
ORIGINAL ARTICLE

An empirical study of software reliability prediction
using machine learning techniques

Pradeep Kumar • Yogesh Singh

Received: 9 August 2011 / Revised: 3 June 2012 / Published online: 21 August 2012

� The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and

Maintenance, Lulea University of Technology, Sweden 2012

Abstract The applications of machine learning tech-

niques have shown remarkable improvements for the pre-

diction of software reliability than traditional statistical

techniques. In this paper, we apply some well-known

machine learning methods such as artificial neural net-

works, support vector machines, cascade correlation neural

network, decision trees and fuzzy inference system to

predict the reliability of a software product. The proposed

models have been evaluated using mean absolute error,

root mean squared error, correlation coefficient and preci-

sion. The 16 software life cycle databases have been used

for empirical studies. These databases are extracted from

data and analysis center for software. A comparative

analysis is performed in order to determine the importance

of each method to assess the capability of software reli-

ability prediction models. We also observe that these

models may use in reliability predictions and results may

be more close to the reality and precision is very effective

with varied real-life failure datasets. Finally we conclude

that proposed approach is more precise in its prediction

capacity having better capability of generalization.

Keywords Software reliability � Artificial neural

networks � Support vector machine � Decision trees �
Machine learning techniques

1 Introduction

Software reliability is defined as the probability of failure-

free software operation for a specified period of time in a

specified environment (Musa 1980). Software reliability

modeling has gained a lot of importance in many critical

and daily life applications, which has led to a tremendous

work being carried out in the field of software reliability

modeling. Software reliability growth models (SRGMs)

successfully have been used for estimation and prediction

of the number of errors remaining in the software (Goel

and Okumoto 1979; Littlewood 1979; Musa 1980, 1998;

Norman 1997; Lyu 2005; Kapur et al. 1999, 2010; Pham

2006). The software practitioners and potential users can

assess the current and future reliability through software

testing using these SRGMs. In past four decades, the

classical models have remained one of the most attractive

reliability growth models in monitoring and tracking reli-

ability improvements (Musa 2005, 2007; Pham 2006).

Classical models are the NHPP based models that have

been widely applied successfully in many real-life appli-

cations for estimation and prediction of software reliability

such as Musa-basic model, Musa–Okumoto model, Little-

wood–Verral model, Goel–Okumoto model. Alternatively,

some traditional statistical methods such as maximum

likelihood estimation (MLE), least square estimation

(LSE), analysis of variance (ANOVA), linear regression

analysis (LRA) and logistic regression have also been

applied for software reliability estimation and prediction

(Kohavi 1995; Phillip 2003). The major challenges of these

models do not lie in their technical soundness, but their

validity and applicability in real world projects particularly

in web-based systems. On the other hand, learning and

generalization capabilities of artificial neural networks

P. Kumar (&)

CS Department, IEC-CET, Greater Noida, India

e-mail: pksharma26@rediffmail.com

Y. Singh

M.S. University of Baroda, Baroda, India

e-mail: ys66@rediffmail.com

123

Int J Syst Assur Eng Manag (July-Sept 2012) 3(3):194–208

DOI 10.1007/s13198-012-0123-8

(ANNs), and its proven successes in complex problem

solutions has made it a viable alternative for predicting

software failures during the testing phase (Karunanithi

et al. 1992). The main advantage of ANN and other

machine learning methods over NHPP based models is that

it requires only past failure data as inputs, and less

assumption required for modeling complex failure phe-

nomena of software.

Machine learning is an approach concerned with the

design and development of algorithms that allow comput-

ers to evolve the system behavior based on past and present

failure data of software. Thus machine learning techniques

are focused on learning automatically, recognizing com-

plex patterns and making intelligent decisions based on

past data. So that a machine is able to learn whenever it

changes its structure, program, or data based on its inputs

or in response to the external information in such a manner

that it’s expected future performance improves signifi-

cantly (Kohavi 1995). Thus it is quite natural for software

practitioners and researchers to know that which particular

method tends to work well for a given failure dataset and

up to what extent quantitatively (Aggarwal et al. 2006;

Goel and Singh 2009; Singh and Kumar 2010a, b, c).

Here we conduct an empirical study of machine learning

methods such as ANNs, SVMs, CCNN, DTs and fuzzy

inference system (FIS) for the prediction of software reli-

ability in order to draw stronger conclusions leading to

widely accepted and well-formed theories. In this paper we

briefly investigate and focus on three main issues: (i) How

accurately and precisely do the machine learning based

models predict the reliability of software product at any

point of time during testing phase? (ii) Is the performance

of SVMs and DTs better than CCNN and ANNs using back

propagation network (BPN), radial basis function network

(RBFN) and Elman network models? (iii) Correlate

between SVMs and DTs for software reliability prediction

since their performance varies when applied to past failure

data in a realistic environment.

Rest of the paper is organized as follows: Sect. 2

describes the related work and in Sect. 3 we discuss soft-

ware reliability prediction techniques. Section 4 elaborates

about machine-learning methods and their performance

analysis in detail. In Sect. 5 we discuss about empirical data

collection and experimental set-up together with evaluation

criteria. The experimental results and comparative perfor-

mance of the machine learning methods are discussed in

Sect. 6. Finally, the conclusions are drawn in Sect. 7.

2 Related work

Several machine learning techniques such as ANNs,

SVMs, CCNN, DTs, Group Method of Data Handling

(GMDH) Polynomial network, Gene Expression Pro-

gramming (GEP), Genetic Programming (GP), FIS and

Dynamic evolving neuro-fuzzy inference system (DEN-

FIS) have been proposed in the literature for solving var-

ious classification and regression problems (Karunanithi

et al. 1992; Kohavi 1995; Phillip 2003; Aggarwal et al.

2006, 2009; Jung Hua 2010; Ping and Hong 2006; Mal-

hotra et al. 2009, 2011; Eduardo et al. 2010; Raj and Ravi

2008). There are few studies applied for the prediction of

software reliability using machine learning methods based

on past and present failure data of software. Some useful

empirical studies based on multivariate linear regression

and neural network methods have been carried out for

prediction of software reliability growth trends. Although,

multivariate linear regression method can address linear

relationship but require large sample size and more inde-

pendent variables (Jung Hua 2010). Many software reli-

ability prediction models using ANNs have been applied

for the prediction of software reliability successfully

(Karunanithi et al. 1992; Singh and Kumar 2010c, d).

However, effectiveness of neural network based prediction

models depend on the behavior of dataset that is basically

of fluctuating nature. Therefore ANNs suffers from over-

fitting the results while dealing with real-life unknown data

sets. Overfitting occurs usually when the parameters of a

model are tuned in such a way that the model fits the

training data well but it has poor accuracy when applied on

separate data not used for training.

The applications of SVM based machine learning

approach in place of traditional statistical techniques has

shown a remarkable improvement in the prediction of

software reliability in the recent years (Xingguo and

Yanhua 2007). SVM represents state of the art because of

their generalization performance, ease of usability and

rigorous theoretical foundations that practically can be

used for modeling complex software failure behavior. The

design of SVM is based on the extraction of a subset of the

training data that serves as support vectors and therefore

represents a stable characteristic of the data. The major

limitation of SVMs is the increasing computational and

storage requirement with respect to the number of training

examples (Chen et al. 2008). Ping and Hong (2006)

investigated the capabilities of SVMs for the prediction of

software reliability with the help of simulated annealing

algorithms (SA). In their study it is suggested that SVM

model with simulated annealing algorithms (SVMSA)

results in better predictions than other existing techniques

in practice.

Yang and Xiang (2007) suggested an SVM-based model

for software reliability prediction and pointed out that failure

data collected from early phases of software development

life cycle is more appropriate to be used which affect pre-

diction accuracy. Xingguo and Yanhua (2007) investigated

Int J Syst Assur Eng Manag (July-Sept 2012) 3(3):194–208 195

123

the status of early prediction methods for software reliability

by introducing SVM. They identified that early prediction

model based on SVM is more accurate in its prediction with

better capability of generalization. The main advantage of

DTs are their descriptive nature, which allows practitioners

to interpret the model’s decision easily compared to other

machine learning techniques such as ANNs and SVMs.

While DTs do show their strengths in various real-life

applications, these methods have rarely been used for pre-

dicting software reliability in practice.

The capability of fuzzy logic systems leads to the

achievement of more efficient and decisive system in

software reliability prediction. Due to large computation

and low learning rate of prediction model, the machine

learning techniques using FIS is found to be more effective

than classical machine learning (Mueller and Lemke 1999).

However, the present challenge is to make it even more

efficient by incorporating a fairly new technique which can

improve the prediction rate and require less computational

resources.

3 Software reliability prediction using machine

learning techniques

In this section, we explore some well-known and widely

used machine learning methods (ANNs, SVMs, CCNN,

DTs and FIS) for the prediction of software reliability

based on past failure behaviour of software system. The

ability of ANNs to model complex non-linear relationships

and capability of approximating any measurable function

make them attractive prospects for solving complex tasks

without having to build an explicit model for the system.

On the other hand, SVM is a learning system, which

constructs an N-dimensional hyperplane that optimally

separates the data set into two categories. The basic pur-

pose of SVM modeling is to find the optimal hyperplane

that separates clusters of vector in such a way that case

with one category of the dependent variable on one side of

the plane and the cases with the other category of the

independent variable on the other side of the plane. The

support vectors are the vectors near the hyperplane.

Therefore SVMs can be used as an alternative training

method for polynomial, radial basis function and multilayer

perceptron networks using a kernel function. In SVMs, the

weights of the network are found by solving a quadratic

programming problem with linear constraints, rather than

by solving a non-convex, unconstrained minimization

problem as in case of training the neural network model. It

is observed that SVM is capable to generalize well even in

high dimensional spaces under small training sample con-

ditions (Fei et al. 2005). Thus, SVMs have a better

capability of generalization due to the structural risk min-

imization principle.

CCNN is a robust network model capable of producing

better results with a small variation in the adjustment of

parameters. Thus CCNN is capable of adjusting the number

of hidden layers dynamically during the learning phase and

hence can be generalized well for unknown failure dataset.

DTs have been applied as a predictive model, which are

capable of mapping observations of an item to the item’s

target value. In a tree structures, leaves represent the

classifications and branches represent conjunctions of fea-

tures that lead to those classifications. Therefore a DT can

be used as a predictive machine learning model that can

decide mean time to failure for the target value as a

dependent variable of a new sample based on the attributes

of independent variables. The internal nodes of a DT

denote different attributes and the branches between nodes

represents the possible values that these attributes can have

in the observed samples. The objective of developing a

software reliability prediction model using FIS is to make

decisions about the software such as whether to release the

system in its present state or continue testing. Thus, fuzzy

logic can be utilized as a useful tool for decision making

than a conventional intelligent system.

3.1 Research background

Our methodology for software reliability prediction using

machine learning techniques is presented in detail (Sect. 4).

The sources of data collection are discussed in Sect. 5. The

Waikato Environment for Knowledge Analysis (Weka) is a

comprehensive tool consisting of Java class libraries is

used for implementing DTs. Weka is a freely open-source

suite composed of several functions of the Weka class

library that were used to conduct the experiments imple-

mented on a Windows XP system with a Web browsing

capability.

3.2 Dependent and independent variables

The dependent variable in our study is failure rate which is

used to study the program failure rate per fault at the failure

intervals. As the number of remaining faults change, the

failure rate of the program changes accordingly. The fail-

ure rate of a system depends on time with the rate varying

over life cycle of any software product. The dependent

variable will be predicted based on the number of failures

to be detected during testing phase after integrating all

modules of software development life cycle. Testing time

is the independent variable taken in terms of calendar time

such as no. of weeks/days/Hrs/min./sec for the corre-

sponding failures when detected and recorded.

196 Int J Syst Assur Eng Manag (July-Sept 2012) 3(3):194–208

123

4 Description of machine learning methods

The machine learning techniques deal with the issues of

how to build and design computer programs that improve

their performance for some specific task based on past

observations. In this section we explore and discuss in

detail some well-known and commonly used machine

learning methods ANNs (BPN, RBFN and Elman net-

work), SVM, CCNN, DTs and FIS for the prediction of

software reliability as follows.

4.1 ANN modeling

Here we design a multilayer feed forward neural network

referred to as M–H–Q network with M source nodes, H

hidden nodes and Q nodes in the output layer (Aggarwal

et al. 2009). The input nodes are connected to the output

node through hidden layers of the network. The ANN

repetitively adjusts different weights until the difference

between estimated output and actual output from the net-

work is minimized. The network gets trained by finding a

vector of connection weights minimizing the sum of

squared errors applied to all data sets. The input metrics are

normalized using min–max normalization (Han and Kam-

ber 2006). Min–max normalization performs a linear

transformation on the original data. Suppose that minA and

maxA are the minimum and maximum values of an attri-

bute A then its mapping value v of A to v0 in the range of

0–1 is computed as follows:

v0 ¼ ½v�min A�
½max A�min A� ð1Þ

Thus mathematically, multilayer neural network archi-

tecture can be defined as follows:

netk ¼ bk þ
Xn

i¼1
xiwki and yk ¼ f ðnetkÞ ð2Þ

where n is number of input elements i.e., x1, x2, x3,…xn,

wki is the set of connecting links associated with weights

wk1, wk2, wk3,…wkn, yk is the output of previous layer of

network and bk is the bias which acts exactly as a weight on

a connection from a unit when activation is always 1. The

non-linear model of a neural network is shown in Fig. 1.

The brief, description of various ANNs method applied for

software reliability prediction described as: (i) Feed for-

ward BPN, (ii) RBFN and (iii) Elman network is summa-

rized as follows.

4.1.1 Architecture of different ANNs

The ANNs has been trained using standard error back

propagation algorithm at a learning rate of 0.005 with a

momentum of 0.60 having the minimum square error as

the training-stopping criterion. The training procedure is

carried out for entire failure datasets until network is able

to provide desired responses. The input is feeded in terms

of cumulative failures using input variable. The summary

of the ANN architecture is shown in Table 1 consists of

one hidden layer along with one unit in the output layer.

The architecture of RBFN consists of three layers namely

input layer, hidden layer and output layer. There exists n

number of input neurons and m number of neurons with

the hidden layer existing between the input and output

layer. The interconnection between the input layer and

hidden layer forms hypothetical connection, while the

connections between hidden and output layer form

weighted connections. The training algorithm is used for

updating of weights in all the interconnections. Elman

networks are two-layer back propagation networks, in

addition to a feedback connection from the output of the

hidden layer to its input. This feedback path allows Elman

networks to recognize and generate temporal and spatial

patterns. A simple recurrent network has activation feed-

back, which embodies short-term memory. A state layer is

updated with the external input of the network together

with the activation function from the previous forward

propagation. This feedback is modified by a set of weights

as to enable automatic adaptation through back propaga-

tion learning.

4.1.2 Artificial neural network results

Here we present the result analysis of three ANNs (BPN,

RBFN and Elman network) model applied for predicting the

software reliability of software product. We have used

MatLab version 7.0.1 on Windows XP platform to measure

the performance of each network model using all sixteen

failure datasets listed in Table 2. Tables 4, 5, and 6 presents

the performance analysis of the model predicted using

various parameters in terms of root mean square error

(RMSE), R-value, slope of linear regression (LR), and

p value. Out of all three ANNs presented here BPN out-

performs both RBFN and Elman network model in terms of

RMSE and slope of LR. However, the values of LR

achieved through RBFN are better than other two methods

wk1

x1

wk2 Activation Function

x2

yk

Inputs wk3 Output
3

Synaptic weights
x

wkn

(including bias) xn

Σ f (.)

Fig. 1 Non-linear model of a neuron

Int J Syst Assur Eng Manag (July-Sept 2012) 3(3):194–208 197

123

whereas p values of Elman network are better indicators

from the prediction point of view. The values of RMSE

generated through RBFN and Elman is quite high perhaps

due to the poor prediction performance of these two net-

works caused by fluctuating nature of data sets and less

number of parameters used. Moreover, the values of cor-

relation coefficients corresponding to BPN and RBFN have

been very consistent between 80 and 90 % for both BPN

and RBFN network models which is a positive outcome of

our study but cannot be generalized due to inconsistent

results of Elman network (Table 6).

4.2 Support vector machine modeling

SVM takes a set of input data and predicts for each given

input, which of two possible classes the input is a member

of, that makes SVM a non-probabilistic binary linear

classifier. Thus, SVM is a learning system which constructs

an N-dimensional hyperplane that optimally separates the

data set into two categories. In SVM, a good separation is

achieved by hyperplanes that has the largest distance to the

nearest training data points of any class called functional

margin. Ideally larger is the margin, lower the general-

ization error of classifier will be. The support vectors are

the vectors near the hyperplane. The SVM modelling finds

the oriented hyperplane so that the margin between the

support vectors is maximized. SVM models are closely

related to ANNs (Jung Hua 2010; Yang and Xiang 2007).

Therefore SVMs can be used as an alternative training

method for polynomial, radial basis function and multilayer

perceptron networks using a kernel function (Phillip 2003).

Summary of prediction measures using SVM model is

presented in Table 7.

4.2.1 Mathematical model

The total number of software failures observed from sev-

eral commercial and real-life projects is applied to the

SVM model using cumulative number of detected software

failures as inputs for predicting future failure behaviour of

the software. Once the model has been trained and learnt

the inherent internal property of the software failure pro-

cess, it can be used for the prediction of software reliability

realistically (Ping and Hong 2006). Here we consider n

data points for training the SVM model defined as follows:

x1; y1ð Þ; x2; y2ð Þ; . . . xn; ynð Þf g � Rn � Rgf ð3Þ

where xi is the input vector of dimension n, yi is associated

targeted value and n is the total number of observations.

The linear regression function using Vapnik’s [-insensitive

loss function (Vapnik 1995), can be written as:

f ðxÞ ¼ w � xð Þ + b; w 2 Rn ; b 2 R ð4Þ

where w is the weight vector and b is the bias.

Thus, Vapnik regression function reflects the mapping

of input and output of a process by learning a set of training

data where the coefficients w and b can be determined by

minimizing the regularized risk function as follows:

L2 y; f ðxÞð Þ ¼
0; when y� f ðxÞj j � 2 and

y� f ðxÞj j� 2; for y� f ðxÞj j �2

" #
ð5Þ

where L2is known as the 2- insensitive loss function,

which is equivalent to the approximation accuracy required

for the training (Yang and Xiang 2007; Jung Hua 2010; Fei

Table 1 Architecture of ANNs

Parameters ANN structure

BPN RBFN Elman

Hidden layers 2 2 2

Input nodes 1 1 1

Output node 1 1 1

Learning rate 0.005 0.005 0.005

Momentum rate 0.6 0.6 0.6

Transfer

function

Tansig Tansig Tansig

Training

function

TrainBR TrainBR TrainBR

Training

algorithm

Back-

propagation

Back-

propagation

Back-

propagation

Table 2 Empirical data sets

Data sets Software type Number of errors

detected

1 Real time command and control

system

136

2 Real time command and control

system

54

3 Real time command and control

system

38

4 Real time command and control

system

53

5 Real time commercial system 831

6 Commercial subsystem 73

14C Real time system 36

17 Military system 38

27 Military system 41

40 Military system 101

SS1A Operating system 112

SS1B Operating system 375

SS1C Operating system 277

SS2 Time sharing system 192

SS3 Word processing system 278

SS4 Operating system 196

198 Int J Syst Assur Eng Manag (July-Sept 2012) 3(3):194–208

123

et al. 2005). Thus, regularized risk function can be written

as:

RðWÞ ¼ 1

2
wk k2þC

Xn

i¼1

L2 f yi; xið Þ½ � ð6Þ

where C is the regularization constant that represents the

trade-off between the approximation error and complexity

of the model structure.

4.3 Cascade correlation neural network

Although, back-propagation neural network is the well-

known and widely used multi-layer feed forward network.

But, the disadvantage of multi-layer feed forward networks

using error back propagation is that number of hidden

layers and neurons in the network are problem specific.

That is, it varies from task to task. Thus if large number of

hidden neurons are used then the network will learn irrel-

evant details during the training and once trained it does

not generalize well. Conversely, if a network is very small

then it will not be able to learn from the training set

properly. Therefore, we require such a network which

could determine the size for a network automatically

starting with a minimal network and then adding hidden

neurons and connections as required. The CCNN is an

alternative viable solution which helps in overcoming the

shortcomings of BPN by adjusting the number of hidden

layers dynamically during the learning phase (Scott and

Christian 1991). Summary of prediction measures using

CCNN model is presented in Table 8.

4.4 Decision tree modeling

The decision trees are useful to represent the information

from machine learning algorithms. The DTs are composed of

leaves and branches, where leaves represent the classifica-

tions and branches represent the conjunctions of features that

lead to the classifications. Thus DTs are the decision-mod-

eling tool that graphically displays the classification process

of a given input for given output class labels. Decision tree

can be applied to predict mean time to failures with the target

value from the new samples based on the independent vari-

ables using past failures of a software system. The internal

nodes of a DT denote different attributes, and the branches

between nodes represent the possible values these attributes

can have in the observed samples. DTs are one of the most

popular classification algorithms applied in data mining and

machine learning. The DT includes several algorithms such

as Quinlan’s ID3, C4.5, C5, J48 and CART (Ross 1993;

Kohavi 1995; Witten and Frank 2011; Han and Kamber

2006). Here we discuss the capabilities of two commonly

used algorithms (J48 and Naive Bayes) for decision tree

induction. Further, in order to analyze the comparative per-

formance of machine learning techniques used in our study

an instant filter is applied to discretize the range of numeric

attributes in the failure datasets into nominal attributes.

4.4.1 J48

J48 is a modified version of an earlier algorithm C4.5

developed by Quinlan (Ross 1993). In order to classify a

new item using J48 we first create a decision tree based on

the attribute values of available training data. So that

whenever it encounters a set of items from the training set,

it identifies the attribute that discriminates the various

instances most clearly. J48 recursively classifies the tree

until each leaf is pruned meaning that the data has been

categorized as close to perfectly as possible (Witten and

Frank 2011). In the process of DT, information gain that

provides the most about data instances is classified as

highest information gain. Moreover, among all possible

values of information gain, if there is any other value for

which there is no ambiguity then we terminate that branch

and assign it to the target value that we have obtained so

far. Alternatively, we look for another attribute providing

highest information gain. Therefore we continue this pro-

cess until we either get a clear decision of what combina-

tion of attributes provide us a particular target value, or we

run out of attributes. In such event when we run out of

attributes, or if we cannot get an unambiguous result from

the available training set, then we assign this branch a

target value that the majority of items under this branch

possess. Now by checking all these respective attributes

and their values observed in DT, we can predict the target

value of new instances (Ross 1993).

4.4.2 Naive Bayes

The naive Bayes is a simple probabilistic classifier model

which is based on the Bayesian theory. The naive Bayes

classifiers can be trained very smoothly in a supervised

learning dataset. The Naive Bayes algorithm is a classifi-

cation algorithm based on Bayes rule that assumes the

attributes of one category are all conditionally independent

of one another from other category. Thus, Naive Bayes is a

hybrid approach between decision-tree classifiers and

Naive Bayes classifiers. The structure of Naive Bayes

classifiers represents knowledge in the form of a tree which

is constructed recursively. The leaf nodes are Naive Bayes

categorizers for predicting a single class. We employed

10-fold cross-validation on all sixteen life-cycle failure

datasets using Naive Bayes at the node to evaluate the

utility of a node. The utility of the split is the weighted sum

of utility of the nodes which depends on the number of

instances that go through that node. The Naive Bayes

Int J Syst Assur Eng Manag (July-Sept 2012) 3(3):194–208 199

123

algorithm tries to approximate whether the generalization

accuracy of Naive Bayes at each leaf is higher than a single

Naive Bayes classifier at the current node (Kohavi 1995).

Naive Bayes classifiers are generally easy to understand

and the induction of these classifiers is extremely fast that

require a single pass through the data. We found that Naive

Bayes works well on real life failure datasets and thus it

can be scaled up for accurate reliability prediction in real-

life industrial projects. Summary of prediction measures is

presented in Tables 9 and 10.

4.5 Fuzzy inference system (FIS)

Here we explore the capability of fuzzy inference system

for the prediction of software reliability based on past and

present failure behaviour of software. FIS is similar to a

neural network type structure that is capable of mapping

inputs through input membership functions and associated

parameters. The parameters associated with the member-

ship functions and corresponding associated output

parameters are used to interpret the final output of the

prediction model. The FIS structure was generated using

genfis2 function from the Matlab Fuzzy logic Toolbox

(2011). The basic steps of the FIS model are: (i) identifi-

cation of input variables (cumulative failures and failure

interval length) and output variable (failure time) (ii)

development of fuzzy profile of the input/output variables

(iii) defining relationships between input and output vari-

ables using fuzzy inference system. Thus FIS is capable of

making decisions under uncertainty which can be applied

for reliability prediction when applied to unknown failure

datasets. We employed the reasoning capability of fuzzy

logic which can be used as a technique of arriving at some

concrete decision on whether to release the software in its

present form or not. Table 10 presents the performance

measure of FIS in terms of MAE, training RMSE and

validated RMSE.

4.6 Training and validation method

We employed entire failure dataset shown in Table 2 by

taking xi as input (cumulative number of failures) detected

during software testing time ti to predict xi?1 as output

during training and testing of each machine learning method

presented in our study. Thus, past failure data is divided into

two parts: training and testing data-set. The training data set

is then applied to the proposed models for software reli-

ability prediction and subsequently the parameters that lead

to the best accuracies are selected. We apply k-cross vali-

dation, an alternative procedures that allows more of the

data to be used for fitting and testing. Using k-cross vali-

dation, the entire dataset is randomly divided into k subsets

(here k = 10) and each time one of the k subsets is used as

the training data and other remaining (k-1) subsets are used

to validate the prediction model for software reliability.

Thus to maximize the utilization of failure datasets, cross-

validation is an efficient method through repeatedly

resampling the same data set randomly by reordering the

dataset and then splitting up into ten folds of equal length

(Kohavi 1995). The overall training and prediction process

is illustrated through a flow diagram in Fig. 2.

5 Empirical data collection

In this paper we have used software failure data of various

projects collected from Software Life Cycle Empirical/

Experience Database (SLED) compiled and published by

Data and Analysis Center for Software (Musa 1980). We

assume that number of failures-detected is observed from the

system-testing phase after confirmation of the integration of

all modules and software components. The observation of

failure and repair times is represented by t1, t2,…, tn where ti
is the execution time of ith software failure assuming that

each failure represents an independent sample from the same

population. We can express Dti = ti-ti-1 as the time interval

between the ith and (i-1)th failures while failure data is

recorded in the form of (ti, xi) where xi is the cumulative

number of failures in the software at execution time ti.

5.1 Experimental setup

Here we discuss the experimental set up to illustrate how

machine learning methods have been used as an approxima-

tion tool for software reliability prediction realistically. The

input to the network is number of cumulative failures while

testing time (day of failure) is the output of the reliability

prediction model. The standard error back propagation algo-

rithm at a learning rate of 0.005 is used to train the network

having the minimum square error as the training-stopping

criterion with the help of neural network tool in MATLAB

7.01 for ANN models. SVM and CCNN have been imple-

mented using DTReg predictive modeling software (Phillip

2003). DTs are implemented using the data mining package

WEKA from the University of Waikato (Weka: classification

and regression software 2010; Witten and Frank 2011). The

classification tree based approach we have explored in our

study are available in WEKA package. We have applied the

mapping data to estimate the performance of each presented

methods in our study using 10-fold cross validation to mini-

mize the influence of training set variability.

5.2 Evaluation criteria

The performance of software reliability prediction model is

measured in terms of several statistical parameters such as

200 Int J Syst Assur Eng Manag (July-Sept 2012) 3(3):194–208

123

correlation coefficient between actual and predicted values,

MAE, RMSE, and precision. The criteria for the goodness

of-fit for the prediction of software reliability using various

machine learning methods are described in Table 3

(Fawcett 2006; Hanley and McNeil 1982; Kapur et al. 2011;

Lawson et al. 2003; Ohba 1984).

6 Results

In this section we present the summary of results for all 16

data sets using machine learning methods in terms of

correlation coefficient, MAE, RMSE, p values and other

parameters used in our study. The list of statistics shown in

Tables 4, 5, 6, 7, 8, 9, and 10 summarize how accurately

the machine learning methods are able to predict the

software reliability of a product using 10-fold cross-vali-

dation. Figures 3, 4, 5, 6, and 7 are the graphical repre-

sentation of performance analysis of machine learning

methods (ANNs, SVMs, CCNN, DTs and FIS) for the

prediction of software reliability.

6.1 Analysis results

Here, we discuss the analysis performed to find the rela-

tionship between ANNs and other machine learning

methods (SVMs, CCNN, DTs and FIS) applied for soft-

ware reliability prediction. The prediction capability of

machine learning techniques are summarized and discussed

in detail (Sect. 6.4).

6.2 Application in determination of software release

instant

Quality of any software product mainly depends on how

much time testing take place, what kind of testing

methodologies are used, the amount of testing efforts

put by testing team and complexity of software. More

time developers spend on testing more errors can be

removed leading to better reliable software. On the

contrary, if testing time is short the software cost could

be reduced but then customers may take a higher risk

of buying unreliable software. However, it would

No Yes

Yes

No

Input data: Failures/ cumulative no. of
failures detected during testing period
Output data: Day of failures

Arrange the input-output data set into
k-folds (k=10) required for training
and validation of the model

Apply ML technique
to train the model
using k-fold data

Set the target objective using different
parameters in terms of MAE, RMSE,

such as set RMSE = 0.005

If the target is
 Achieved &

Acceptable?

Modify the
architecture
/algorithm /
parameters

 Validation
Error

Optimized?

Accept the method
for implementation

Discard the method

Validate the model
using k-fold data

Fig. 2 Overview of software

reliability prediction method

using machine learning

techniques

Int J Syst Assur Eng Manag (July-Sept 2012) 3(3):194–208 201

123

increase the cost during maintenance phase since it is

more expensive to fix an error during maintenance

phase than during testing phase. Therefore it is essen-

tially important to decide when to stop testing and

release the software to customers based on cost and

reliability criteria. The prediction of software reliability

is a task where we try to predict the future failures

trends of a software product using the present and past

failure data. In our study, the failure data has been

recorded in terms of number of failures, length of

failure interval, and day of failures. The analyzed

software reliability prediction results are given to the

quality assurance and management team, who collec-

tively decide appropriate time to release the software

based on cost and reliability assessment meeting the

requirements of customers, thereby leading to a better

customer satisfaction management solution.

6.3 Observations

Based on the empirical results obtained from rigorous

experiments conducted, some of the specific observations

of our study are summarized as follows:

1. It is easy to design and construct models for software

reliability growth of varying complexity for a given

failure dataset using ANNs. However, the effective-

ness of neural network based prediction models

depend on the behavior of dataset that is basically of

fluctuating nature. Therefore ANNs lack of general-

ization while dealing with real-life large data sets as

shown in Tables 4, 5 and 6.

2. From Tables 4, 5, and 6, it can be easily depicted that

ANNs using BPN, RBFN and Elman’s network does

not better fit in terms of p values and RMSE but able

to generate encouraging results in terms of correla-

tion coefficient and slope of liner regression.

3. Since ANN is able to approximate the continuous

functions to a desired accuracy level through a

multilayer perceptron. This implies that the approxi-

mated function of neural network based approach can

also be employed in estimating cumulative failures

observed by time t in software reliability modeling.

However, ANNs model face the problem of over fitting

the results and lack of learning algorithms from the

dynamic environment which require larger sample size

for training and testing the network together with more

independent variables. Overfitting occurs usually

Table 3 Metrics used for model evaluation

Metrics Definition

Correlation

coefficient

Correlation coefficient measures the agreement of predictions with the actual class. This statistics shows that how closely

actual and predicted values are correlated

MAE Mean absolute error (MAE) is the quantity used to measure how close predictions are to the actual outcomes. MAE

estimate the model’s output for each observation to estimate whether the proposed model is biased and tend to over or

under estimate. The predicted and observed values are the model’s outcomes from n observations computed as follows:

MAE ¼ 1
n

Pn
i¼1 predicted� actualj j

RMSE Root mean squared error (RMSE) is a frequently used measure of the difference between values predicted by a model and

the values actually observed from the environment that has been modeled and computed as follows:

RMSE ¼
ffiPn

i¼1
ðpredicted�actualÞ2

n

q

where n is the number of observations for corresponding predicted and observed values of the model

Precision Precision is defined as the number of classes that are predicted correctly, divided by the total number of classes

ROC curve ROC curve defined as a plot of sensitivity on the y-coordinate versus its (1-specificity) on the x coordinate. It is an effective

method of evaluating the performance of predicted models. Thus, Area Under the ROC Curve (AUC) is a combined

measure of sensitivity and specificity

F-measure F-measure is a way of combining recall and precision scores into a single measure of performance given as follows:

F-measure = 2 9 recall 9 precision/(recall ? precision)

Sensitivity Sensitivity also called recall rate, measures the proportion of actual positions which are correctly identified

Specificity Specificity measures the proportion of negatives, which are correctly identified as the ratio of No. of true negatives to the

(no. of true negatives ? no. of false positives)

p value p values are used for testing the hypothesis of no correlation. Each p value is the probability of getting a correlation as large

as the observed value by random chance. If p is small, say less than 0.05, then the correlation R is significant

Slope in LR In linear regression, we can’t always draw a straight line that passes through every data-point, but we can find such a line

that comes closer to most of the data points. Thus slope represents the estimated average change in Y (failure rate) when

X (testing period) increases by one unit used in our study

202 Int J Syst Assur Eng Manag (July-Sept 2012) 3(3):194–208

123

when the parameters of a model are tuned in such a way

that the model fits the training data well but it has poor

accuracy when applied on separate unknown failure-

data not used for training.

4. Based on the performance analysis achieved through

SVMs, CCNN, DTs and FIS, it is quite encouraging

to design SVM based models for software reliability

growth of varying complexity for a given failure

dataset.

5. The robustness and validity of machine-learning

based models using SVM make it easier for real-

world applications for predicting reliability accu-

rately. Moreover, SVM is adaptive to the modeling

nonlinear functional relationships, which are difficult

to model with other machine learning methods such

as CCNN and ANNs.

6. Machine-learning techniques such as SVM general-

ize well even in high dimensional spaces under small

training datasets. Therefore, software reliability pre-

diction models can be built much earlier with SVM

than other conventional techniques with relatively

good performance achieved and can be extensively

applied in many fields of software reliability

realistically.

7. The main advantage of modeling statistical software

failure data is decision making about the software

products. Thus, whether to release the system for

deployment or continue further testing can be assessed

through DTs. Therefore, machine learning methods

such as SVM and DTs can be utilized as a powerful tool

for reliability prediction than a conventional expert

system while deciding the software release instance.

8. Comparing various statistics for the prediction of

software reliability in terms of MAE and RMSE

using various machine learning techniques, we found

that accuracy of the SVM model is pretty close,

suggesting that model will not break down with the

unknown data also, or when future unseen failure

data is applied to them.

9. Empirically, we conclude that SVM provides reliable

performance and accurate results than other machine

learning methods presented in our study. While,

ANN is another viable alternative model which

performs better in comparison with other machine

learning techniques in practice. Moreover, CCNN is

a supervised learning approach applied to create and

install the hidden neurons for maximizing the mag-

nitude of correlation between the existing and new

neurons. This way, CCNN is capable of learning very

quickly that could determine the size and topology

automatically to minimize the residual error signals.

10. Thus machine learning methods presented in our

study are able to model complex non-linear relation-

ships and capable enough to approximate the desired

measurable function. Therefore, machine learning is

an attractive prospect for solving regression task

without having to build an explicit model of the

system.

11. Although, machine learning methods applied for

software reliability prediction using DTs are rarely

used for software reliability prediction in literature,

Table 4 Summary of predictions for different data sets using back

propagation neural network

Data sets Correlation coefficient Slope of LR p value RMSE

1 0.9213 0.6561 0.0000 13.1466

2 0.8224 0.9681 0.0000 5.2801

3 0.9086 0.7502 0.0007 2.5072

4 0.8881 0.6616 0.0000 3.4367

5 0.9672 0.7486 0.0000 9.7447

6 0.9092 0.7687 0.0000 5.4920

14C 0.8845 0.8864 0.0001 2.8437

17 0.8611 0.7783 0.0002 3.0334

27 0.8928 0.6896 0.0000 2.9741

40 0.9214 1.0406 0.0000 5.4444

SS1A 0.9885 0.8737 0.0000 3.3393

SS1B 0.9710 0.8642 0.0000 7.5529

SS1C 0.9807 0.8848 0.0000 9.5419

SS2 0.9764 0.8698 0.0000 8.7359

SS3 0.9857 0.9986 0.0000 7.2242

SS4 0.9320 0.0176 0.1105 9.6954

Table 5 Summary of predictions for different data sets using radial

basis function network

Data sets Correlation coefficient Slope of LR p value RMSE

1 0.7902 0.5389 0.0000 13.6042

2 0.8242 0.8985 0.0000 4.6012

3 0.9700 0.7958 0.0000 2.2353

4 0.9103 0.6141 0.0000 3.7371

5 0.9687 0.7775 0.0000 29.3936

6 0.9528 0.7693 0.0000 4.8882

14C 0.7705 0.7310 0.0034 2.9049

17 0.8654 0.8144 0.0001 2.9903

27 0.8654 0.5737 0.0000 3.7381

40 0.9541 1.0911 0.0000 4.8059

SS1A 0.9788 0.9318 0.0000 3.7925

SS1B 0.9647 0.9021 0.0000 19.8808

SS1C 0.9768 0.9158 0.0000 9.5273

SS2 0.9744 0.8257 0.0000 9.9873

SS3 0.9846 1.0077 0.0000 7.5430

SS4 0.9840 0.8957 0.0000 5.0622

Int J Syst Assur Eng Manag (July-Sept 2012) 3(3):194–208 203

123

yet it is worthwhile and desirable to include these

methods for discussion. However, to make a gener-

alization of these methodologies, more similar studies

need to be carried out by taking more parameters and

updated failure data of real-life industrial projects.

6.4 Discussion

The performance measures of machine learning methods

(ANNs, SVMs, CCNN, DTs and FIS) corresponding to

RMSE, correlation coefficient, MAE, slope of LR, p values

and other parameters used for estimation and prediction

purposes can be summarized as follows.

The performance measure of RBFN and Elman net-

works in terms of RMSE, slope of LR and correlation

coefficient values are higher than the corresponding values

of the performance measures using BPN. However the

performance measures of RBFN in terms of correlation

coefficient and slope of LR is quiet encouraging which

makes it better choice for prediction but lacks in general-

ization for larger data sets such as DS5, SS1B, SS1C and

SS3. While the performance measures of SVM is the

optimum choice for software reliability prediction in terms

of MAE and training RMSE respectively. Alternatively,

CCNN is another viable choice on the basis of training and

testing RMSE. On the other hand, the accuracy of ANNs

and FIS suffers from overfitting the results. However,

ANNs using BPN and RBFN has been applied in many

real-life applications but FIS performs very badly while

validating the models. Although training results are fairly

good but cannot be generalized due to less number of

input–output membership functions and associated vari-

ables. Interestingly, the values of correlation coefficient

statistics lies between 80 and 99 % for all five machine

learning methods except Elman network model suggesting

that the agreement of predictions with the actual class is

closely related and can be used for estimation and predic-

tion of actual classes in realistic environment. The best

outcome of our study is the values of MAE and RMSE

using SVM that is almost within the range of 0–1 only and

for most of the cases it is just below 0.500 suggesting that

the model will not break down under realistic conditions

and shall be able to estimate and predict software reliability

accurately. Therefore software practitioners can apply the

proposed model to assess the software reliability of the

software product that will facilitate the project managers to

measure the acceptable level of reliable software at a

specified severity level before the deployment within time

and budget constraints. The precision and ROC-area of the

model predicted with DTs is another positive outcome of

our study which precisely covers 80–90 % area under

ROC. However, the relative performances of DTs and

ANNs (Elman network) model have been very inconsistent

and discouraging particularly to small sized datasets due to

the lack of adequate training and testing of the prediction

model. Finally, the overall performance of model predicted

using SVM, makes it the better choice in comparison to

other machine learning techniques used in our study.

Table 6 Summary of predictions for different data sets using Elman

network

Data sets Correlation coefficient Slope of LR p value RMSE

1 0.4871 0.0367 0.0006 12.8616

2 -0.6423 -0.0457 0.0013 6.7133

3 0.8459 0.2768 0.0002 3.3707

4 0.0922 0.0139 0.6758 7.3206

5 0.9817 0.3883 0.0000 12.2064

6 0.7591 0.1817 0.0000 8.3335

14C 0.9276 0.0240 0.0000 3.3898

17 0.7480 0.1368 0.0033 3.3374

27 0.8194 0.1984 0.0001 4.3665

40 0.5982 0.1534 0.0000 11.2035

SS1A 0.1102 0.0200 0.4765 13.1599

SS1B -0.0733 -0.0124 0.3727 17.1219

SS1C 0.8190 0.0119 0.0000 30.6914

SS2 0.5156 0.1849 0.0000 24.7768

SS3 0.6311 0.0062 0.0000 31.0176

SS4 -0.0094 -0.0017 0.9359 22.5824

Table 7 Summary of predictions using SVM

Data

sets

Evaluation parameters

Correlation

coefficient

MAE Training

RMSE

Testing

RMSE

No. of support

vectors used

1 0.9979 1.9813 2.4943 2.6423 91

2 0.9965 0.9681 1.2991 2.5887 47

3 0.9877 1.3231 1.7212 2.5692 26

4 0.9882 1.9003 2.3417 2.5898 52

5 0.9995 5.2685 7.3104 13.8895 741

6 0.9928 1.9436 2.5205 3.6771 50

14C 0.9850 1.3036 1.8158 2.3397 35

17 0.9970 0.7425 0.8777 1.1929 15

27 0.9938 0.9821 1.3193 4.5056 23

40 0.9987 1.1498 1.4467 2.2218 54

SS1A 0.9988 1.1443 1.5311 1.9042 86

SS1B 0.9993 2.9369 3.8716 5.4320 313

SS1C 0.9987 3.0602 3.9734 5.1429 227

SS2 0.9987 2.2645 2.8062 3.1739 107

SS3 0.9992 2.4311 3.1103 3.3697 212

SS4 0.9989 2.0029 2.6230 3.1910 108

204 Int J Syst Assur Eng Manag (July-Sept 2012) 3(3):194–208

123

6.5 Threats to validity

The present study for software reliability prediction using

machine learning techniques has various limitations that

are common with most of the other studies available in

literature. Some of the specific limitations of our study are

described as follows: First, the measures could not be

evaluated over updated failure dataset of real-life industrial

projects due to the lack of empirical software failure data

Table 8 Summary of predictions using CCNN

Data sets Correlation

coefficient

MAE Training

RMSE

Testing

RMSE

1 0.9978 1.9188 2.5728 2.5799

2 0.9979 0.8082 0.9862 2.0899

3 0.9895 1.0356 1.5825 3.5197

4 0.9972 0.9172 1.1327 1.7751

5 0.9996 5.0218 6.3647 8.2574

6 0.9977 1.1608 1.4255 1.9633

14C 0.9971 0.4664 0.7782 3.5455

17 0.9974 0.6367 0.7900 1.5237

27 0.9968 0.7656 0.9394 1.7410

40 0.9981 1.4842 1.7825 2.2120

SS1A 0.9986 1.3032 1.6736 2.2259

SS1B 0.9794 14.3782 12.8095 13.6802

SS1C 0.9993 2.3560 2.9762 3.1020

SS2 0.9983 2.5025 3.1829 3.7161

SS3 0.9956 5.5567 7.4658 4.1969

SS4 0.9988 2.1166 2.7746 4.0151

Table 9 Summary of prediction accuracy using Naive Bayes

Data sets Precision Recall F-measure ROC area

1 0.927 0.926 0.926 0.977

2 0.730 0.778 0.744 0.932

3 0.618 0.579 0.574 0.904

4 0.434 0.566 0.484 0.893

5 0.986 0.986 0.996 0.994

6 0.775 0.767 0.765 0.947

14C 0.439 0.444 0.437 0.857

17 0.177 0.184 0.179 0.818

27 0.395 0.390 0.378 0.833

40 0.894 0.881 0.822 0.943

SS1A 0.675 0.679 0.648 0.937

SS1B 0.950 0.949 0.949 0.984

SS1C 0.947 0.946 0.946 0.960

SS2 0.938 0.938 0.937 0.964

SS3 0.968 0.968 0.967 0.981

SS4 0.934 0.934 0.933 0.962

Table 10 Summary of predictions using FIS

Data sets Evaluation parameters

Correlation

coefficient

MAE Training

RMSE

Testing

RMSE

1 0.9948 0.0104 2.6424 5.3262

2 0.9933 0.0097 1.2037 10.1067

3 0.9584 0.1490 1.9758 52.5764

4 0.9886 0.0344 1.5622 43.8102

5 0.9981 0.0263 6.6603 52.6511

6 0.9943 0.0531 1.4776 31.6250

14C 0.9768 0.0138 1.4832 14.7064

17 0.9984 0.0080 0.4129 34.6184

27 0.9900 0.0754 1.0979 31.0034

40 0.9970 0.0159 1.3464 57.0903

SS1A 0.9984 0.0055 1.2242 17.3331

SS1B 0.9988 0.5960 3.5984 6.8076

SS1C 0.9981 0.0554 3.2871 15.9369

SS2 0.9980 0.0218 2.3476 10.5509

SS3 0.9985 0.0846 2.9688 70.1806

SS4 0.9982 0.0048 2.2484 24.0991

Fig. 3 The comparative performance measures of various machine

learning methods

Fig. 4 The comparative performance measures of SVM, CCNN, and

DTs using Naive Bayes

Int J Syst Assur Eng Manag (July-Sept 2012) 3(3):194–208 205

123

of modern computing system. So the prediction and

assessment capability of our approach remains an open

issue for the acceptance and deployment across different

organizations. Hence, the generalization of the results

achieved in our study is limited. Secondly, the performance

and efficiency of our models for software reliability pre-

diction using various machine learning methods depend on

various factors such as (i) developing appropriate network

architecture that could be generalized and customized in a

realistic environment is still one of the major issues while

modeling failure process for reliability improvement (ii)

the representation of software failure data available

through various resources is very old and sometimes out-

dated which is not updated frequently probably due to the

competitive nature of business, fear of losing customers

and other legal issues of software industry that need to be

addressed separately before making such generalization.

Thirdly, the effectiveness of these software reliability

prediction models depends on the operational environment

also. Therefore similar studies with large number of recent-

failure datasets of real-life projects need to be carried out in

order to establish the acceptability of the present models.

Finally, in spite of all these constraints the findings of

our study provide the guidance for future research to assess

the impact of past and present failure datasets for the

prediction of software reliability using machine learning

techniques. Hence further validations are required under

different odd conditions to draw stronger conclusions for

better quality prediction of the software products.

7 Conclusion

In this paper, we applied several machine learning methods

namely ANNs (BPNN, RBFN, and Elman network), SVM,

CCNN, DTs and FIS for the prediction of software reli-

ability based on past failures of software products. The

performances of various machine learning methods have

been evaluated by using sixteen empirical databases

extracted from DACS to predict failure intensity of the

software. We empirically demonstrated that SVM model

outperformed the model predicted using ANNs, CCNN,

DTs and FIS in all datasets. CCNN shows very encour-

aging results and can be utilized as an alternative choice

which outperformed the model predicted using BPNN,

RBFN and Elman network model. Moreover, SVM and

DTs can be applied for constructing software reliability

growth models accurately by focusing on project’s failure

dataset of realistic environment.

However to make a generalization of our study more

data based empirical studies which are capable of being

verified by observation and experiment are required in near

future. Thus present study of software reliability prediction

using machine learning methods provide the guidance for

future research in the field of assessing the impact of past

and present failure data for realistic reliability prediction.

In this paper the measures could not be evaluated over a

large and updated failure dataset due to the lack of

empirical software failure data of modern computing sys-

tem in real-life scenario. Similar types of studies need to be

carried out with different data sets to give generalized

results across different organizations. We plan to replicate

our study of software reliability prediction models by

Fig. 5 The performance measures of CCNN model in terms of

correlation coefficient, MAE and RMSE

Fig. 6 The performance measures using Naive Bayes in terms of

precision, recall, F-measure and ROC area

Fig. 7 The performance measures of FIS model in terms of MAE,

training and testing RMSE

206 Int J Syst Assur Eng Manag (July-Sept 2012) 3(3):194–208

123

introducing advanced machine learning techniques applied

to a large category of failure datasets of real life industrial

software projects. We also plan to focus on the cost benefit

analysis also of our model that will help to determine

whether a given software reliability prediction model

would be economically viable in a realistic environment.

Acknowledgments The authors wish to thank all anonymous

reviewers for their valuable suggestions and useful comments.

References

Aggarwal KK, Singh Y, Kaur A, Malhotra R (2006) Investigating the

effect of coupling metrics on fault proneness in object-oriented

systems. Softw Qual Prof 8(4):4–16

Aggarwal KK, Singh Y, Kaur A, Malhotra R (2009) Empirical

analysis for investigating the effect of object-oriented metrics on

fault proneness: a replicated case study. Softw Process Improv

Pract 14(1):39–62

Chen KC, Shiang Y, Liang TZ (2008) A study of software reliability

growth from the perspective of learning effects. Reliab Eng Syst

Saf 93(10):1410–1421

Eduardo OC, Aurora TR, Silvia RV (2010) A genetic programming

approach for software reliability modeling. IEEE Trans Reliab

59(1):222–230

Fawcett T (2006) An introduction to ROC analysis. Pattern Recognit

Lett 27:861–874

Fei X, Ping G, Lyu MR (2005) A novel method for early software

quality prediction based on support vector machine. In:

Proceedings of the 16th IEEE international symposium on

software reliability engineering (ISSRE’05), Beijing, China:

213–222

Goel AL, Okumoto K (1979) Time-dependent fault detection rate

model for software and other performance measures. IEEE Trans

Reliab 28(3):206–211

Goel B, Singh Y (2009) An empirical analysis of metrics. Softw Qual

Prof 11(3):35–45

Han J, Kamber M (2006) Data mining: concepts and techniques.

Morgan Kaufmann, India

Hanley J, McNeil BJ (1982) The meaning and use of the area under a

receiver operating characteristic ROC curve. Radiology

143:29–36

Jung Hua L (2010) Predicting software reliability with support vector

machines. In: Proceedings of 2nd international conference on

computer research and development (ICCRD’10), Kuala Lum-

pur, Malaysia: 765-769

Kapur PK, Garg RB, Kumar S (1999) Contributions to hardware &

software reliability. World Scientific, Singapore

Kapur PK, Gupta A, Jha PC, Goyal SK (2010) Software quality

assurance using software reliability growth modelling: state of

the art. Int J Bus Inf Syst 6(4):463–496

Kapur PK, Pham Hoang, Gupta A, Jha PC (2011) Software reliability

assessment with OR applications. Springer, London

Karunanithi N, Whitley D, Malaiya Y (1992) Prediction of software

reliability using connectionist models. IEEE Trans Softw Eng

18(7):563–574

Kohavi R (1995) The power of decision tables. In: The eighth

european conference on machine learning (ECML-95), Herak-

lion, Greece, pp 174–189

Lawson J, Wesselman S, Craig W, Scott D (2003) Simple plots

improve software reliability prediction models. Qual Eng

15(3):411–417

Littlewood B (1979) Software reliability model for modular structure.

IEEE Trans Reliab 28(3):241–246

Lyu M (2005) Handbook of Software reliability engineering. TMH,

India.

Malhotra R, Singh Y, Kaur A (2009) Comparative analysis of

regression and machine learning methods for predicting fault

proneness models. Int J Comput Appl Technol 35(2):183–

193

Malhotra R, Kaur A, Singh Y (2011) Empirical validation of object-

oriented metrics for predicting fault proneness at different

severity levels using support vector machines. Int J Syst Assur

Eng Manag 1(3):269–281. doi:10.1007/s13198-011-0048-7

Matlab fuzzy logic toolbox: tutorials on fuzzy inference system and

ANFIS using MatLab. Available at http://www.mathworks.com.

Accessed 14 Feb 2011

Mueller JA, Lemke F (1999) Self-organizing data mining: an

intelligent approach to extract knowledge from data. Dresden,

Berlin

Musa JD (1980) Software life cycle empirical/experience data, data &

analysis center for software. Available at http://www.dacs.org.

Accessed 17 Sep 2010

Musa JD (1998) More reliable, faster, cheaper testing with software

reliability engineering. Softw Qual Prof 1(1):27–37

Musa JD (2005) Software reliability engineering: making solid

progress. Softw Qual Prof 7(4):5–16

Norman F (1997) Application of software reliability engineering for

NASA space shuttle. International Symposium on Software

Reliability Engineering (ISSRE) 1:71–82

Ohba M (1984) Inflexion S-shaped software reliability growth

models. Stochastic models in reliability theory. Springer, Berlin,

pp 144–162

Pham H (2006) System software reliability. Springer, London

Phillip S (2003) DTReg predictive modeling software available at

http://www.dtreg.com. Accessed 8 Jan 2011

Ping PF, Hong WC (2006) Software reliability forecasting by support

vector machines with simulated annealing algorithms. J Syst

Softw 79(6):747–755

Raj K, Ravi V (2008) Software reliability prediction using soft

computing techniques. J Syst Softw 81:576–583. doi:

10.1016/jss.2007.05.005

Ross Q (1993) C4.5: programs for machine learning. Morgan

Kaufman, San Mateo

Scott E, Christian L (1991) The cascade-correlation learning archi-

tecture. Tech Rep. CMU-CS-90-100, School of computer science

Carnegie Mellon University, Pittsburgh

Singh Y, Kumar P (2010a) A software reliability growth model for

three-tier client–server system. Int J Comp Appl 1(13):9–16. doi:

10.5120/289-451

Singh Y, Kumar P (2010b) Determination of software release instant

of three-tier client server software system. Int J Softw Eng

1(3):51–62

Singh Y, Kumar P (2010c) Application of feed-forward networks for

software reliability prediction. ACM SIGSOFT Softw Eng Notes

35(5):1–6

Singh Y, Kumar P (2010d) Prediction of software reliability using

feed forward neural networks. In: Proceedings of computational

intelligence and software engineering (CiSE’10), Wuhan, China:

1–5. doi:10.1109/CISE.2010.5677251

Vapnik V (1995) Nat Stat Learn Theory. Springer, New York

Weka: classification and regression software (2010). Available at

http://www.cs.waikato.ac.nz. Accessed 17 Feb 2011

Witten IH, Frank E (2011) Data Mining: Practical machine learning

tools and techniques with Java implementations, 3rd edn.

Morgan Kaufman, Addison-Wesley, San Francisco

Xingguo L, Yanhua S (2007) An early prediction method of software

reliability based on support vector machine. In: Proceedings

Int J Syst Assur Eng Manag (July-Sept 2012) 3(3):194–208 207

123

http://dx.doi.org/10.1007/s13198-011-0048-7
http://www.mathworks.com
http://www.dacs.org
http://www.dtreg.com
http://dx.doi.org/10.1016/jss.2007.05.005
http://dx.doi.org/10.5120/289-451
http://dx.doi.org/10.1109/CISE.2010.5677251
http://www.cs.waikato.ac.nz

international conference on wireless communications, network-

ing and mobile computing (WiCom’07), Hefei: 6075–6078

Yang B, Xiang L (2007) A study on software reliability predic-

tion based on support vector machines. In: Proceedings of

international conference on industrial engineering and engineer-

ing management (IEEM’07), Singapore, 1176–1180

208 Int J Syst Assur Eng Manag (July-Sept 2012) 3(3):194–208

123

	An empirical study of software reliability prediction using machine learning techniques
	Abstract
	Introduction
	Related work
	Software reliability prediction using machine learning techniques
	Research background
	Dependent and independent variables

	Description of machine learning methods
	ANN modeling
	Architecture of different ANNs
	Artificial neural network results

	Support vector machine modeling
	Mathematical model

	Cascade correlation neural network
	Decision tree modeling
	J48
	Naive Bayes

	Fuzzy inference system (FIS)
	Training and validation method

	Empirical data collection
	Experimental setup
	Evaluation criteria

	Results
	Analysis results
	Application in determination of software release instant
	Observations
	Discussion
	Threats to validity

	Conclusion
	Acknowledgments
	References

