
ORIGINAL ARTICLE

Integrated approach to prevent SQL injection attack and reflected
cross site scripting attack

Pankaj Sharma • Rahul Johari • S. S. Sarma

Received: 8 June 2012 / Revised: 28 August 2012 / Published online: 26 September 2012

� The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and

Maintenance, Lulea University of Technology, Sweden 2012

Abstract The Internet and web applications are playing

very important role in our today’s modern day life. Several

activities of our daily life like browsing, online shopping and

booking of travel tickets are becoming easier by the use of

web applications. As the volumes of the web applications are

increasing the security of web applications becomes a major

concern. Most of the web applications use the database as a

back end to store critical information such as user credentials,

financial and payment information, company statistics etc.

These websites are continuously targeted by highly motivated

malicious users to acquire monetary gain. Multiple client side

and server side vulnerabilities like SQL injection and cross

site scripting are discovered and exploited by malicious users.

SQL injection attacks and cross site scripting vulnerabilities

are top ranked in the open web application security project top

ten vulnerabilities list. A number of security approaches are

proposed and used like secure coding practices, encryption,

static and dynamic analysis of code to secure the web appli-

cations but statistics shows that these vulnerabilities are still

transpiring at the top. In this paper, we present an integrated

model to prevent SQL injection attacks and reflected cross site

scripting attack in PHP based implementation. This model is

more effective to prevent SQL injection attack and reflected

cross site scripting attack in production web environment. Our

mechanism is divided into two modes, a safe mode and a

production mode environment. In the safe mode we construct

a security query model for SQL injection and sanitizer model

for reflected cross site scripting attack for each identified SQL

queries for SQL injection attacks and input entry points for

reflected cross site scripting attacks. In the production envi-

ronment, input entries which create dynamic SQL queries are

validated against security query model generated in safe mode

and normal input text entered by the user is validated by

sanitizer model instrumented in the code at safe mode. The

results and analysis shows that the proposed approach is

simple and effective to prevent common SQL injection vul-

nerabilities and reflected cross site scripting vulnerabilities.

Keywords SQL injection attack � Reflected cross site

scripting attack � OWASP � Static analysis � Dynamic

analysis � Web security � Application vulnerabilities �
Illegitimate access � Authentication bypass � Input

sanitization � Pattern matching � Risk management �
Assurance � Insurance

Abbreviations

XSS Cross site scripting

SQL Structured query language

SQLIA SQL injection attacks

OWASP Open web application security project

MHAPSIA Model based hybrid approach to prevent

SQL injection attacks

DFA Deterministic finite automata

NFA Nondeterministic finite automata

AMNeSIA Analysis and monitoring for neutralizing

SQL injection attacks

JDBC Java database connectivity

HTML Hyper text markup language

P. Sharma (&) � S. S. Sarma

Department of Electronics and IT, CERT-In,

Goverment of India, New Delhi, India

e-mail: Pankaj.vats@gmail.com

S. S. Sarma

e-mail: ss.sarma@gmail.com

R. Johari

USIT, GGSIP University, Sector 16-C Dwarka, Delhi, India

e-mail: rahuljohari@hotmail.com

123

Int J Syst Assur Eng Manag (Oct-Dec 2012) 3(4):343–351

DOI 10.1007/s13198-012-0125-6

1 Introduction

In today’s life Web applications provide various facilities

like online shopping-banking, e-reservation, e-governance

etc. Different types of functionalities are built into the

web applications according to user requirements without

considering the security requirements such as secure

coding practices leading to serious web vulnerabilities.

The most exploited vulnerabilities in the web applica-

tions are SQL injection and reflected cross site scripting

vulnerability.

Software assurance requires implementation of security

practices throughout the Software Development Life Cycle

(SDLC). Further, current best practices include Statics

Application Security Testing and Dynamic Application

Security Testing. These methods, however test the source

code and functionality of the web application for known

vulnerabilities bugs in the software code.

The methodology proposed in this paper helps in

securing the software at the code level, prior to deployment

in the practical applications. The current scope of the

proposed method envisages certain security methods to

prevent most popular web application attacks i.e., SQL

injection and one type of cross site scripting attack namely

the reflected cross site scripting.

The methodology and solution proposed in the our paper

is an enhancement of a method proposed in the paper on

model based hybrid approach to prevent SQL injection

attack (MHAPSIA) (Kunal et al. 2011). We modified the

existing algorithms used in MHAPSIA by reducing certain

drawbacks of existing approach for better prevention of

SQL injection attacks. Further, new modules are integrated

to prevent reflected cross site scripting attacks.

1.1 SQL injection attacks

SQL injection attacks (SQLIAs) (Common Weakness

Enumeration 2012)—structured query language (SQL) is

an interpreted language used in database driven web

applications which construct SQL statements that incor-

porate user-supplied data or text. If this is done in an unsafe

manner, then the web application may be vulnerable to

SQL Injection Attack i.e. if the user supplied data is not

properly validated then users can modify or craft a mali-

cious SQL statement and can execute arbitrary code on the

target machine or modify the contents of the database.

1.1.1 Problem formalization

Any web application can be formalized with respect to

SQL injection attack as follows:

• It accepts the input from a user or system.

• It concatenates input with hardcoded SQL statement

and builds complete query structure.

• The generated query gets executed and concatenates

result with HTML code.

In the context of above formalization SQL injection

attack is targeted on a program at the database layer

which is connected to a web application. This SQL

injection attack (Rahul and Sharma 2012) exploits

weakness or vulnerability in the target program to prop-

erly verify the input supplied to it through a web form. In

a typical SQL injection attack the attacker posts specially

crafted structured query language (SQL) statements which

are executed in the database server and produce malicious

outcomes.

1.2 Cross-site scripting (XSS)

Cross-site scripting (XSS) (Common Weakness Enumera-

tion 2012) is another common web application attack

technique that involves echoing attacker-supplied code into

a client’s browser via web pages viewed by the target users.

Here the attacker’s host or inject attack code written in

different static or dynamic contents such as HTML, Java,

JavaScript, ActiveX, Flash or any other browser supported

technology.

When an attacker gets a user’s browser to execute his/

her script, the script will run within the security context (or

zone) of the hosting web site. With this kind of privilege,

the application code has the ability to read, change and

transmit any critical data accessible by the browser. Suc-

cessful XSS attack allows attackers to hijack a user’s

account via cookie, redirecting the user to another website

from the website visited and thereby facilitating other types

of attacks such as Phishing or drive-by-download attacks.

XSS attack poses significant risk in cases where the

browser interacts closely with file system on the users’

computers for loading content.

1.3 Reflected XSS

Reflected XSS (Rahul and Sharma 2012) occurs when the

server does not properly sanitize the output server to a

visiting web browser/client. In the typical attack scenario,

the attacker targets visitor of a specific website example

‘abc.com’ containing reflected XSS vulnerability and tricks

targeted user to click on a maliciously crafted URL. The

user intends to visit the ‘abc.com’ and does so but in the

process the client side script/code contained in the mali-

cious URL supplied by the attacker gets executed thereby

enabling the attacker to gain access to sensitive user cre-

dentials, cookies etc.

344 Int J Syst Assur Eng Manag (Oct-Dec 2012) 3(4):343–351

123

2 Related work

MHAPSIA (model based hybrid approach to prevent SQL

injection attacks in PHP (Kunal et al. 2011)): This

approach focuses on static analysis and run time validation

i. e. it runs the application in two different modes safe and

real. In the safe environment, it creates a query model for

all legitimate SQL statements using a deterministic finite

automata (DFA). The nodes of the nondeterministic finite

automata (NFA) are SQL keywords and operators with

special symbols. In the real environment, SQL statements

are intercepted with the instrumented code and then vali-

dated with the query model generated in the safe envi-

ronment. A limitation of this approach is that the particular

malicious SQL injection queries such as ‘or 1 = 1 # are not

blocked by the query model as the query model for such

injections is same as that of a legitimate query model.

AMNeSIA (JSP approach (Orso 2005)): Similarly,

model based hybrid approach proposed in ‘‘Analysis and

Monitoring for NEutralizing SQL Injection Attacks’’

(AMNeSIA) prevents SQL injection attacks by forming a

query model which is again an NFA based on the same

construction pattern as that of the above approach. An

inadequacy of Amnesia tool is that, it can only be used in

Java Server Pages (JSP) web applications. This tool makes

use of the Java String Analyzer (JSA) library to construct a

query model which is not available in any other languages.

Furthermore, this tool depends on the accuracy of the string

analyzer. Further experiments using this approach were

conducted by Junjin (2009).

Static analysis technique (Gould et al. 2004): Further

contribution to the related work is proposed by Gould, Su

and Devanbu in the Java Database Connectivity (JDBC)

checker that statically validates the correctness of dynam-

ically generated queries. This technique is able to detect

one of the major root causes for SQLIA, which is improper

input checking. A shortcoming of this tool is that it doesn’t

focus on more general forms of SQLIAs.

Key analysis technique (Keromytis 2004): Another

effective query randomization approach is SQLrand, but

the security of this approach is purely dependent on its key

used for randomization.

Automated generation of prepared statements to remove

SQL injection vulnerabilities (Stephen et al. 2009): Tho-

mas presents an algorithm in which prepared statement in

SQL queries are replaced by secure prepare statements for

removing SQL vulnerabilities.

Different other methods such as removal of SQL query

passed by user in SQL query attributes values (Jeom-Goo

2011), dynamic candidate evaluations approach (Prithvi

2010), obfuscation-based analysis of SQL injection attacks

(Raju and Cortesi 2010).

Mitigations were also proposed for prevention of XSS

attacks such as protecting cookies from cross site script

attacks using dynamic cookies rewriting technique (Ratti-

pong and Bunyatnoparat 2011), execution-flow based method

for detecting cross-site scripting attacks (Qianjie et al. 2010).

Automatic creation of SQL injection and cross-site

scripting (XSS) attacks (Ardilla) (Kiezun et al. 2009):

Adam Kie zun has suggested a technique to find out both

SQL Injection and XSS vulnerabilities based on automated

tool called Ardilla. This method uses static code analysis to

find vulnerabilities. This technique examines source code

of the application, creates concrete inputs that expose

vulnerabilities. It is based on input generation, taint prop-

agation, and input mutation to find variants of an execution

that exploit vulnerabilities.

Our approach provides a protection against SQL injec-

tion using hybrid approach logic i.e. query model genera-

tion but also with a check on input field for a pattern such

as ‘‘or’’, i.e. if any such pattern is found in the input entry

point, then the program exits from the application and an

error message is given. Further, the approach has been

extended to prevent another type of attack called reflected

cross site scripting.

3 Classifying vulnerabilities

3.1 SQL injection attacks

SQL injection (Common Weakness Enumeration 2012) is an

attack technique that mainly occurs due to the insecure

coding practices. This attack modifies the SQL statement in

such a way so that the legitimate inputs or the authentication

of a legitimate user is bypassed and the database executes the

malicious code supplied by the attacker. The basic cause of

the vulnerability is the un-sanitized user input.

To categorize SQL Injection let us consider a web page

for User Authentication as shown in Fig. 1. Here, an

attacker tries to insert a universal true condition with an OR

in the username field which modifies the existing SQL

query used for authenticating the user credentials by

commenting rest of the logic for password authentication.

Fig. 1 SQL injection through login form for user authentication

Int J Syst Assur Eng Manag (Oct-Dec 2012) 3(4):343–351 345

123

The SQL injection discussed above is classified as injection

based on tautology with a comment, as the statement with

OR is a tautology followed by a comment. Let us dem-

onstrate SQL injection in pre crafted SQL query.

Select * from table_name where user-

name=’$uname’ and pass=’$pwd’

Now on entering the credentials shown above, the query

is formulated as:

Select * from table_name where username=’’or

1 = 1 # and pass=’anything’

Now, due to improper sanitization of the user input, the

query on the server side gets executed with user name as

either a blank or a universal true condition followed by a #

due to which the rest of the SQL statement gets commented

and password accepts any string. This execution leads to

successful login and hence bypassing the user authentica-

tion phase.

3.2 Reflected cross site scripting attack

Reflected cross site scripting is a web application vulner-

ability which could be exploited by the attacker by

inserting malicious scripts on the victim’s browser or client

when he accesses a webpage. The malicious code hosted by

an attacker can be written in any of the technology sup-

ported by the browsers such as HTML, Java, JavaScript,

ActiveX, flash etc. The reflected cross site scripting vul-

nerability exists due to improper sanitization of all the

entry points where an attacker is capable of writing any

malicious scripts.

Lets us consider a web application shown below to show

exploitation of reflected cross site scripting vulnerability.

The attack shown above is classified as reflected XSS

attack. In this attack user inserts a malicious script con-

taining iframe which is reflected back by the web server, so

whenever a user visits the web page containing the iframe

he/she is redirected to ‘‘www.malicious.com’’ which is an

attackers’ website (Fig. 2).

4 Model based hybrid approach to prevent SQL

injection attack and its limitations

MHAPSIA is a PHP application to prevent SQL injection

attacks for PHP web applications. This tool works in two

different modes described as follows:

Safe mode: In this mode, the application is first scanned

to locate all SQL statements and names them as hotspot

locations and also assign ‘line number’ and ‘id’ to each

hotspot identified. Thereafter all the files are instrumented

where in a monitor function is added preceding every SQL

statement. Finally, the application is executed with all

legitimate inputs to create the query model using DFA

which remains in runtime arrays.

Real mode: In this mode, all the files are processed

through two phases i.e. ‘scanning phase’ and ‘instru-

menting phase’. Thereafter the application is executed in

production mode wherein the query model for all the

dynamically generated queries is compared with static

query model generated in safe mode. If the dynamically

generated query model complies with the static query

model then the authentication is granted otherwise the

input is classified as an attack, the information stored

in the error log file and a suitable error message is

thrown.

4.1 Limitations of existing approaches

• The major drawback of MHAPSIA is that it doesn’t

prevent certain SQL injection attacks. The query model

on which the success of the tool depends is same for

legitimate input as well as for one of the SQL injection

inputs in some cases. Consider the below two SQL

statements in proof of concept :

Legitimate inputs: Select * from user_details where

user_name = ‘$uname’ and user_pass = ‘$pass’

SQL injection input: Select * from user_details where

user_name = ‘or 1 = 1 # and user_pass = ‘any string’

The two query models shown in Fig. 3a, b, Shows that

they both have 16 states and both of the query model ends

in the same final state which act as a proof of concept of

Fig. 2 Iframe injection using reflected cross site scripting

vulnerability

346 Int J Syst Assur Eng Manag (Oct-Dec 2012) 3(4):343–351

123

http://www.malicious.com

bypassing the authentication for this particular SQL

injection attack.

• MHAPSIA is not designed for preventing reflected

cross site scripting vulnerabilities.

• Query models are stored in run time arrays only there is

no permanent source of storage due to which whenever

the application is run, safe mode query models need to

be constructed each time.

5 Proposed solution

The solution proposed is a modification to the existing

MHAPSIA model for PHP web applications. In our solu-

tion we modified the existing model by incorporating the

logic to thwart number of kinds of SQL injection attack and

integrated a separate module to avert reflected cross site

scripting attacks. In the following sections we present a list

of algorithms that are related to each other in preventing

the SQL injection and reflected cross site scripting (XSS)

attacks.

5.1 Algorithms

Int J Syst Assur Eng Manag (Oct-Dec 2012) 3(4):343–351 347

123

6 Implementation

The proposed approach is implemented in various PHP

applications. In this section, we explain the working of the

proposed model and mechanism to mitigate SQL injection

and reflected cross site scripting attacks.

The figure shows the complete architecture of the pro-

posed model (Fig. 4).

Further elucidation of the above architecture is as

follows:

The proposed tool works in two different modes, safe

and production mode. Initially, it starts with verifying the

application for SQL and XSS vulnerability for which it

takes the complete application path and scans all files of

web application for SQL queries and input entry points

with respect to an array vul_sig () array. Then the tool

enters into the instrumentation phase of the safe mode

which is further divided into two modules, ‘ispot identifi-

cation’ and ‘instrumentation’. In ispot identification, each

location is verified in the verification module an ispot id is

and ispot line number is assigned. Further, the instrumen-

tation module is divided into two modules, which are:

6.1 Instrumentation for SQL injection

The output of this module is an instrumented file which

contains a ‘validator program’ instrumented before each

SQL query located by the ‘ispot’. Then these instrumented

files are executed in the safe mode in which Security Query

model is generated for all legitimate inputs.

6.2 Instrumentation for XSS

The output of this module is an instrumented file which

contains a sanitizer program instrumented after each input

entry points. This function sanitizes all malicious scripts

entered by any attacker or malicious user. In the safe

mode, the executions of the instrumented files are not

mandatory.

The tool is then entered in production mode wherein,

the actual inputs are validated against the Secure Query

Model generated in safe mode for preventing SQL

injection and all inputs from all input entry points like

text boxes and text areas etc. are validated by sanitizer

program which was instrumented in the instrumentation

phase of the safe mode.

6.3 Basic modules of the integrated model

• Verification module

This module scans all files of web application to locate all

SQL query signatures for SQL injection attack and input

type html entities for reflected cross site scripting attacks.

The signatures are defined in the array named vul_sig().

The module then returns all the locations of the signatures

that consist of line number along with the statements

consists of array elements.

• Ispot identification module

This module identifies all the ispots which are basically

the verified locations of signatures found during verifica-

tion module. Furthermore, each ispot is assigned an ispot

_id and line number. The output of this module is list of

ispots which are stored in a metafile.

• Instrumentation module

This module is divided into two sub modules.

Instrumentation module for SQL injection: Instrument()

function is used to append Instrumented_function() pro-

gram before each SQL query statement.

Instrumentation module for XSS: Instrument() function

is used to append sanitizer() program after each Input entry

point

Output: instrumented files.

• Query model construction module:

In this module the whole instrumented web application

is run in safe mode. In this mode we take legitimate inputs

from the user. These inputs are then passed to the function

called construct_DFA() which calls sql_parser() to con-

struct query model for legitimate inputs. This query model

is stored in an array and used in real mode to validate

dynamically generated query model.

348 Int J Syst Assur Eng Manag (Oct-Dec 2012) 3(4):343–351

123

• Validation module

This module is called in production mode wherein, the

actual inputs are validated against the static query model

generated in safe mode using a validation() function.

For SQL Injection, query_validate() function is executed

to validate the dynamically generated query model generated

by accept() function to compare against the query model

generated in the safe mode. Depending on the results of

validation, access to the database is allowed/restricted.

For XSS Attack, all input entries point like text boxes

and text areas etc. are validated by sanitizer() function to

sanitize the real time inputs.

7 Result and analysis

To validate our approach, we have taken a proof-of concept

perspective about making an application secure from SQL-

injections and reflected cross site scripting attacks. Our

objective is to test the proposed integrated model for var-

ious kinds of SQL injections and reflected XSS attacks for

the applications with different complexities.

The Tables 1 and 2 shows various open web applications

that are tested against this integrated tool to prevent SQL

injection and reflected cross site scripting attacks. Table 1

shows the detailed analysis for XSS attacks and Table 2

shows the detailed analysis for SQL injection attack.

7.1 Analysis

We have analysed from the results that the proposed inte-

grated model covers many kinds of SQL injection and XSS

attacks. The effectiveness of the proposed approach is

determined by the ratio of the number of attacks prevented

to the total number of attacks performed. Results show that

the proposed approach is 100 % effective to prevent SQL

injection and reflected cross side scripting attacks. How-

ever, this analysis is performed for known attacks only.

Hence the robustness of the solution need to be tested for

newer types of SQL injection and reflected XSS attacks.

Further, strength of solution need to be tested against more

complex and exhaustive applications such as websites

containing richer services and features.

8 Risk management and insurance

The current trend indicates that cyber insurance is

becoming an important component of overall Risk Man-

agement and Software Assurance. Cyber insurance covers

certain consequences of identified risks such as security

breaches, programming errors and business interruptions

(ENISA 2012). Cyber insurance also encourages adoption

of best practices by the organizations (Clinton L) seeking

the insurance by offering lower premiums to them. An

organization can demonstrate that after deploying this

Fig. 4 Basic modules of the integrated tool

Fig. 3 Query models for SQL

injection input

Int J Syst Assur Eng Manag (Oct-Dec 2012) 3(4):343–351 349

123

model, the exposure to exploitation of code level vulner-

abilities will be greatly reduced and risk of compromise of

the web application secured by this approach is relatively

less, particularly through SQL injection attacks and cross

site scripting attacks. As such, the security enhancements

and methodologies such as proposed in the paper will help

organizations in articulating better stake for lower premi-

ums for cyber insurance policies.

9 Conclusion and future work

In this paper we proposed a model to prevent SQL injection

and reflected cross site scripting attacks in pHP web

applications. This integration modifies the existing model

based hybrid approach to prevent SQL injection attacks

which are not prevented by existing hybrid approach and

extended to prevent reflected cross site scripting attacks.

The technique utilizes the logic of constructing query

model along with a checking of different patterns (such as

‘OR pattern) in user input fields and if any such patterns are

encountered then the authorization is not granted and

appropriate error messages are generated.

For reflected cross site scripting attack, an algorithm has

been proposed that puts a check on all the entry points to

sanitize the input and if any of the patterns is matched with

the blacklist of vulnerable patterns then input is blocked

and appropriate error messages are generated.

The strength of this solution and approach need to be

further improved by considering more complex web

applications both in terms of size and features involving

complex databases and associated inputs.

Also, keeping in view of the effectiveness of this model

in preventing certain types of Reflected XSS attacks, the

model could be further extended to prevent other types of

XSS attacks such as ‘Stored XSS.

Further, the solution could also be extended further to

prevent other web attacks such as File Inclusion (Remote

and Local), as well as various other vulnerabilities classi-

fied by OWASP (2010). Also, attempts could be made to

prevent these vulnerabilities and attacks in various other

scripting languages such as ASP.NET and PERL.

Acknowledgments Authors wish to express sincere gratitude to the

administration of Department of Electronics & Information Tech-

nology, Government of India and GGSIP University for providing the

academic environment to pursue research activities. In particular we

would like to thank Dr. Gulshan Rai, DG, CERT-In, Mr. B.J Srinath,

Scientist ‘G’ and Mr. A. S. Chawla, Scientist ‘F’, CERT-In for

guidance and inputs.

References

Clinton L (undated) Cyber-insurance metrics and impact on cyber-

security. http://www.whitehouse.gov/files/documents/cyber/ISA-

Cyber-InsuranceMetricandImpactonCyber-Security.pdf. Acces-

sed Aug 2012

Common Weakness Enumeration (2012) CWE-89: improper neutral-

ization of special elements used in an SQL command (‘SQL

injection’). http://cwe.mitre.org/data/definitions/89.html. Acces-

sed 13 Jan 2012

Common Weakness Enumeration (2012) CWE-79: improper neutral-

ization of input during web page generation (‘cross-site script-

ing’). http://cwe.mitre.org/data/definitions/79.html. Accessed 13

Jan 2012

ENISA (2012) Incentives and barriers of the cyber insurance market

in Europe June 2012. European Network and Information

Security Agency (ENISA), Heraklion. http://www.enisa.europa.

eu. Accessed 5 July 2012

Gould C, Su Z, Devanbu P (2044) Java database connectivity (JDBC)

checker: a static analysis tool for SQL/JDBC applications. In:

Proceedings of the 26th international conference on software

Table 1 Detailed execution analysis results for proposed model for XSS attack

Application Lines of code

(K)

Ispot instrumented

for XSS

Detection rate

(%)

Instrumentation

overhead (%)

False

positive

Query execution

overhead (%)

Online bookstore 4.3 26 100 7 13 1.23

Matrimonial 3.7 23 100 5 11 1.10

Student portal 8.2 30 100 6 18 2.03

Travel portal 9.9 40 100 10 20 2.04

Table 2 Detailed execution analysis results for proposed model for SQL attack

Application Lines of code

(K)

Ispot instrumented for SQL

injection attack

Detection

rate (%)

Instrumentation

overhead (%)

False

positive

Query execution

overhead (%)

Online bookstore 4.3 48 100 14 13 1.98

Matrimonial 3.7 38 100 10 11 1.56

Student portal 8.2 42 100 13 18 1.99

Travel portal 9.9 34 100 8 20 2.09

350 Int J Syst Assur Eng Manag (Oct-Dec 2012) 3(4):343–351

123

http://www.whitehouse.gov/files/documents/cyber/ISA-Cyber-InsuranceMetricandImpactonCyber-Security.pdf
http://www.whitehouse.gov/files/documents/cyber/ISA-Cyber-InsuranceMetricandImpactonCyber-Security.pdf
http://cwe.mitre.org/data/definitions/89.html
http://cwe.mitre.org/data/definitions/79.html
http://www.enisa.europa.eu
http://www.enisa.europa.eu

engineering (ICSE 2004) formal demos, p 697–698. ICSE,

Minneapolis

Halfond W, Orso A (2005) AMNESIA: analysis and monitoring for

neutralizing SQL injection attacks. In: Proceedings on 20th IEEE

and ACM international conference automated software engi-

neering, p 174–183. ACM, New York

Jeom-Goo K (2011) Injection attack detection using the removal of

SQL query attribute values. In: Information science and

applications (ICISA), international conference, p 1–7. Depart-

ment of Computer Science, Namseoul University, Cheonan,

26–29 April 2011

Junjin M (2009) An approach for SQL injection vulnerability

detection. In: Proceedings of the 6th international conference

on information technology: new generations, p 1411–1414.

IEEE, Las Vegas

Kiezun A, Guo PJ, Jayaraman K, Ernst MD (2009) Automatic

creation of SQL injection and cross-site scripting attacks. In:

ARDILLA, proceedings of the 31st international conference on

software engineering, p 199–209. ICSE, Vancouver

Kunal S, Mohandas R, Pais AR (2011) Model based hybrid

approach to prevent SQL injection attacks in PHP. InfoSecHi-

ComNet’11 proceedings of the first international conference on

security aspects of information technology, p 3–15. Springer,

Berlin

Open Web Application Security Project (OWASP) (2012) Top 10

2010-main. https://www.owasp.org/index.php/Top_10_2010-Main.

Accessed 13 Jan 2012

Prithvi B, Madhusudan P, Venkatakrishnan VN (2010) CANDID:

dynamic candidate evaluations for automatic prevention of SQL

injection attacks. ACM Trans Inf Syst Secur 13(2):1–39

Qianjie Z, Chen H, Sun J (2010) An execution-flow based method for

detecting cross-site scripting attacks. In: Proceedings of software

engineering and data mining, p 160–165. SEDM, Shanghai

Rahul J, Sharma P (2012) Survey on web application vulnerabilities

(SQLIA,XSS) exploitation and security engine for SQL injec-

tion. In: Proceedings on CSNT 2012 IEEE international confer-

ence (978-0-7695-4692-6/1). IEEE, Washington, DC

Raju H, Cortesi A (2010) Obfuscation-based analysis of SQL injection

attacks. In: ISCC ‘10 proceedings of the IEEE symposium on

computers and communications, p 931–938. IEEE, Riccione

Rattipong P, Bunyatnoparat P (2011) Protecting cookies from

reflected cross sitescript attacks using dynamic cookies rewriting

technique. In: Method for detecting cross-site scripting attacks.

13th International conference on advanced communication

technology (ICACT), p 1090–1094. IEEE Conference Publica-

tions, 13–16 Feb 2011

Stephen WB, Keromytis AD (2004) SQLrand: preventing SQL

injection attacks. In: Proceedings of the 2nd applied cryptogra-

phy and network security (ACNS) conference, p 292–302.

ACNS, Yellow Mountain

Stephen T, Williams L, Xie T (2009) On automated prepared

statement generation to remove SQL injection vulnerabilities.

Department of Computer Science, North Carolina State Univer-

sity, Raleigh

Int J Syst Assur Eng Manag (Oct-Dec 2012) 3(4):343–351 351

123

https://www.owasp.org/index.php/Top_10_2010-Main

	Integrated approach to prevent SQL injection attack and reflected cross site scripting attack
	Abstract
	Introduction
	SQL injection attacks
	Problem formalization

	Cross-site scripting (XSS)
	Reflected XSS

	Related work
	Classifying vulnerabilities
	SQL injection attacks
	Reflected cross site scripting attack

	Model based hybrid approach to prevent SQL injection attack and its limitations
	Limitations of existing approaches

	Proposed solution
	Algorithms

	Implementation
	Instrumentation for SQL injection
	Instrumentation for XSS
	Basic modules of the integrated model

	Result and analysis
	Analysis

	Risk management and insurance
	Conclusion and future work
	Acknowledgments
	References

