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Abstract The paper deals with the availability analysis of

a system, which consists of two subsystems namely sub-

system-1 and subsystem-2. Subsystem-1 is working under

k-out of n: good configuration while subsystem-2 has two

identical units connected in parallel configuration. A con-

troller is attached with each subsystem for proper func-

tioning of the system. All failure rates are constant but

repairs follow general and exponential distributions. The

transitional state probabilities, asymptotic behavior and

some characteristics such as reliability, availability, MTTF

and the cost effectiveness of the system have been evalu-

ated with the help of supplementary variable technique,

Laplace transformations and copula methodology. At last,

some particular cases and numerical examples have been

taken to describe the model.

Keywords Reliability analysis � System maintenance �
Controller � Cost analysis

1 Introduction

The reliability of a system and its maintenance employs an

increasing important issue in modern day electronic,

manufacturing and industrial systems. In real life, one

comes across many complexities of modern day engi-

neering systems. Earlier different researchers have dis-

cussed the reliability characteristics of systems assuming

different types of failures and one way of repair between

successive transitional states. To cite a few, (Govil 1974)

studied operational behaviour of a complex system. Ref.

(Gupta and Sharma 1993) discussed reliability measures of

two duplex-unit standby system. Ref. (Singh et al. 1992,

2001) worked on reliability measures with head-of-line

repair policy and analyzed two units cold standby system

assuming various parameters. Zhang et al. (2010) and

Verma et al. (2010) have studied reliability models for

systems with internal and external redundancy.

Keeping facts like complexity of advanced technology

and modern demand of electronic equipments, one needs to

incorporate the study of controller as discussed by Ogata

(2009), which is used in various electronic devices and

systems to improve productivity as well as performance

that relieves the drudgery of many routine repetitive

manual operations. Nonetheless, engineers and scientists

must now have a good understanding of this field. Con-

troller is a device that monitors the operational conditions

of given dynamical systems. The operational conditions are

typically revered to as output variables of the system,

which function by adjusting the certain input variables. The
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concept of using controller is new for scientists and engi-

neers. Since 1980 to the present, developments in the

modern control theory centered around robust control and

associated topics. At present, the digital computers are used

as integral part of control systems. The controllers are not

only used in engineering systems (in industry, they are used

for electricity or pressurize fluid such as oil or air as power

sources etc.) but also for non-engineering systems like

biological, biomedical, economic and socioeconomic sys-

tems. They are used in various complex systems to control

output variables such as speed controller (controlling cen-

trifugal force), temperature (control temperature of fur-

nace), thermostat controller (controlling room temperature)

and many other tasks. Since they are widely used in

industry now a days and hence classified according to their

control actions as : (i) to position or on–off controllers (ii)

proportional controllers (iii) integral controllers (iv) pro-

portional-plus integral controllers (v) proportional-plus-

derivative controllers (vi) proportional-plus-integral-plus-

derivative controllers. Controllers may also be classified

according to the kind of power employed in operations

such as pneumatics controller, hydraulic controllers, or

electronic controllers. The use of controller in plant is

based on the nature of plant and operational conditions,

including such considerations as safety, cost, availability,

reliability, accuracy, weight and size.

Apart from the importance of incorporation of controller,

human factors play a very important role during the design,

production and maintenance phases of a system. Human error

or failure may be defined as the failure to perform a specific

task that could lead to disruption of scheduled operations or

result in damage to property and equipment. There are various

reasons for the occurrence of human errors such as inadequate

work area, inadequate training, poor equipment design, high

noise level, improper tools and poorly written equipment

maintenance and operating procedures (Dhillon and Yang

1992, 1993; Dhillon and Liu 2006; Giuntini 2000).

Keeping the above facts in view, authors have consid-

ered a system, which consists of two subsystems viz.

subsystem-1 and subsystem-2. The subsystem-1 follows k-

out of-n: good configuration and subsystem-2 has two

independent identical units in parallel configuration. Both

subsystems are connected in series and each linked with a

controller for the proper functioning of the system. The

considered system can fail in following ways:

(i) More than k units of subsystem-1 fail but both units

of subsystem-2 are in good working condition.

(ii) Human error occurs in the system.

(iii) Controller of the subsystem-1 fails.

(iv) Controller of the subsystem-2 fails.

(v) Both units of the subsystem-2 fail.

The system will be in degraded state due to partial

failure that can occur in following situations:

(i) All units of subsystem-1 are good and one unit of

subsystem-2 fails.

(ii) At least k units of subsystem-1 are good and one unit

of subsystem-2 fails.

In the past, researchers (Ram and Singh 2008, 2009,

2010) have considered reliability and MTTF of complex

systems, with different types of failures and one type of

repair. However, in their study one of the important aspects

of modern engineered system, i.e., controller is not inclu-

ded. When this possibility exists, reliability of the system

can be analysed with the help of copula (Melchiori 2003;

Nelsen 2006). Therefore, in contrast to the earlier models,

here authors have considered a model in which they tried to

address a problem where two different repair facilities are

available between adjacent states i.e., the initial state and

complete failed state incorporating copula. All failure rates

are constant but repairs follow general and exponential

distributions. In the present paper, S0 is a state where the

system is in good working condition. S1, S3 and S4 are the

states where the system is in partially failed or degraded

state and S2, S5, S6, S7, S8 and S9 are the states where the

system is in completely failure mode. When the system is

in degraded mode, the general repair is employed, but

whenever the system is in complete failure mode, it is

repaired by using joint distribution with the help of Gum-

bel-Hougaard family copula.

The system is studied by using the supplementary var-

iable technique Cox (1955) and Oliveira et al. (2005),

Laplace transformation and Gumbel-Hougaard family of

copula to obtain various reliability measures such as,

transitional state probabilities, steady state probabilities,

i.e., asymptotic behaviour, availability, mean time to fail-

ure and cost analysis. At last, some particular cases of the

system have been analysed to highlight the different pos-

sibilities of the system.

2 Brief introduction of Gumbel-Hougaard family

copula

A number of authors including Nelsen (2006) have studied

the family of copulas extensively. The Gumbel-Hougaard

family copula is defined as:

Chðu1; u2Þ ¼ expð�ðð� log u1Þh þ ð� log u2ÞhÞ1=hÞ;
1� h�1

For h = 1 the Gumbel-Hougaard copula models indepen-

dence, for h ? ? it converges to comonotonicity.

342 Int J Syst Assur Eng Manag (Oct-Dec 2013) 4(4):341–352

123



3 State description

State State description

S0 All units of subsystem-1 and 2 are in good working condition.

S1 k units of subsystem-1 are in good working condition.

S2 System has completely failed due to failure of (k ? i) units of

subsystem-1.

S3 One unit of subsystem-2 has failed and the system is in

degraded state.

S4 All units of subsystem-1 are in good state and one unit of

subsystem-2 has failed.

S5 k units of subsystem-1 are good but both units of subsystem-2

have failed. The system is in completely failed state.

S6 All unit of subsystem-1 are good but both units of subsystem-2

have failed. The system is in completely failed state.

S7 System has failed due to the failure of controller in

subsystem-1.

S8 System has failed due to the failure of controller in

subsystem-2.

S9 System has completely failed due to human error.

4 Assumptions

The following assumptions are taken throughout the dis-

cussion of the model:

(i) Initially the system is in good state and all the units of

subsystems-1 and 2 are in good working condition.

(ii) The subsystem-1 works successfully until at least

k units of it are in good working condition.

(iii) Subsystem-1 fails if more than k units fail.

(iv) Subsystem-2 works successfully if at least one unit is

in good state.

(v) Subsystem-2 can be repaired when one unit fails or

both units fail and controller fails.

(vi) All failure rates are constant and follow negative

exponential distribution.

(vii) Degraded system is repaired by a general time

distribution.

(viii) In the repairing of complete failed state Gumbel-

Hougaard family copula is applied.

(ix) Repaired system works like a new system and repair

did not damage anything.

(x) Only one change is allowed at a time in the

transitions.

The state transition diagram of model is shown in Fig. 1,

and the notations pertaining to the model is shown in Table 1.

5 Formulation of mathematical model

By probability of considerations and continuity arguments,

we can obtain the following set of difference differential

equations governing the present mathematical model

o

ot
þ k1 þ kC þ kCB þ kh þ 2k

� �
P0ðtÞ

¼
Z1

0

/ðxÞP1ðx; tÞdx

þ
Z1

0

exp½xh þ flog /ðxÞgh�1=hP2ðx; tÞdx

þ
Z1

0

/ðxÞP4ðx; tÞdx

þ
Z1

0

exp½xh þ flog /ðxÞgh�1=hP5ðx; tÞdx

þ
Z1

0

exp½xh þ flog /ðxÞgh�1=hP6ðx; tÞdx

þ
Z1

0

exp½xh þ flog /ðxÞgh�1=hP7ðx; tÞdx

þ
Z1

0

exp½xh þ flog /ðxÞgh�1=hP8ðx; tÞdx

þ
Z1

0

exp½xh þ flog /ðxÞgh�1=hP9ðx; tÞdx ð1Þ

o

ot
þ o

ox
þ k2 þ kC þ kCB þ kh þ 2kþ /ðxÞ

� �
P1ðx; tÞ ¼ 0

ð2Þ
o

ot
þ o

ox
þ exp½xh þ flog /ðxÞgh�1=h

� �
P2ðx; tÞ ¼ 0 ð3Þ

o

ot
þ o

ox
þ kC þ kCB þ kh þ kþ /ðxÞ

� �
P3ðx; tÞ ¼ 0 ð4Þ

o

ot
þ o

ox
þ kC þ kCB þ kh þ kþ /ðxÞ

� �
P4ðx; tÞ ¼ 0 ð5Þ

o

ot
þ o

ox
þ exp½xh þ flog /ðxÞgh�1=h

� �
P5ðx; tÞ ¼ 0 ð6Þ

o

ot
þ o

ox
þ exp½xh þ flog /ðxÞgh�1=h

� �
P6ðx; tÞ ¼ 0 ð7Þ

o

ot
þ o

ox
þ exp½xh þ flog /ðxÞgh�1=h

� �
P7ðx; tÞ ¼ 0 ð8Þ

o

ot
þ o

ox
þ exp½xh þ flog /ðxÞgh�1=h

� �
P8ðx; tÞ ¼ 0 ð9Þ

o

ot
þ o

ox
þ exp½xh þ flog /ðxÞgh�1=h

� �
P9ðx; tÞ ¼ 0 ð10Þ

The method of formation of Eqs. 1–10 has been given in

Appendix 1.
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Fig. 1 State transition diagram of model
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The boundary conditions of designed system are defined as:

The state transition probability of the system in a state =

failure rate 9 probability of the previous state. Therefore

P1ð0; tÞ ¼ k1P0ðtÞ þ
Z1

0

/ðxÞP3ðx; tÞdx ð11Þ

P2ð0; tÞ ¼ k2P1ðtÞ ð12Þ
P3ð0; tÞ ¼ 2k1P0ðtÞ ð13Þ
P4ð0; tÞ ¼ 2kP0ðtÞ ð14Þ

P5ð0; tÞ ¼ 2k2P1ð0; tÞ ð15Þ

P6ð0; tÞ ¼ 2k2P0ðtÞ ð16Þ
P7ð0; tÞ ¼ kC½P0ðtÞ þ P1ð0; tÞ þ P3ð0; tÞ þ P4ð0; tÞ� ð17Þ
P8ð0; tÞ ¼ kCB½P0ðtÞ þ P1ð0; tÞ þ P3ð0; tÞ þ P4ð0; tÞ�

ð18Þ
P9ð0; tÞ ¼ kh½P0ðtÞ þ P1ð0; tÞ þ P3ð0; tÞ þ P4ð0; tÞ� ð19Þ

Initials condition:

P0ð0Þ ¼ 1 and other state probabilities are zero at t ¼ 0

ð20Þ

In the above equations, t and x both represent times. The

supplementary variable x, which represents the elapsed

repair time of the system, varies only when the system is in

degraded or failed state, and its rate of variation is exactly

equal to that of the schedule time, represented by t.

6 Solution of the model

Taking Laplace transformation of Eqs. 1–19 and using

Eq. 20, we obtain

sþ k1 þ kC þ kCB þ kh þ 2k½ ��P0ðsÞ

¼ 1þ
Z1

0

�P1ðx; sÞ/ðxÞdx

2
4

þ
Z1

0

�P2ðx; sÞ exp½xh þ flog /ðxÞgh�1=hdx

þ
Z1

0

�P4ðx; sÞ/ðxÞdx

þ
Z1

0

�P5ðx; sÞ exp½xh þ flog /ðxÞgh�1=hdx

þ
Z1

0

�P6ðx; sÞ exp½xh þ flog /ðxÞgh�1=hdx

þ
Z1

0

�P7ðx; sÞ exp½xh þ flog /ðxÞgh�1=hdx

þ
Z1

0

�P8ðx; sÞ exp½xh þ flog /ðxÞgh�1=hdx

þ
Z1

0

�P9ðx; sÞ exp½xh þ flog /ðxÞgh�1=hdx

3
5 ð21Þ

sþ o

ox
þ k2 þ 2kþ kC þ kCB þ kh þ /ðxÞ

� �
�P1ðx; sÞ ¼ 0

ð22Þ

sþ o

ox
þ exp½xh þ flog /ðxÞgh�1=h

� �
�P2ðx; sÞ ¼ 0 ð23Þ

sþ o

ox
þ kþ kC þ kCB þ kh þ /ðxÞ

� �
�P3ðx; sÞ ¼ 0 ð24Þ

sþ o

ox
þ kþ kC þ kCB þ kh þ /ðxÞ

� �
�P4ðx; sÞ ¼ 0 ð25Þ

sþ o

ox
þ exp½xh þ flog /ðxÞgh�1=h

� �
�P5ðx; sÞ ¼ 0 ð26Þ

sþ o

ox
þ exp½xh þ flog /ðxÞgh�1=h

� �
�P6ðx; sÞ ¼ 0 ð27Þ

sþ o

ox
þ exp½xh þ flog /ðxÞgh�1=h

� �
�P7ðx; sÞ ¼ 0 ð28Þ

sþ o

ox
þ exp½xh þ flog /ðxÞgh�1=h

� �
�P8ðx; sÞ ¼ 0 ð29Þ

sþ o

ox
þ exp½xh þ flog /ðxÞgh�1=h

� �
�P9ðx; sÞ ¼ 0 ð30Þ

Table 1 Notations

ki Failure rate of one unit of subsystem-1.

k1/k2 Failure rates of subsystem-1 provided at most k unit/

more than k units failed during operational mode.

kh/kc/kCB Failure rates due to human failure/controller of

subsystem-1/controller of subsystem-2.

k Failure rate of subsystem-2.

/(x) Minor repair rate for state S1, S3 and S4.

P0(t) Probability that the system is in S0 state at instant

t = 0, when all units of subsystem-1 and both units

of subsystem-2 and controllers are in good state.

Pi(t) Probability that system is in state Si, i = 0, 1, 2, 3, 4, 5,

6, 7, 8, 9 at instant t.

�PðsÞ Laplace transformation of P(t).

Pi(x,t) Probability that system is in state Si, i = 1, 2, 3, 4, 5, 6,

7, 8, 9 and system is under repair with elapsed repair

time is x, t.

Ep(t) Expected profit during the interval [0,t].

K1, K2 Revenue and service cost per unit time respectively.

Ch(u1(x),

u2(x))

The expression for joint probability (failed state to

good state) according to Gumbel-Hougaard family is

given as:

Chðu1ðxÞ; u2ðxÞÞ ¼ l0ðxÞ ¼ exp½xh þ flog /ðxÞgh�1=h.

where, u1 = /(x), and u2 = ex
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�P1ð0; sÞ ¼ k1
�P0ðsÞ þ

Z1

0

/ðxÞ�P3ðx; sÞdx ð31Þ

�P2ð0; sÞ ¼ k2
�P1ð0; sÞ ð32Þ

�P3ð0; sÞ ¼ 2k�P0ð0; sÞ ð33Þ
�P4ð0; sÞ ¼ 2k�P0ðsÞ ð34Þ
�P5ð0; sÞ ¼ 2k2�P0ðsÞ ð35Þ
�P6ð0; sÞ ¼ 2k2�P0ðsÞ ð36Þ
�P7ð0; sÞ ¼ kC½�P0ðsÞ þ �P1ð0; sÞ þ �P3ð0; sÞ þ �P4ð0; sÞ�

ð37Þ
�P8ð0; sÞ ¼ kCB½�P0ðsÞ þ �P1ð0; sÞ þ �P3ð0; sÞ þ �P4ð0; sÞ�

ð38Þ
�P9ð0; sÞ ¼ kh½�P0ðsÞ þ �P1ð0; sÞ þ �P3ð0; sÞ þ �P4ð0; sÞ� ð39Þ

Solving (21–30) with the help of (31–39), one can get

the transition state probabilities of the system as:

�P0ðsÞ ¼
1

DðsÞ ð40Þ

�P1ðsÞ ¼
1

DðsÞ k1 þ
2kk1S/ðsþ kþ kC þ kCB þ khÞ

1� 2kS/ðsþ kþ kC þ kCB þ khÞ
� �

 !

� ð1� S/ðsþ k2 þ 2kþ kC þ kCB þ khÞÞ
ðsþ k2 þ 2kþ kC þ kCB þ khÞ

� �

ð41Þ

�P2ðsÞ ¼
k2

DðsÞ k1 þ
2kk1S/ðsþ kþ kC þ kCB þ khÞ

1� 2kS/ðsþ kþ kC þ kCB þ khÞ
� �

 !

�
ð1� S

exp½xhþflog /ðxÞgh�1=hðsÞÞ
s

 !

ð42Þ

�P3ðsÞ ¼
1

DðsÞ
2kk1

1� 2kS/ðsþ kþ kC þ kCB þ khÞ
� �

 !

� ð1� S/ðsþ kþ kC þ kCB þ khÞÞ
ðsþ kþ kC þ kCB þ khÞ

� �

ð43Þ

�P4ðsÞ ¼
2k

DðsÞ
ð1� S/ðsþ kþ kC þ kCB þ khÞ
ðsþ kþ kC þ kCB þ khÞ

� 	
ð44Þ

�P5ðsÞ ¼
2k2

DðsÞ k1 þ
2kk1S/ðsþ kþ kC þ kCB þ khÞ

1� 2kS/ðsþ kþ kC þ kCB þ khÞ
� �

 !

�
ð1� S

exp½xhþflog /ðxÞgh�1=hðsÞÞ
s

 !

ð45Þ

�P6ðsÞ ¼
2k2

DðsÞ
ð1� S

exp½xhþflog /ðxÞgh�1=hðsÞÞ
s

 !
ð46Þ

�P7ðsÞ ¼
kC

DðsÞ 1þ k1 þ
2kk1S/ðsþ kþ kC þ kCB þ khÞ þ 2kk1

1� 2kS/ðsþ kþ kC þ kCB þ khÞ
� � þ 2k

 ! !
ð1� S

exp½xhþflog /ðxÞgh�1=hðsÞÞ
s

 !
ð47Þ

�P8ðsÞ ¼
kCB

DðsÞ 1þ k1 þ
2kk1S/ðsþ kþ kC þ kCB þ khÞ þ 2kk1

1� 2kS/ðsþ kþ kC þ kCB þ khÞ
� � þ 2k

 ! !
ð1� S

exp½xhþflog /ðxÞgh�1=hðsÞÞ
s

 !
ð48Þ

�P9ðsÞ ¼
kh

DðsÞ 1þ k1 þ
2kk1S/ðsþ k2 þ kþ kC þ kCB þ khÞ þ 2kk1

1� 2kS/ðsþ k2 þ kþ kC þ kCB þ khÞ
� � þ 2k

 ! !
ð1� S

exp½xhþflog /ðxÞgh�1=hðsÞÞ
s

 !
ð49Þ
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where

The information related to solution of Eqs. 21–30 is

given in Appendix 2.

The Laplace transformations of the probabilities that the

system is in up (i.e., either good or degraded state) and

failed state at any time are as follows:

�PupðsÞ¼ �P0ðsÞþ �P1ðsÞþ �P3ðsÞþ �P4ðsÞ

¼ 1

DðsÞ 1þk1ð1�S/ðsþk2þ2kþkCþkCBþkhÞÞ
ðsþk2þ2kþkCþkCBþkhÞ

�

þ ð1�S/ðsþkþkCþkCBþkhÞ
ðsþkþkCþkCBþkhÞ

� 	

þ ð1�S/ðsþkþkCþkCBþkhÞÞ
ðsþkþkCþkCBþkhÞ

� 	�
ð50Þ

�PfailedðsÞ ¼ �P2ðsÞ þ �P5ðsÞ þ �P6ðsÞ þ �P7ðsÞ þ �P8ðsÞ þ �P9ðsÞ

¼ k1k2

DðsÞ
ð1� S

exp½xhþflog /ðxÞgh�1=hðsÞÞ
s

þ 2k1k
2

DðsÞ
ð1� S

exp½xhþflog /ðxÞgh�1=hðsÞÞ
s

þ k2

DðsÞ
ð1� S

exp½xhþflog /ðxÞgh�1=hðsÞÞ
s

þ kCð1þ k1Þð1þ 2kÞ
DðsÞ

ð1� S
exp½xhþflog /ðxÞgh�1=hðsÞÞ

s

þ kCBð1þ k1Þð1þ 2kÞ
DðsÞ

ð1� S
exp½xhþflog /ðxÞgh�1=hðsÞÞ

s

þ khð1þ k1Þð1þ 2kÞ
DðsÞ

ð1� S
exp½xhþflog /ðxÞgh�1=hðsÞÞ

s

ð51Þ

7 Asymptotic behaviour of the system

In long run as t tends to infinity, the state transition proba-

bility of system can be obtained using Abel’s lemma in

Laplace transformation i.e. lim
t!1

FðtÞ ¼ lim
s!0

sFðsÞ ¼ FðsayÞ,
provided that the limit of the right hand side exists. Time

independent i.e. steady state probabilities of the system in

different states are given by

P0 ¼
1

D
0 ð0Þ

ð52Þ

P1 ¼
k1

D
0 ð0Þðk2 þ 2kþ kc þ kCB þ kh þ /Þ

ð53Þ

P2 ¼
k1k2

D
0 ð0Þðexp½xh þ flog /ðxÞgh�1=hÞ

ð54Þ

P3 ¼
2kk1

D
0 ð0Þðkþ kc þ kCB þ kh þ /Þ

ð55Þ

P4 ¼
2k

ðkþ kc þ kCB þ kh þ /Þ
1

0 ð0Þ ð56Þ

P5 ¼
2k1k

2

D
0 ð0Þðexp½xh þ flog /ðxÞgh�1=hÞ

ð57Þ

P6 ¼
2k2

D
0 ð0Þðexp½xh þ flog /ðxÞgh�1=hÞ

ð58Þ

P7 ¼
kCð1þ k1Þð1þ 2kÞ

D
0 ð0Þðexp½xh þ flog /ðxÞgh�1=hÞ

ð59Þ

DðsÞ ¼ sþ k1 þ kC þ kh þ kCB þ 2k

� k1 þ
2kk1S/ðsþ kþ kC þ kCB þ khÞ

1� 2kS/ðsþ kþ kC þ kCB þ khÞ
� �

 !
�S/ðsþ k1 þ kC þ kh þ kCB þ 2kÞ

� k2k1 þ
2kk1S/ðsþ kþ kC þ kCB þ khÞ

1� 2kS/ðsþ kþ kC þ kCB þ khÞ
� �

 !
Sl0
ðxÞ þ 2kS/ðsþ kþ kC þ kCB þ khÞ

� 2k2 k1 þ
2kk1S/ðsþ kþ kC þ kCB þ khÞ

1� 2kS/ðsþ kþ kC þ kCB þ khÞ
� �

 !
Sl0
ðxÞ

� kh 1þ k1 þ
2kk1S/ðsþ kþ kC þ kCB þ khÞ þ 2kk

1� 2kS/ðsþ kþ kC þ kCB þ khÞ
� � þ 2k

 !
Sl0
ðxÞ

� kC 1þ k1 þ
2kk1S/ðsþ kþ kC þ kCB þ khÞ þ 2kk

1� 2kS/ðsþ kþ kC þ kCB þ khÞ
� � þ 2k

 !
Sl0
ðxÞ

� kCB 1þ k1 þ
2kk1S/ðsþ kþ kC þ kCB þ khÞ þ 2kk

1� 2kS/ðsþ kþ kC þ kCB þ khÞ
� � þ 2k

 !
Sl0
ðxÞ
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P8 ¼
kCBð1þ k1Þð1þ 2kÞ

D
0 ð0Þðexp½xh þ flog /ðxÞgh�1=hÞ

ð60Þ

P9 ¼
khð1þ k1Þð1þ 2kÞ

D
0 ð0Þðexp½xh þ flog /ðxÞgh�1=hÞ

ð61Þ

where

D
0 ð0Þ ¼ d

ds
DðsÞ; as s! 0

.

The more information related to asymptotic behaviour

of the system is given in Appendix 3.

8 Particular cases

8.1 Availability

When repair follows exponential distribution. Setting

�S
exp½xhþflog /ðxÞgh�1=hðsÞ ¼

exp½xhþflog /ðxÞgh�1=h

sþexp½xhþflog /ðxÞgh�1=h
; �S/ðsÞ ¼ /

sþ/

in Eq. 50, fixing the values of different parameters as

kC = 0.01, kCB = 0.02, kh = 0.001, k = 0.05, k1 = 0.05,

k2 = 0.06, / ¼ 1; h ¼ 1; x ¼ 1 and then taking inverse

Laplace transform, one get Pup(t) as

PupðtÞ ¼ �0:0001485702 eð�1:071000 tÞ

� 0:03408091688 eð�1:21100 tÞ

� 0:003516569 eð�2:70956548 tÞ

þ 0:1235797 eð�1:2230648 tÞ

þ 0:00625443789 eð�1:089127739 tÞ

� 0:005839177 eð�1:08599944 tÞ

þ 0:0002895 eð�1:06672 tÞ þ 0:9134666 eð�0:04381 tÞ

ð62Þ

To observe the variation pattern of Pup(t) with respect to

change in k1 and k2 substitute k1 = 0.06, 0.07, 0.08, 0.09

corresponding to k2 = 0.07, 0.08, 0.09, 0.10 respectively in

(50) and take inverse Laplace transform provided other

parameters remain same. For, t = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

units of time, one may obtain the different values of

Pup(t) as shown in Table 2 and the corresponding graph is

shown in Fig. 2.

8.2 Mean time to failure (MTTF)

Setting �S
exp½xhþflog /ðxÞgh�1=hðsÞ¼

exp½xhþflog /ðxÞgh�1=h

sþexp½xhþflog /ðxÞgh�1=h
; �S/ðsÞ¼

/
sþ/ and taking all repairs to zero in Eq. 50, one can obtain

the MTTF as given below:

MTTF ¼ lim
s!0

�PupðsÞ ¼
1

ðk1 þ kC þ kCB þ kh þ 2kÞ ð63Þ

Setting kC = 0.01, kCB = 0.02, kh = 0.001, k = 0.05

and varying k1 as 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07,

0.08, 0.09 in (63) one may obtain the variations of MTTF

with respect to k1.
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Fig. 2 Time versus availability

Table 2 Time versus

availability
Time (t) Pup(t)

k1 ¼ 0:05;

k2 ¼ 0:06

k1 ¼ 0:06;

k2 ¼ 0:07

k1 ¼ 0:07;

k2 ¼ 0:08

k1 ¼ 0:08;

k2 ¼ 0:09

k1 ¼ 0:09;

k2 ¼ 0:10

0 1.0000 1.0000 1.0000 1.0000 1.0000

1 0.9005 0.9006 0.8556 0.8915 0.8762

2 0.8446 0.8447 0.7858 0.8253 0.8008

3 0.8032 0.8033 0.7386 0.7730 0.7423

4 0.7673 0.7671 0.6990 0.7266 0.6911

5 0.7340 0.7336 0.6629 0.6835 0.6442

6 0.7024 0.7018 0.6291 0.6432 0.6008

7 0.6722 0.6715 0.5970 0.6052 0.5604

8 0.6434 0.6425 0.5667 0.5696 0.5227

9 0.6158 0.6148 0.5378 0.5417 0.4875
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Setting k1 = 0.05, kCB = 0.02, kh = 0.001, k = 0.05

and varying kc as 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07,

0.08, 0.09 in (63) one may obtain the changes of MTTF

with respect to kc.

Setting k1 = 0.05, kC = 0.01, kh = 0.001, k = 0.05 and

varying kCB as 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08,

0.09 in 63 one can get the variations of MTTF with respect

to kCB.

Setting k1 = 0.05, kC = 0.01, kCB = 0.02, k = 0.05

and varying kh as 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07,

0.08, 0.09 in (63) one may obtain the changes of MTTF

with respect to kh.

Setting k1 = 0.05, kC = 0.01, kCB = 0.02, kh = 0.001

and varying k as 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07,

0.08, 0.09 in (63) one may obtain the variation of MTTF

with respect to k.

The combined numerical values of MTTF with respect

to k1, kC, kCB, kh and k have been shown in Table 3 and

corresponding graphs are displayed in Fig. 3.

8.3 Cost analysis

Let the service facility be always available, then expected

profit during the interval [0, t] is given by

EpðtÞ ¼ K1

Z t

0

PupðtÞdt � K2t ð64Þ

Assuming the values of various parameters as k1 = 0.05,

kh = 0.001, k2 = 0.06, kC = 0.01, kCB = 0.02, k = 0.05,

mean time to repair /ðxÞ ¼ 1; x ¼ 1; h ¼ 1;/ðxÞ ¼ 1 and

setting �S
exp½xhþflog /ðxÞgh �1=h

ðsÞ ¼ exp½xhþflog /AðxÞgh�1=h

sþexp½xhþflog /AðxÞgh�1=h
; �S/ðsÞ ¼

/
sþ/ ; in Eq. 50, then taking inverse Laplace transform,

one can obtain

EpðtÞ ¼ K1ð0:02814278751 eð�1:21100 tÞ

þ 0:0001387211 eð�1:071000 tÞ

þ 0:001295651 eð�2:7095548 tÞ

� 0:1010410148 eð�1:2230648 tÞ

� 0:005742612 eð�1:0891277 tÞ

þ 0:0053767760 eð�1:08599984 tÞ

� 0:0002714152 eð�1:066732535 tÞ

þ 20:850608 eð�0:043809544 tÞ

þ 20:92270Þ � K2t

ð65Þ

Let K1 = 1 and K2 = 0.5, 0.4, 0.3, 0.2, 0.1, 0.05, 0.01

and varying t = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 one can get

Table 4, and the corresponding graph is shown in Fig. 4.

9 Conclusion

Table 2 and corresponding Fig. 2 provide information about

the changes of availability of the repairable system with

respect to time when failure rates are fixed at different values.

When failure rates are fixed at lower values k1 = 0.05,

k2 = 0.06, kC = 0.01, kCB = 0.02, k = 0.05, kh = 0.001,

availability of the system decreases and probability of failure

increases, with passage of time and ultimately becomes

steady to the value zero after a sufficient long interval of

time. From this, one can safely predict the future behavior of

the system at any time for any given set of parametric values,

as is evident by the graphical consideration of the model.

Table 3 and Fig. 3 yield the MTTF of the system with

respect to variation in k1, kC, kCB, kh and k respectively

when other parameters have been kept constant. By critical

observation of this figure, we can say that MTTF of the

system is decreasing with respect to different failure rates.

MTTF of the system is highest with respect to failure rate

of subsystem-2 and is lowest with respect to any human

Table 3 MTTF versus failure rates

Variations in

failure rate

MTTF with respect to failure rate

k1 kC kCB kh k

0.01 7.092 5.524 5.847 5.236 9.900

0.02 6.622 5.235 5.524 5.000 8.264

0.03 6.211 4.975 5.235 4.761 7.092

0.04 5.847 4.739 4.975 4.545 6.211

0.05 5.524 4.524 4.739 4.347 5.524

0.06 5.235 4.329 4.524 4.166 4.975

0.07 4.975 4.149 4.329 4.000 4.524

0.08 4.739 3.984 4.149 3.846 4.149

0.09 4.524 3.831 3.984 3.703 3.831
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failure. The MTTF of subsystem-2 is precisely same on

failure rate variation value at 0.5 with subsystem-1 when

most of the k units have failed during operational mode, at

0.8 with its controller failure and at 0.9 with controller

failure of subsystem-1.

When revenue cost per unit time K1 fixed at one, service

cost K2 = 0.5, 0.4, 0.3, 0.2, 0.1, 0.05, 0.01, profit has been

calculated (Table 4) and results are demonstrated by

graphs (Fig. 4). The observation outlines that as the service

cost decreases profit increases.

Thus, in general with this study, behaviour of such

systems can be analyzed and prognosticate in advance.

Appendix 1

Equation 1 has been obtained by limiting case of following

probabilistic difference equation:

P0ðt þ DÞ ¼ ð1� k1DtÞð1� kCDtÞð1� kCBDtÞð1� khDtÞ

� ð1� 2kDtÞP0ðtÞ þ
Z1

0

/ðxÞP1ðx; tÞdxDt

þ
Z1

0

exp½xh þ flog /ðxÞgh�1=hP2ðx; tÞdxDt

þ
Z1

0

/ðxÞP3ðx; tÞdxDt þ
Z1

0

/ðxÞP4ðx; tÞdxDt

þ
Z1

0

exp½xh þ flog /ðxÞgh�1=hP5ðx; tÞdxDt

þ
Z1

0

exp½xh þ flog /ðxÞgh�1=hP6ðx; tÞdxDt

þ
Z1

0

exp½xh þ flog /ðxÞgh�1=hP9ðx; tÞdxDt

Now lim
Dt!0

P0ðtþDÞ�P0ðtÞ
Dt

þ ðk1 þ kC þ kCB þ kh þ 2kÞ � � � ¼R1
0

/ðxÞP1ðx; tÞdxþ � � �P0ðtÞ yield Eq. 1 and similarly

Eqs. 2–10 have been obtained.

Appendix 2

Solving 22–30, one can have

�P1ðx; sÞ ¼ �P1ð0; sÞ exp ð�ðsþ k2 þ 2kþ kC þ kCB þ khð Þ

e
�
Rx
0

/ðxÞdx

where

Table 4 Time versus expected

profit
Time (t) Ep(t)

K2 = 0.5 K2 = 0.4 K2 = 0.3 K2 = 0.2 K2 = 0.1 K2 = 0.05 K2 = 0.01

0 0 0 0 0 0 0 0

1 0.4444 0.5444 0.6444 0.7444 0.8444 0.8943 0.9344

2 0.8150 1.0150 1.2150 1.4150 1.6150 1.7150 1.7949

3 1.1382 1.4382 1.7882 2.0382 2.3382 2.4882 2.6082

4 1.4231 1.8231 2.2231 2.6231 3.0231 3.2231 3.3831

5 1.6736 2.1736 2.6736 3.1736 3.6736 3.9240 4.1235

6 1.8916 2.4916 3.0916 3.6916 4.2916 4.5916 4.8316

7 2.0788 2.7788 3.4788 4.1788 4.8788 5.2288 5.5088

8 2.2365 3.0360 3.8365 4.6365 5.4365 5.8365 6.1565

9 2.3660 3.2660 4.1660 5.0660 5.9660 6.4160 6.7760
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�P1ð0; sÞ ¼ k1
�P0ðsÞ; S/ðxÞ ¼ /ðxÞe

Rx
0

/ðxÞdx

;

S/ðsÞ ¼
Z1

0

e�sx/ðxÞe
Rx
0

/ðxÞdx

dx:

This implies that

�P1ðsÞ ¼
Z1

0

�P1ðx; sÞdx:

So on. Using values obtained by solving 22–30, one can get

the transition state probabilities of the system.

Pup(s) is the sum of such state transition probabilities

when system is in operational mode and Pfailed(s) is the

sum of state transition probabilities when system is not in

operational mode.

Appendix 3

We have

when s = 0, D(s) becomes zero and P0ð0Þ ¼ lims!0 s

P0ðsÞ ¼ lims!0
s

DðsÞ ¼ 1

D
0 ð0Þ by D’L Hospital rule S/ðsÞ ¼

R1
0

e�sx/ðxÞe
R x

0
/ðxÞdx

dx ¼ /
sþ/ implies that S/ð0Þ ¼

/
0þ/ ¼ 1and so on.

DðsÞ ¼ sþ k1 þ kC þ kh þ kCB þ 2k

� k1 þ
2kk1S/ðsþ kþ kC þ kCB þ khÞ

1� 2kS/ðsþ kþ kC þ kCB þ khÞ
� �

 !
�S/ðsþ k1 þ kC þ kh þ kCB þ 2kÞ

� k2k1 þ
2kk1S/ðsþ kþ kC þ kCB þ khÞ

1� 2kS/ðsþ kþ kC þ kCB þ khÞ
� �

 !
Sl0
ðxÞ þ 2kS/ðsþ kþ kC þ kCB þ khÞ

� 2k2 k1 þ
2kk1S/ðsþ kþ kC þ kCB þ khÞ

1� 2kS/ðsþ kþ kC þ kCB þ khÞ
� �

 !
Sl0
ðxÞ

� kh 1þ k1 þ
2kk1S/ðsþ kþ kC þ kCB þ khÞ þ 2kk

1� 2kS/ðsþ kþ kC þ kCB þ khÞ
� � þ 2k

 !
Sl0
ðxÞ

� kC 1þ k1 þ
2kk1S/ðsþ kþ kC þ kCB þ khÞ þ 2kk

1� 2kS/ðsþ kþ kC þ kCB þ khÞ
� � þ 2k

 !
Sl0
ðxÞ

� kCB 1þ k1 þ
2kk1S/ðsþ kþ kC þ kCB þ khÞ þ 2kk

1� 2kS/ðsþ kþ kC þ kCB þ khÞ
� � þ 2k

 !
Sl0
ðxÞ
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