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Abstract This study deals with the classical and Bayes-

ian analysis of the hybrid censored lifetime data under the

assumption that the lifetime follow Lindley distribution. In

classical set up, the maximum likelihood estimate of the

parameter with its standard error are computed. Further, by

assuming Jeffrey’s invariant and gamma priors of the

unknown parameter, Bayes estimate along with its pos-

terior standard error and highest posterior density credible

intervals of the parameter are obtained. Markov Chain

Monte Carlo technique such as Metropolis–Hastings

algorithm has been utilized to generate draws from the

posterior density of the parameter. A real data set repre-

senting the waiting time of the bank customers has been

analyzed for illustration purpose. A comparison study is

conducted to judge the performance of the classical and

Bayesian estimation procedure.
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Maximum likelihood estimate � Bayes estimate �
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1 Introduction

Lindley distribution was proposed by Lindley (1958) in the

context of Bayesian statistics, as a counter example of

fiducial statistics. However, due to the popularity of the

exponential distribution in statistics especially in reliability

theory, Lindley distribution has been overlooked in the

literature. Recently, many authors have paid great attention

to the Lindley distribution as a lifetime model. From dif-

ferent point of view, Ghitany et al. (2008) showed that

Lindley distribution is a better lifetime model than expo-

nential distribution. More so, in practice, it has been

observed that many real life system models have increasing

failure rate with time. Lindley distribution possesses

this property of having increasing hazard-rate function.

Al-Mutairi et. al. (2011) developed the inferential proce-

dure of the stress-strength parameter R = P(Y \ X), when

both stress and strength variables follow Lindley distribu-

tion. Gomoz-Deniz and Calderin-Ojeda (2011) developed a

discrete Lindley model with its applications in collective

risk modeling. Mazucheli and Achcar (2011) studied a

competing risk model when the causes of failures follow

Lindley distribution. Krishna and Kumar (2011) estimated

the parameter of Lindley distribution with progressive

Type-II censoring scheme. They also showed that it may fit

better than exponential, lognormal and gamma distribution

in some real life situations. Recently, Singh and Gupta

(2012) studied a k-component load-sharing parallel system

model in which each component’s lifetime follows Lindley

distribution.

In the recent years, advanced customer expectation and

typical global competition are deriving the great attention

in improving the reliability of the products. In order to stay

competitive, manufactures are being challenged to design,

develop, test, and produce high quality and long life

products. Hence the manufactures must have the sound

knowledge about product failure time distribution. To gain

this knowledge, life testing experiments are performed

before products are put on the market (Wu and Chang
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2003; Balakrishnan and Aggarwala 2000). Major decisions

are generally based on life test data, often from a few units

due to the cost and time constraints. Moreover, many

products last so long that life testing at design conditions is

impractical (Wu and Chang 2003). Such situations some-

times arise eventually or sometimes produced with intent.

In reliability/survival analysis, several types of censoring

schemes are used. The most rottenly used censoring schemes

are Type-I and Type-II censoring. In Type-I censoring, the

number of failure observed is random and the termination point

of the experiment is fixed, whereas in Type-II censoring the

termination point is random, while the number of failures is

fixed. The mixture of Type-I and Type-II censoring scheme is

known as hybrid censoring scheme and it is quite applicable in

reliability acceptance test in MIL-STD-781C (1977). Hybrid

sampling scheme was originally introduced by Epstein (1954).

Afterwards, this censoring scheme is used by many authors

like Chen and Bhattacharya (1988), Childs et al. (2003), Dra-

per and Guttman (1987) and Gupta and Kundu (1998).

Although, this censoring scheme is very useful in reli-

ability/survival analysis, the limited attention has been paid

in analyzing hybrid censored lifetime data. Some recent

studies on hybrid censoring are Kundu (2007); Banerjee

and Kundu (2008); Kundu and Pradhan (2009); Dube et al.

(2011) and Ganguly et al. (2012).

In lieu of above considerations, the paper is organized as

follows. In Sect. 2, we describe the model under the

assumption of hybrid censored data from Lindley lifetime

distribution. In Sect. 3, we obtain the maximum likelihood

estimator (MLE) of the unknown parameter. It is observed

that the MLE is not obtained in closed form, so it is not

possible to derive the exact distribution of the MLE.

Therefore, we propose to use the asymptotic distribution of

the MLE to construct the approximate confidence interval.

Further, by assuming Jeffrey’s invariant and gamma priors

of the unknown parameter, Bayes estimate along with its

posterior standard error (PSE) and highest posterior density

credible (HPD) interval of the parameter are obtained in

Sect. 4. Markov Chain Monte Carlo (MCMC) technique

such as Metropolis–Hastings algorithm has been utilized to

generate draws from the posterior density of the parameter.

In Sect. 5, a real data set representing the waiting time of the

bank customers has been analyzed for illustration purpose.

A comparison study is also carried out to judge the per-

formance of classical and Bayesian estimation procedure.

2 Model description

Suppose n identical units are put to test under the same

environmental conditions and test is terminated when a

pre-chosen number R, out of n items have failed or a pre

determined time T, on test has been reached. It is assumed

that the failed item not replaced and at least one failure is

observed during the experiment. Therefore, under this

censoring scheme we have one of the following types of

observations:

Case I: x1:n\. . .. . .. . .\xR:nf g if xR:n\T

Case II: x1:n\. . .. . .. . .\xd:nf g if 1� d\R and xd:n\
T\xdþ1:n

Here, x1:n\x2:n\. . . denote the observed failure times

of the experimental units. For schematic representation of

the hybrid censoring scheme refer to Kundu and Pradhan

(2009). It may be mentioned that although we do not

observe xdþ1:n, but xd:n\T\xdþ1:n means that the dth

failure took place before T and no failure took place

between xd : n and T. Let the life time random variable X

has a Lindley distribution with parameter h i.e. the prob-

ability density function (PDF) of x is given by;

fXðx hj Þ ¼ h2

1 þ hð Þ 1 þ xð Þe�hx; x; h[ 0

Based on the observed data, the likelihood function is

given by

Case I:

L x� hj
� �

¼ h2R

1 þ hð ÞR
YR

i¼1

1 þ xi : nð Þe
�h

PR

i¼1

xi : n þ n�Rð ÞxR : n

� �

� 1 þ h
1 þ h

xR: n

� �n�R

ð1Þ

Case II:

L x� hj
� �

¼ h2d

1 þ hð Þd
Yd

i¼1

1 þ xi : nð Þe
�h

Pd

i¼1

xi : n þ ðn�dÞT

� �

� 1 þ h
1 þ h

T

� �n�d

. . . ð2Þ

where x� ¼ x1:n; x2:n; . . .. . .. . .ð Þ
The combined likelihood for case I and case II can be

written as

L ¼ L x
�

hj
� �

¼ h2r

1 þ hð Þr
Yr

i¼1

1 þ xi :nð Þe
�h

Pr

i¼1

xi :n þ ðn�rÞc

� �

� 1 þ h
1 þ h

c

� �n�r

. . . ð3Þ

where,

r ¼ R for case I

d for case II

�
c ¼ xR:n for case I

T for case II

�

Int J Syst Assur Eng Manag (Oct-Dec 2013) 4(4):378–385 379

123



3 Maximum likelihood estimate

The log-likelihood function for Eq. (3) can be written as

log L ¼ 2r log hð Þ � n log 1 þ hð Þ
þ n � rð Þ log 1 þ h 1 þ cð Þ½ �

þ
Xr

i¼1

log 1 þ xi:nð Þ

� h
Xr

i¼1

xi:n þ n � rð Þc
" #

. . . ð4Þ

The first derivative of Eq. in (4) with respect to h is given

by

o log L

oh
¼ 2r

h
� n

1þ h
þ n � rð Þ 1 þ cð Þ

1 þ h 1 þ cð Þ

�
Xr

i¼1

xi:n þ n � rð Þc. . . ð5Þ

The second derivative of Eq. (4) with respect to h is

given by

o2logL

oh2
¼ � 2r

h2
þ n

1 þ hð Þ2

þ n � rð Þ 1 þ cð Þ
1 þ h 1 þ cð Þ

� 	2

. . . ð6Þ

The MLE of h will be the solution of the following non-

linear equation

2r

h
� n

1 þ h
þ n � rð Þ 1 þ cð Þ

1 þ h 1 þ cð Þ

�
Xr

i¼1

xi:n þ n � rð Þc

¼ 0. . . ð7Þ

The Eq. (7) can be solved for ĥ. by using some suitable

numerical iterative procedure such as Newton–Raphson

method. The observed Fisher’s information is given by

I ĥ
� �

¼ �o2logL

oh2






h¼ĥ

. . . ð8Þ

Also, the asymptotic variance of ĥ is given by

Var ĥ
� �

¼ 1

I ĥ
� � . . . ð9Þ

The sampling distribution of
ĥ�hð Þffiffiffiffiffiffiffiffiffiffiffi
Var ĥð Þ

p can be

approximated by a standard normal distribution. The

large-sample 1 � cð Þ � 100 % confidence interval for h

is given by ĥL; ĥU

h i
¼ ĥ � zc

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var ĥ
� �r

.

4 Bayesian estimation

In many practical situations, it is observed that the behavior

of the parameters representing the various model charac-

teristics cannot be treated as fixed constant throughout the

life testing period. Therefore, it would be reasonable to

assume the parameters involved in the life time model as

random variables. Keeping in mind this fact, we have also

conducted a Bayesian study by assuming the following

independent gamma prior for h;

gðhÞ a ha�1e�bh; h [ 0

Here the hyper parameters a and b are assumed to be

known real numbers. Based on the above prior assumption,

the joint density function of the sample observations and h
becomes

L x� ; h
� �

a
h2rþa�1

1 þ hð Þr e
�h

Pr

i¼1

xi : n þ ðn�rÞc þ b

� �

� 1 þ h
1 þ h

c

� 	n�r

. . .

ð10Þ

Thus, the posterior density function of h, given the data

is given by

p h x�





� �

¼
L x

�
hj

� �
g1 h a; bjð Þ

R1
0

L x� hj
� �

g1 h a; bjð Þdh
. . . ð11Þ

Therefore, if h hð Þ is any function of h, its Bayes estimate

under the squared error loss function is given by

ĥ hð Þ ¼ Eh dataj h hð Þ½ � ¼

R1
0

h hð ÞL x
�
; h

� �
dh

R1
0

L x� ; h
� �

dh
. . . ð12Þ

Since it is not possible to compute (11) and therefore

(12) analytically. Therefore, we propose the one of the

MCMC method such as Metropolis–Hastings algorithm to

draw samples from the posterior density function and

then to compute the Bayes estimate and HPD credible

interval.

4.1 Metropolis–Hastings algorithm

Step-1: Start with any value satisfying target density

f hð0Þ
� �

[ 0

Step-2: Using current hð0Þ value, generate a proposal

point (h prop) from the proposal density

q hð1Þ; hð2Þ
� �

¼ P hð1Þ ! hð2Þ
� �

i.e., the probability of

returning a value of hð2Þ given a previous value of hð1Þ.
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Step-3: Calculate the ratio at the proposal point (h prop)

and current hði�1Þ as:

q ¼ log
f h propð Þq h prop; hði�1Þ

� �

f hði�1Þ
� �

q hði�1Þ; h prop
� �

2
4

3
5

Step-4: Generate U from uniform on (0, 1) and take

Z = log U.

Step-5: If Z \ q, accept the move i.e., h prop and set

hð0Þ ¼ h prop and return to Step-1. Otherwise reject it

and return to Step-2.

Step-6: Repeat the above procedure N times and record

the sequence of the parameter h as h1; h2; . . .. . .; hN .

Further, to remove the autocorrelation between the

chains of h, we only store every fifth generated value.

Let the size of the sample we thus store is M = N/5.

Step-7: The Bayes estimate of h and corresponding

posterior variance is respectively taken as the mean and

variance of the generated values of h.

Step-8: Let hð1Þ � hð2Þ � . . .. . . � hðMÞ denote the

ordered value of hð1Þ; hð2Þ; . . .. . .; hðMÞ. Then, following

Chen and Shao (1999), the ð1� cÞ � 100 % HPD

interval for h is h Mþi	ð Þ; h Mþi	þ ð1�cÞðM�NÞ½ �ð Þ
� 

where, i	

is so chosen that

h Mþi	þ ð1�cÞðM�NÞ½ �ð Þ � h Mþi	ð Þ

¼ min
N � i � ðM�NÞ�½ð1�cÞðM�NÞ

h Nþiþ ð1�cÞðM�NÞ½ �ð Þ � h Nþið Þ
� 

5 Data analysis

In this section, we perform a real data analysis for illus-

trative purpose. We use the data set of waiting times (in

minutes) before service of 100 bank customers as discussed

by Ghitany et al. (2008). The waiting times in minutes are

as follows:

It has been observed by Ghitany et al. (2008) that the

Lindley distribution can be effectively used to analyze this

data set.

For analyzing this data set with hybrid censoring, we

have created three artificially hybrid censored data sets

from the above complete (uncensored) data under the fol-

lowing censoring schemes:

Scheme 1: R = 75, T = 12 (25 % Censored data)

Scheme 2: R = 50, T = 8 (50 % Censored data)

Scheme 3: R = 35, T = 6 (65 % Censored data)

In all the cases, we have estimated the unknown

parameter using the ML and Bayes methods of estimation.

For obtaining MLE and 95 % confidence interval, we have

used nlm() function of R package. The initial/starting value

that is used in the nlm() function for the parameter h is

taken as the positive root of the quadratic equation

mh2 þ ðm � 1Þh � 2 ¼ 0, where m is the sample

mean. Bayes estimates of h and HPD intervals are obtained

using gamma and Jeffrey priors. The summary for the

above three schemes is given in Table 1. For demonstrating

the goodness of fit of the hybrid censored data under

schemes 1, 2 and 3, the empirical and fitted distribution

functions have been plotted in Figs. 1, 2, and 3 (with ML,

Jeffrey Bayes and Gamma Bayes methods). It is observed

that the goodness of fit to the real data set is quite

acceptable even with the 25, 50, and 65 % hybrid censored

data.

Table 1 Summary for the three schemes from hybrid censored Lindley distribution for real data

Estimates\scheme Scheme 1: R = 75, T = 12 Scheme 2: R = 50, T = 8 Scheme 3: R = 35, T = 6

ML estimate [SE]

CI{width}

ĥ ¼ 0:1866 0:0150½ �
h 2 0:1571; 0:2161ð Þ; 0:059f g

ĥ ¼ 0:1834 0:0170½ �
h 2 0:1502; 0:2167ð Þ; 0:0665f g

ĥ ¼ 0:1816 0:0195½ �
h 2 0:1435; 0:2198ð Þ; 0:0763f g

Gamma_Bayes estimate [PSE]

HPD{width}

ĥ ¼ 0:1865 0:0148½ �
h 2 0:1584; 0:2154ð Þ; 0:057f g

ĥ ¼ 0:1832 0:0164½ �
h 2 0:1522; 0:2161ð Þ; 0:0639f g

ĥ ¼ 0:1812 0:0189½ �
h 2 0:1452; 0:2188ð Þ; 0:0736f g

Jeffrey_Bayes estimate [PSE]

HPD{width}

ĥ ¼ 0:1864 0:0149½ �
h 2 0:1585; 0:2160ð Þ; 0:0575f g

ĥ ¼ 0:1830 0:0167½ �
h 2 0:1504; 0:2156ð Þ; 0:0652f g

ĥ ¼ 0:1812 0:0193½ �
h 2 0:1434; 0:2189ð Þ; 0:0755f g

0.8, 0.8, 1.3, 1.5, 1.8, 1.9, 1.9, 2.1, 2.6, 2.7, 2.9, 3.1, 3.2, 3.3, 3.5, 3.6,

4.0, 4.1, 4.2, 4.2, 4.3, 4.3, 4.4, 4.4, 4.6, 4.7, 4.7, 4.8, 4.9, 4.9, 5.0, 5.3,

5.5, 5.7, 5.7, 6.1, 6.2, 6.2, 6.2, 6.3, 6.7, 6.9, 7.1, 7.1, 7.1, 7.1, 7.4, 7.6,

7.7, 8.0, 8.2, 8.6, 8.6, 8.6, 8.8, 8.8, 8.9, 8.9, 9.5, 9.6, 9.7, 9.8, 10.7,

10.9, 11.0, 11.0, 11.1, 11.2, 11.2, 11.5, 11.9, 12.4, 12.5, 12.9, 13.0,

13.1, 13.3, 13.6, 13.7, 13.9, 14.1, 15.4, 15.4, 17.3, 17.3, 18.1, 18.2,

18.4, 18.9, 19.0, 19.9, 20.6, 21.3, 21.4, 21.9, 23.0, 27.0, 31.6, 33.1,

38.5
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Fig. 1 Empirical and fitted

distribution function (with ML)

of waiting time of bank

customer with Lindley

distribution

Fig. 2 Empirical and fitted

distribution function (with

Jeffrey Bayes) of waiting time

of bank customer with Lindley

distribution

Fig. 3 Empirical and fitted

distribution function (with

Gamma Bayes) of waiting time

of bank customer with Lindley

distribution
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Fig. 4 Plot of generated h versus iteration of MCMC algorithm

Fig. 5 Posterior density of h

Fig. 6 Plot of autocorrelation of all generated h

Fig. 7 Plot of autocorrelation of every 5th stored h

Table 2 Classical and Bayes estimates with their standard errors (SE) and 95 % confidence/HPD intervals (CI) with their widths for the

parameter for fixed n = 30, T = 10 and varying R

Estimates\scheme R = 20 R = 25 R = 30

ML estimate [SE]

CI{width}

ĥ ¼ 0:6708 0:1059½ �
h 2 0:4631; 0:8784ð Þ; 0:4153f g

ĥ ¼ 0:5197½0:0737�
h 2 ð0:3752; 0:6643Þ; f0:2891g

ĥ ¼ 0:5013½0:0681�
h 2 0:3677; 0:6350ð Þ; f0:2672g

Gamma_Bayes estimate [PSE]

HPD{width}

ĥ ¼ 0:6176 0:0872½ �
h 2 0:4476; 0:7837ð Þ; 0:3361f g

ĥ ¼ 0:5095 0:0662½ �
h 2 0:3781; 0:6363ð Þ; 0:2581f g

ĥ ¼ 0:4955 0:0629½ �
h 2 0:3761; 0:6215ð Þ; 0:2454f g

Jeffrey_Bayes estimate [PSE]

HPD{width}

ĥ ¼ 0:6679½0:1031�
h 2 0:4760; 0:8837ð Þ; 0:4076f g

ĥ ¼ 0:5203½0:0742�
h 2 0:3777; 0:6651ð Þ; f0:2874g

ĥ ¼ 0:5009½0:0692�
h 2 ð0:3729; 0:6391Þ; f0:2661g

Table 3 Classical and Bayes estimates with their standard errors (SE) and 95 % confidence/HPD intervals (CI) with their widths for the

parameter for fixed n = 40, T = 10 and varying R

Estimates\scheme R = 25 R = 30 R = 40

ML estimate [SE]

CI{width}

ĥ ¼ 0:6236 0:0871½ �
h 2 0:4527; 0:7944ð Þ; 0:3417f g

ĥ ¼ 0:5248 0:0672½ �
h 2 0:3930; 0:6566ð Þ; 0:2636f g

ĥ ¼ 0:4841 0:0566½ �
h 2 0:3732; 0:5951ð Þ; 0:2219f g

Gamma_Bayes estimate [PSE]

HPD{width}

ĥ ¼ 0:5887 0:0721½ �
h 2 0:4507; 0:7367ð Þ; 0:2860f g

ĥ ¼ 0:5169 0:0617½ �
h 2 0:3984; 0:6376ð Þ; 0:2391f g

ĥ ¼ 0:4811 0:0533½ �
h 2 0:3794; 0:5857ð Þ; 0:2063f g

Jeffrey_Bayes estimate [PSE]

HPD{width}

ĥ ¼ 0:6225 0:0844½ �
h 2 0:4557; 0:7856ð Þ; 0:3299f g

ĥ ¼ 0:5259 0:0674½ �
h 2 0:3968; 0:6590ð Þ; 0:2622f g

ĥ ¼ 0:4833 0:0572½ �
h 2 0:3734; 0:5958ð Þ; 0:2223f g
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6 Comparison study

In this section, we present some simulation results for

accessing the performances of the classical and Bayesian

methods of estimation. The standard error of the estimate

and width of the confidence/HPD interval are used for

comparison purpose. Assuming h ¼ 0:5, we generated the

two sets of data containing respectively n = 30 and 40

observations, and based on these data sets, the MLEs, and

Bayes estimate for the parameter have been obtained. We

have also considered different values of R and T. For

Bayesian estimation, we generated 5,000 realizations of the

parameter h from the posterior density in (11) using

Metropolis–Hastings algorithms. The MCMC run of the

parameter h is plotted in Fig. 4, which show fine mixing of

the chains. We have also plot the posterior density of h and

found that it is symmetric (Fig. 5). For reducing the auto-

correlation among the generated values of h, we only

record every 5th generated values of each parameter. Ini-

tially, a strong autocorrelation is observed among the

generated chain of h as shown in Fig. 6. However, the

serial correlation is minimized when we record only every

5th generated outcomes (Fig. 7). The results of the com-

parison study have been summarized in Tables 2, 3, 4, and

5. Note that, in the Tables 1, 2, 3, 4, and 5, the entries in the

bracket [] represents SEs/PSEs and that in the brackets ()

and {} respectively represent confidence/HPD interval and

the widths of the interval. For all the numerical computa-

tions, the programs are developed in R-environment and

are available with the authors. From the results given in

Tables 2, 3, 4, and 5, we observe the following:

• Both the methods of estimation considered in the

present study are precisely estimating the parameter (in

terms of standard error and length of the confidence/

HPD interval). The magnitude of the error tend to

decrease as we increase any one of n, R and T while

keeping the other two as fixed.

• Bayes estimation with gamma prior provides more

precise estimates as compared to the Jeffrey prior and

MLEs. Also the performance of MLEs and Jeffrey prior

are quite similar.

• The length of the HPD credible intervals based on

Gamma prior are smaller than the corresponding length

of the HPD credible intervals based on Jeffrey’s prior.
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parameter for fixed n = 40, T = 12 and varying R

Estimates\scheme R = 20 R = 25 R = 30

ML estimate [SE]

CI{width}

ĥ ¼ 0:6236 0:0871½ �
h 2 0:4527; 0:7944ð Þ; 0:3417f g

ĥ ¼ 0:5248 0:0672½ �
h 2 0:3930; 0:6566ð Þ; 0:2636f g

ĥ ¼ 0:4719 0:0551½ �
h 2 0:3639; 0:5800ð Þ; 0:2160f g

Gamma_Bayes estimate [PSE]

HPD{width}

ĥ ¼ 0:6176 0:0872½ �
h 2 0:4476; 0:7837ð Þ; 0:3361f g

ĥ ¼ 0:5095 0:0662½ �
h 2 0:3781; 0:6363ð Þ; 0:2581f g

ĥ ¼ 0:4710 0:0517½ �
h 2 0:3719; 0:5743ð Þ; 0:2023f g

Jeffrey_Bayes estimate [PSE]

HPD{width}

ĥ ¼ 0:6225 0:0844½ �
h 2 0:4557; 0:7856ð Þ; 0:3299f g

ĥ ¼ 0:5259 0:0674½ �
h 2 0:3968; 0:6590ð Þ; 0:2622f g

ĥ ¼ 0:4720 0:0553½ �
h 2 0:3665; 0:5818ð Þ; 0:2153f g
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