 þ p8;14:13

� �
p46

��

þ p8;12p12;6

�
þ p89

	
þ f1� p48:22 þ p46p68ð Þ

� p89 þ p84:10 þ p8;14:13

� �
� p88:13;21

� p8;12 p12;8:15 þ p12;6p68

� �
g p7;25 p26;8:23 þ p26;27

� ���

þ p26;278p28;25g þ p26;27�

and D12 is already specified.

10 Profit analysis

Any manufacturing industry is basically a profit making

organization and no organization can survive for long

without minimum financial returns for its investment. There

must be an optimal balance between the reliability aspect of

a product and its cost. The major factors contributing to the

total cost are availability, busy period of server and expected

number of visits by the server. The cost of these individual

items varies with reliability or mean time to system failure.

In order to increase the reliability of the products, we would

require a correspondingly high investment in the research

and development activities. The production cost also would

increase with the requirement of greater reliability.

The revenue and cost function lead to the profit function

of a firm, as the profit is excess of revenue over the cost of

production. The profit function in time t is given by:

P tð Þ ¼ Expected revenue in 0; tð �
� Expected total cost in 0; tð �:

In general, the optimal policies can more easily be

derived for an infinite time span or compared to a finite

time span. The profit per unit time, in infinite time span is

expressed as

lim
t!1

PðtÞ
t

i.e. profit per unit time = total revenue per unit time -

total cost per unit time. Considering the various costs, the

profit equation is given as

P ¼ K0A0 � K1B0 � K2N0

where P is the profit per unit time incurred to the system, K0

the revenue per unit up time of the system, A0 the total

fraction of time for which the system is up, K1 the cost per

unit time for which server is busy, B0 the total fraction of

time for which the server is busy, K2 the cost per visit by the

server, and N0 is the expected number of visits per unit time

for the server.

11 Application of the study

The application of the present study can be visualized in

various practical situations in different areas. The commu-

nication system with three transmitters can be cited as a good

example of such systems where the average messages load

may be such that at least two transmitters must be operational

at all times otherwise critical messages will be lost. The

system of communication amplifier in which redundancy is

used as means of increasing the reliability may also be con-

sidered as an important application area of the present study.

12 Results and discussion

The time to failure, repair and inspection are Weibull

distributed with two parameters. Probability density func-

tion of Weibull distribution with two parameters is given

by

f ðtÞ ¼ 2k exp �2ktbþ1=bþ 1
� 	

:

From the Weibull distribution, If b = 0, it become the

exponential distribution and when b = 1, it become the

Rayleigh distribution.

Let

N0 1ð Þ ¼ lim
s!0

s~N0 sð Þ ¼ Numerator of Expected Number of Visits By Server ðN11Þ
Denoinator of Expected Number of Visits By Server ðD12Þ

ð17Þ

zðtÞ ¼ 2k1 exp �2k1tbþ1=bþ 1
� 	

aðtÞ ¼ k exp �ktbþ1=bþ 1
� 	

bðtÞ ¼ k1 exp �k1tbþ1=bþ 1
� 	

hðtÞ ¼ a exp �atbþ1=bþ 1
� 	

gðtÞ ¼ h exp �htbþ1=bþ 1
� 	

g1ðtÞ ¼ h1 exp �h1tbþ1=bþ 1
� 	
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The results for a particular case are obtained to depict the

behavior of MTSF, availability and profit of the system as

shown in Tables 1, 2, 3, 4 and 5. From Table 1, it is

observed that MTSF, availability and profit decrease with

the increase of failure rate of new unit (k). A declining

trend of MTSF, availability and profit with respect to

Table 2 Comparison between the effects of the exponential and Rayleigh distributions with respect to failure rate of new unit (k) and other

parameters (k1 = 0.28, h = 1.2, h1 = 2.1, p = 0.7, q = 0.3, a = 15, K0 = 5000, K1 = 450, K2 = 50) on the system

Failure rate

of new unit

MTSF in the

exponential

distribution

MTSF in the

Rayleigh

distribution

Availability in the

exponential

distribution

Availability in the

Rayleigh

distribution

Profit in the

exponential

distribution

Profit in the

Rayleigh

distribution

0.01 105.7467 36.447 0.982773 0.926773 4884.352 4245.188

0.02 59.0754 28.8129 0.982567 0.918802 4882.026 3912.839

0.03 42.5924 24.7135 0.982494 0.916087 4882.562 3724.874

0.04 33.8839 21.9574 0.982457 0.914734 4882.325 3603.429

0.05 28.3941 19.9182 0.982434 0.913926 4882.151 3518.141

0.06 24.5712 18.3243 0.982419 0.91339 4882.085 3454.715

0.07 21.7339 17.032 0.982408 0.913009 4882.015 3405.534

0.08 19.5325 15.956 0.9824 0.912724 4881.963 3366.166

0.09 17.7679 15.0417 0.982393 0.912503 4881.923 3333.854

Table 3 Comparison between the effects of the exponential and Rayleigh distributions with respect to failure rate of new unit (k) and other

parameters (k1 = 0.08, h = 1.2, h1 = 3.1, p = 0.7, q = 0.3, a = 15, K0 = 5000, K1 = 450, K2 = 50) on the system

Failure rate

of new unit

MTSF in the

exponential

distribution

MTSF in the

Rayleigh

distribution

Availability in the

exponential

distribution

Availability in the

Rayleigh

distribution

Profit in the

exponential

distribution

Profit in the

Rayleigh

distribution

0.01 331.5961 122.5417 0.986121 0.934269 4904.189 4276.71

0.02 206.1275 92.7866 0.98587 0.926614 4902.666 3965.979

0.03 157.9412 78.3859 0.98577 0.923988 4902.077 3792.166

0.04 131.5075 69.4899 0.985717 0.922674 4901.763 3680.531

0.05 114.4469 63.2465 0.985683 0.921889 4901.567 3602.403

0.06 102.3284 58.5036 0.98566 0.921368 4901.434 3544.42

0.07 93.1541 54.7034 0.985643 0.920996 4901.337 3499.511

0.08 85.8866 51.5412 0.98563 0.920719 4901.263 3463.583

0.09 79.8315 48.8362 0.98562 0.920503 4901.205 3434.099

Table 1 Comparison between the effects of the exponential and Rayleigh distributions with respect to failure rate of new unit (k) and other

parameters (k1 = 0.08, h = 1.2, h1 = 2.1, p = 0.7, q = 0.3, a = 15, K0 = 5000, K1 = 450, K2 = 50) on the system

Failure rate

of new unit

MTSF in the

exponential

distribution

MTSF in the

Rayleigh

distribution

Availability in the

exponential

distribution

Availability in the

Rayleigh

distribution

Profit in the

exponential

distribution

Profit in the

Rayleigh

distribution

0.01 292.5613 107.4023 0.984088 0.928333 4892.218 4261.403

0.02 181.1566 81.3927 0.98367 0.920243 4889.802 3934.76

0.03 138.4229 68.7518 0.9835 0.917449 4888.838 3749.607

0.04 115.0023 60.9304 0.983406 0.916047 4888.315 3629.803

0.05 99.9048 55.4401 0.983348 0.915208 4887.987 3545.575

0.06 89.1963 51.2714 0.983307 0.914651 4887.762 3482.883

0.07 81.1024 47.9342 0.983277 0.914253 4887.597 3434.234

0.08 74.7014 45.1601 0.983255 0.913956 4887.472 3395.266

0.09 69.4651 42.7894 0.983237 0.913725 4887.374 3363.263
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increase in failure rate of degraded unit (k1) is noted in

Table 2. From Tables 3 and 4, it can be seen that, MTSF,

availability and profit of the system increase with increase

of repair rate of degraded unit (h1) and inspection rate (a).

It is also observed that system becomes more available to

use and profitable if the degraded unit at its failure is

replaced by new one. In Table 5, there is a substantial

positive change in MTSF, availability and profit when we

interchange values of p and q. From Tables 1, 2, 3, 4 and 5,

we have the comparison between two distributions and it is

observed that the exponential distribution is better than the

Rayleigh distribution in system under stated conditions.

13 Conclusion

On the basis of the results obtained for a particular case it is

concluded that a 2-out-of-2 redundant system with single

standby in which unit becomes degraded after repair can be

made more reliable and profitable to use by the following

ways:

(1) By making immediate replacement of the degraded

unit at its further failure if inspection reveals that

repair is not feasible to the system.

(2) By increasing the repair rate of the degraded unit at its

failure.
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