
ORIGINAL ARTICLE

Software fault mitigation and availability assurance techniques

Kishor S. Trivedi • Michael Grottke •

Ermeson Andrade

Received: 1 December 2010 / Revised: 24 December 2010 / Published online: 13 April 2011

� The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and

Maintenance, Lulea University of Technology, Sweden 2011

Abstract Companies are expected to keep their systems

up and running and make data continuously available.

Several recent studies have established that most system

outages are due to software faults. In this paper, we discuss

availability aspects of large software-based systems. We

begin by classifying software faults into Bohrbugs and

Mandelbugs, and identify aging-related bugs as a subtype

of the latter. We then examine mitigation methods for

Mandelbugs in general and aging-related bugs in particular.

Finally, we discuss techniques for the quantitative avail-

ability assurance for such systems.

Keywords Aging-related bugs � Mandelbugs �
Mitigation techniques � Software rejuvenation �
Stochastic availability models

1 Introduction

High availability is being demanded for military as well as

commercial applications such as e-commerce systems,

financial systems, stock-trading systems, national and

international telecommunication infra-structure (e.g.,

switches and routers) and several types of life-critical and

safety-critical systems. Many techniques to achieve high

availability from the hardware perspective are known.

However, software remains the main bottleneck in

achieving high availability. Despite many advances in

formal methods, programming methodology, and testing,

the software development process has not reached the stage

to allow for the routine production of ultra-low defect

software systems (Bharadwaj 2008). Yet, complex soft-

ware-based systems are expected not to fail.

According to (Grottke and Trivedi 2007), during the

Gulf War, 28 US Army reservists were killed and 97 were

injured on 25 February 1991 when the Patriot missile-

defense system at their barracks in Dhahran, Saudi Arabia,

failed to intercept an incoming Scud missile. This incident

was due to a software fault in the system’s weapons-control

computer. It turned out that the failure occurrence rate for

this fault increased with system runtime, making it a

prominent example of software aging. It was also a case in

which engineers employed multiple techniques to fight the

software bug.

Outages in computer systems can be caused by hardware

and software faults. While hardware faults have been studied

extensively and varied mechanisms are known to increase

system availability in face of such faults, software faults, their

mitigation methods and the corresponding reliability/avail-

ability analysis have not drawn much attention from

researchers. However, software faults are now known to be a

dominant source of system outages. During operations soft-

ware faults are usually dealt with reactively (i.e., after they

caused a failure), while failures due to software aging can be

avoided by a proactive technique called software rejuvenation

(Bernstein and Kintala 2004; Grottke and Trivedi 2007).

K. S. Trivedi (&)

Department of Electrical and Computer Engineering,

Duke University, Durham, NC 27708, USA

e-mail: kst@ee.duke.edu

M. Grottke

University of Erlangen-Nuremberg, Nuremberg, Germany

e-mail: michael.grottke@wiso.uni-erlangen.de

E. Andrade

Informatics Center, Federal University of Pernambuco (UFPE),

Recife, PE, Brazil

e-mail: ecda@cin.ufpe.br

123

Int J Syst Assur Eng Manag (Oct-Dec 2010) 1(4):340–350

DOI 10.1007/s13198-011-0038-9

In general, there are two ways to improve availability:

increase time-to-failure (TTF) and reduce time-to-recovery

(TTR). To increase TTF, proactive software rejuvenation

can be used for aging-related bugs. To reduce TTR, esca-

lated levels of recovery can be used, so that most failures

are fixed by the quickest recovery method and only few by

the slowest ones. We are also interested in methods to

provide quantifiable availability assurance.

In this paper, we first classify software faults and discuss

various mitigation techniques. Since approaches to dealing

with Bohrbugs are well known, the topic is only covered very

briefly. Approaches to deal with Mandelbugs in general and

with aging-related bugs in particular are described. This helps

us understand the nature of software faults and their impact on

system availability and performance and aids in choosing the

best possible recovery strategy when a failure occurs. Quan-

titative assurance of availability by means of stochastic

availability models is introduced. It is important to highlight

that to deal with the large size of availability models of real

systems we typically employ a hierarchical approach. Finally,

we discuss quantitative assurance applied to real systems.

The remainder of the paper is organized as follows: Sec-

tion 2 classifies software faults and discusses the various

mitigation techniques to deal with these faults. Section 3

discusses the use of analytic models for availability assur-

ance. Section 4 describes the approaches to deal with Man-

delbugs. Section 5 describes the approaches to deal with

aging-related bugs. Section 6 discusses quantitative assur-

ance applied to real systems. Section 7 concludes the paper.

2 Classification and treatment of software faults

In this section, we classify software faults and discuss

various mitigation techniques to deal with these faults in

the testing/debugging phase and in the operational phase of

the software system.

2.1 Software fault classification

When faults in a hardware or a software component are

activated, they cause errors. An error is defined as that part

of the internal state of a running system that is liable to lead

to subsequent failure when the error is propagated.

According to (Laprie 1992), ‘‘a system failure occurs when

the delivered service no longer complies with the specifi-

cations, the latter being an agreed description of the sys-

tem’s expected function and/or service’’. If the system

comprises of multiple components, an error can lead to a

component failure. As various components in the system

interact, the failure of one component may introduce faults

in other components. For instance, Fig. 1 presents a tree

listing all the component failures considered in a model of

the IBM SIP Application Server cluster (Trivedi et al.

2008). Hardware component failures are listed in the left

branch from the root, whereas software component failures

are listed in the right branch.

There are broadly two classes of software faults (or

bugs), known as Bohrbugs and Mandelbugs (Grottke and

Trivedi 2005b, 2007).

Bohrbugs are, in principle, easily isolated and manifest

themselves consistently under well-defined sets of condi-

tions (Raymond 1991).

The behavior of Mandelbugs instead appears chaotic or

even non-deterministic (Raymond 1991), because their

fault activation and/or error propagation are complex. On

the one hand, this complexity can take the form of time

lags between the fault activation and the final failure

occurrence caused by the fact that multiple error conditions

need to be traversed (Grottke and Trivedi 2005a); this

Failures

Midplan
Failure

Network
Failure

Cooling
Failure

Power
Failure

Blade
Failure

Physical Failures Software Failures

OS Application

WAS Proxy

Process
hang

Process
die

Memory Failure
NIC Failure
CPU Failure

I/O Failure
Base Failure

Fig. 1 Component failures in

the IBM SIP Application Server

cluster

Int J Syst Assur Eng Manag (Oct-Dec 2010) 1(4):340–350 341

123

makes it difficult for a user to understand the causes of a

failure experienced. A second source of complexity is the

influence of indirect factors, like the timing of operations

and interactions with other applications, on fault activation

and error propagation (Grottke et al. 2010). Software faults

causing race conditions are a well-known example of

Mandelbugs. Due to the complex fault activation or error

propagations of Mandelbugs, retrying the operation carried

out prior to a failure occurrence may not result in another

manifestation of the fault. Therefore, failures caused by

Mandelbugs are typically difficult to reproduce.

Sometimes, the literature also calls such faults Heisen-

bugs (Gray 1986; Huang et al. 1995). However, Bruce

Lindsay, who invented the term deriving it from Heisen-

berg’s Uncertainty Principle, reserves the term for faults

that change their behavior when probed or isolated

(Winslett 2005). Lindsay’s Heisenbugs are actually a sub-

type of Mandelbugs (Grottke and Trivedi 2005a, 2007).

Another interesting subtype of Mandelbugs (Grottke and

Trivedi 2007) has the characteristic that it is capable of

causing an increasing failure occurrence rate and/or

degraded performance during execution. Such faults have

been observed in many software systems and have been

called aging-related bugs (Avritzer and Weyuker 1997;

Garg et al. 1998; Grottke et al. 2006; Grottke and Trivedi

2007; Marshall 1992). There are two possible causes of the

aging phenomenon: First, errors caused by the activation of

aging-related bugs may accumulate inside the running

system. Examples include memory leaks and round-off

errors. Second, the activation and/or error propagation of

the system may be influenced by the total time the system

has been running. The incident with the Patriot missile-

defense system mentioned in Sect. 1 is an example for such

an aging behavior (Grottke et al. 2008).

Figure 2 summarizes the classification of software

faults. Based on the relationships between the fault types,

we can partition the space of all software faults into

Bohrbugs, aging-related bugs, and those Mandelbugs that

are nor aging-related bugs. We refer to the latter set as non-

aging-related Mandelbugs.

As we will see in Sect. 2.2, possible methods to deal

with a fault depend on its type. The relative importance of

the mitigation methods is thus influenced by the fault type

proportions. To get an idea of these proportions in real-

world systems, Grottke et al. (2010) classified the 520

software faults detected in 18 NASA/JPL space missions

after launch. While 2.1% of the faults could not be clas-

sified based on the information available, 61.4% were

Bohrbugs and 32.1% turned out to be non-aging-related

Mandelbugs; the remaining 4.4% were aging-related bugs.

2.2 Software fault mitigation techniques

Figure 3 assigns potential methods for treating software

faults in the test phase or in the operational phase to the

fault types described in Sect. 2.1.

The classical approach to deal with software faults

introduced during development is to debug/test the soft-

ware. It is specifically applicable to Bohrbugs, which by

definition manifest consistently. The Bohrbugs that caused

failures in the testing phase can thus rather easily be iso-

lated and removed from the code. Likewise, if a failure due

to a Bohrbug occurs in production, it can be reproduced in

the original testing environment, and a patch correcting the

bug or a workaround can be issued. Due to their seemingly

non-deterministic nature Mandelbugs are much more dif-

ficult to understand and detect in the software code.

Therefore, run-time techniques to recover from failures

caused by Mandelbugs (or to even prevent such failures)

are usually more cost- and time-effective than debug/test

approaches. We will discuss these techniques below.

The design diversity approaches have specifically been

developed to tolerate design faults in software arising out of

wrong specifications and incorrect coding. Two or more

variants of a piece of software developed by different teams,

but to a common specification, are used. These variants are

then used in a time- or space-redundant manner to achieve

fault tolerance. Popular techniques which are based on the

design diversity concept for fault tolerance in software are

N-version programming (Avižienis and Chen 1977), recovery

blocks (Horning et al. 1974) and N-self-checking program-

ming (Laprie et al. 1987). The design diversity approach was

developed mainly to deal with Bohrbugs. Of course, it can also

mitigate Mandelbugs, provided that Mandelbugs leading to a

failure in a specific situation are not contained in several (or

even all) of the different designs; however, there are less

expensive approaches to dealing with Mandelbugs.

Data diversity relies on the observation that software

sometime fails for certain values in the input space and this

failure could be averted if there is a minor perturbation of

input data which is acceptable to the software. This

approach can work well with Bohrbugs and is cheaper to

implement than design diversity techniques. Data diversity

can also deal with Mandelbugs since retrying the operation

(with or without changing the input data) may not lead to

another failure occurrence.

Although environment diversity has been used for long in

an ad hoc manner, only recently has it gained recognition andFig. 2 Venn diagram of software fault types

342 Int J Syst Assur Eng Manag (Oct-Dec 2010) 1(4):340–350

123

importance. Having its basis on the observation that many

software failures are caused by Mandelbugs and thus transient

in nature, environment diversity involves reexecuting the

software in a different environment. Adams (1984) proposed

restarting the system as the best approach to masking software

faults. Environment diversity, a generalization of restart,

comprises a range of techniques, including operation retry,

failover to an identical standby copy, application restart, and

node reboot. The retry and restart operations can be done on

the same node or on another spare (cold/warm/hot) node.

These techniques deal effectively with Mandelbugs by

exploiting the fact that their activation and/or error propaga-

tion depend on complex causes, which may be removed by

changing the environment.

The environment diversity approaches discussed so far

are reactive in nature, recovering from failures caused by

Mandelbugs. However, software rejuvenation (Bernstein

and Kintala 2004; Grottke and Trivedi 2007; Huang et al.

1995) is a proactive environment diversity technique trying

to prevent future failure occurrences, for example by reg-

ularly stopping and rebooting the running software system.

The removal of accrued errors and the resetting of the

runtime of the system caused by the rejuvenation lead to a

decrease in the failure rate and the alleviation of perfor-

mance problems due to aging-related bugs.

In this paper, we focus on Mandelbugs in general and

aging-related bugs in particular.

3 Quantified availability assurance

In practice, availability assurance is provided qualitatively

by means of verbal arguments or using checklists. Quan-

titative assurance of availability by means of stochastic

availability models constructed based on the structure of

the system hardware and software is very much lacking in

today’s practice (Smith et al. 2008; Trivedi 2000; Trivedi

et al. 2006). While such analyses are nowadays supported

by software packages (Bolch et al. 2006; Sahner et al.

1996), they are not routinely carried out on what are touted

as high availability products; there are only islands of such

competency even in large companies.

Engineers commonly use reliability block diagrams or

fault trees to formulate and solve availability models

because of their simplicity and efficiency (Sahner et al.

1996; Trivedi 2001). But such non-state-space models

cannot easily incorporate realistic system behavior such as

imperfect coverage, multiple failure modes, detection and

recovery delays, or hot swap (Smith et al. 2008). In con-

trast, such dependencies and multiple failure modes can

easily be captured by state-space models such as Markov

chains, semi-Markov processes (Trivedi 2001), and Mar-

kov regenerative processes (Bolch et al. 2006).

However, the construction, storage, and solution of these

state space models can become prohibitive for real systems.

The problem of large model construction can be alleviated by

using some variation of stochastic Petri nets (Bolch et al.

2006), but a more practical alternative is to use a hierarchical

approach based on a judicious combination of state space

models and non-state-space models (Sahner et al. 1996). Such

hierarchical models have successfully been used on practical

problems including hardware availability prediction (Lanus

et al. 2003), OS failures (Smith et al. 2008; Trivedi 2000;

Trivedi et al. 2006) and application software failures (Garg

et al. 1995). Furthermore, user and service-oriented measures

can be computed in addition to system availability. Compu-

tational methods for such user-perceived measures are just

beginning to emerge (Sato et al. 2007).

As an example, the IBM BladeCenter is a system where

the complexity of the system precludes modeling as a

Fig. 3 Software fault types and

mitigation methods

Int J Syst Assur Eng Manag (Oct-Dec 2010) 1(4):340–350 343

123

single-level state space model. The number of BladeCenter

components subject to failure is close to 140. If each

component were to be in one of two states only (actually

some components have more than two states), the size of

the state space of the overall Markov chain would be 2140.

However, as dependencies exist in the system, an overall

non-state-space model will not suffice. Dependencies

within subsystems are modeled in (Smith et al. 2008) using

homogeneous continuous-time Markov chains. Indepen-

dence across subsystems is assumed, thus a non-state-space

model is used to combine the subsystem availabilities into

the overall system availability. The top-level model is a

fault tree because some of the component failures affect

several different portions of the system at the same time.

Such effects are captured by fault trees with repeated

events but cannot be captured by reliability block diagrams

(Sahner et al. 1996; Trivedi 2001). Other methods to

reduce the state space size include state truncation, appli-

cable to high-level model descriptions such as stochastic

Petri nets (Liu et al. 2005; Vaidyanathan et al. 2001; Wang

and Trivedi 2009) and fixed-point iterations (Mainkar and

Trivedi 1996; Tomek and Trivedi 1991). Besides avail-

ability assurance, such models can also be used to find

availability bottlenecks (Sato et al. 2007).

Subsequently, parameter values are needed to solve the

models and predict system availability and related mea-

sures. Model input parameters can be divided into failure

rates of hardware or software components; detection, fai-

lover, restart, reboot and repair delays and coverages; and

parameters defining the user behavior. Hardware failure

rates (or equivalently, MTTFs) are generally available from

vendors, but software component failure rates are much

harder to obtain. Alcatel-Lucent uses residual failure

intensity based on a software reliability growth model as

the failure rate in operation (Mendiratta et al. 2007).

Fault injection experiments can be used to estimate

detection, restart, reboot, and repair delays (Hsueh et al. 1997),

as in the IBM SIP/SLEE modeling exercise (Smith et al. 2008;

Trivedi et al. 2006). Statistical inference methods for the

estimations are well known (Arlat et al. 1993; Lee and Iyer

1995; Meeker and Escobar 1998; Nelson 1982; Tobias and

Trindade 1995). However, passing the confidence intervals of

input parameters through an analytic availability model is

relatively unexplored (Devraj et al. 2010).

Due to many simplifying assumptions made about the

system, its components, and their interactions and due to

unavailability of accurate parameter values, the results of

the abstract models cannot be taken as a true availability

assurance. Monitoring and statistically inferring the

observed availability is surely much more satisfactory

assurance of availability. Off-line and on-line monitoring

(Pietrantuono et al. 2010) of deployed system availability

and related metrics can be carried out. The major difficulty

is the amount of time needed to get enough data to obtain

statistically significant estimates of availability.

4 Recovery from failures caused by Mandelbugs

Reactive recovery from failures caused by Mandelbugs has

been used for some time in the context of operating system

failures, where reboot is the mitigation method (Hunter and

Smith 1999; Trivedi et al. 2006). Restart, failover to a

replica, and further escalated levels of recovery such as

node reboot and repair are being successfully employed for

application failures. Avaya’s NT-SwiFT and DOORS

systems (Garg et al. 1999), JPL REE system (Chen et al.

2002), Alcatel Lucent (Mendiratta 1999; Mendiratta et al.

2007; Vilkomir et al. 2005), IBM x-series models

(Vaidyanathan et al. 2001), CORBA (Narasimhan et al.

2005; Pertet and Narasimhan 2004; Pertet and Narasimhan

2005), and IBM SIP/SLEE cluster (Smith et al. 2008;

Trivedi et al. 2006) are examples where applications or

middleware processes are recovered using one or more of

these techniques. Replication of software system has been

used as viable fault tolerance technique to improve reli-

ability/availability. A standby copy to failover to can be

either an active or a passive replica. For example, the IBM

SIP/SLEE system uses active replication (Trivedi et al.

2008), while Avaya’s SwiFT system uses passive replica-

tion (Garg et al. 1999). In active replication, both copies

serve different requests at the same time and constant

synchronization of data might be required if the data is not

partitioned across replica. In passive replication, only one

replica, the primary, executes at any one time while one or

more backups are waiting to take over when the primary

fails (Dumitras et al. 2005). Passive replication can be

further divided into two categories: warm and cold (Garg

et al. 1999). Warm replicas are periodically updated with

state information while cold replicas are not. The chosen

way to organize the replicas has both performance and

availability impact. Performance penalty will be larger as

we move from cold to warm to active replication while the

availability will likely improve. Detailed availability and

performance models can be developed for the three

schemes as in (Garg et al. 1999).

To support recovery from Mandelbug-caused failures,

multiple run-time failure detectors are employed to ensure

that detection takes place within a short duration of the

failure occurrence (Trivedi et al. 2008). In all but the rarest

cases, manual detection is required. As, by definition,

failures caused by non-aging-related Mandelbugs cannot be

anticipated and must be reacted to, current research is

aimed at providing design guidelines as to how fast

recovery can be accomplished and obtaining quantitative

assurance on the availability of an application.

344 Int J Syst Assur Eng Manag (Oct-Dec 2010) 1(4):340–350

123

Recovery should be tailored to different kinds of failures

and only touch the affected system components. However,

a recovery technique may not always successfully recover

an application from the current failure. Since it is not

known in advance which recovery technique should be

used after a failure occurrence, a sequence of recovery

procedures consisting of specific escalated levels or stages

of recovery should be employed. Typically, the techniques

are ordered according to the expected length of time nee-

ded for their execution: the fastest technique is tried first,

while the last recovery stage may be slow but guarantees

recovery. An example of such a sequence is: micro-rebo-

oting of an individual software component in an applica-

tion, restart of the application, fail-over, reboot of the entire

node, and full system repair. Since the number of possible

recovery actions is small, preliminary research suggests

that an exhaustive search is adequate to determine the

optimal sequence (Grottke and Trivedi 2008).

Stochastic models discussed in the previous section are

beginning to be used to provide quantitative availability

assurance (Chen et al. 2002; Garg et al. 1999; Vaidyana-

than et al. 2001). Besides system availability, models to

compute user-perceived measures such as dropped calls in

a switch due to failures are beginning to be used (Trivedi

et al. 2010). Such models can capture the details of user

behavior or the details of the call flow (Vaidyanathan et al.

2001) and its interactions with failure and recovery

behavior of hardware and software resources. Difficulties

we encounter in availability modeling are model size and

obtaining credible input parameters (Bolch et al. 2006;

Nicol et al. 2004; Smith et al. 2008). To deal with the large

size of availability models for real systems, we typically

employ a hierarchical approach where the top-level is a

non-state-space model, such as a fault tree (Lanus et al.

2003; Smith et al. 2008) or a reliability block diagram

(Trivedi 2000; Trivedi et al. 2006). Lower-level stochastic

models for each subsystem in the fault tree model are then

built. These submodels are usually continuous-time Mar-

kov chains, but if necessary non-Markovian models (Wang

et al. 2003) can be employed. Weak interactions between

submodels can be dealt with using fixed-point iteration

(Mainkar and Trivedi 1996; Tomek and Trivedi 1991). The

key advantage of such hierarchical approaches is that

closed-form solution now appears feasible (Sato et al.

2007; Smith et al. 2008) as the Markov submodels are

typically small enough to be solved by Mathematica and

the fault tree can be solved in closed form using tools like

our own SHARPE software package (Sahner et al. 1996).

Once the closed-form solution is obtained, we can also

carry out sensitivity analysis to determine bottlenecks and

provide feedback for improvement to the designers (Sato

et al. 2007). Errors in these approximate hierarchical

models can be studied by comparison with discrete-event

simulation and exact stochastic Petri net models solved

numerically.

5 Proactive recovery and aging-related bugs

As noted in Sect. 2.1, aging-related bugs are such that they

can cause an increasing failure rate and/or degraded per-

formance while the system is up and running. For such

bugs proactive software rejuvenation cleaning the system

internal state and resetting the system runtime may effec-

tively reduce the failure rate and improve performance.

Many types of software systems, such as telecommunica-

tion software (Avritzer and Weyuker 1997; Bernstein and

Kintala 2004; Huang et al. 1995), network devices (Cisco

Systems (2001), Document ID 13618), web servers

(Grottke et al. 2006; Matias and Freitas Filho 2006), and

military systems (Marshall 1992), are known to experience

aging. Rejuvenation has been implemented in several kinds

of software systems, including telecommunication billing

data collection systems (Huang et al. 1995), transaction

processing systems (Cassidy et al. 2002), spacecraft flight

systems (Tai et al. 1999), distributed CORBA-based

applications (Pertet and Narasimhan 2004), and cluster

servers (Castelli et al. 2001).

The main advantage of planned preemptive procedures

such as rejuvenation is that the consequences of sudden

failures (like loss of data and unavailability of the entire

system) are postponed or prevented; moreover, adminis-

trative measures can be scheduled to take place when the

workload is low. However, for each such preemptive

action, costs are incurred in the form of scheduled down-

time for at least some part of the system. Rejuvenation can

be carried out at different granularities: restart a software

module, restart an entire application, perform garbage

collection in a node, or reboot a hardware node (Candea

et al. 2004; Hong et al. 2002; Matias and Freitas Filho

2006; Xie et al. 2005). A key design question is finding the

optimal rejuvenation schedule and granularity.

Rejuvenation scheduling can be time-based or condi-

tion-based. In the former, rejuvenation is done at fixed time

intervals (Castelli et al. 2001; Dohi et al. 2000, 2001; Garg

et al. 1995; Hong et al. 2002; Huang et al. 1995; Liu et al.

2005; Vaidyanathan et al. 2001), while, in the latter, the

condition of system resources is monitored. A simple

threshold-based rejuvenation is carried out or prediction

algorithms are used to determine an adaptive rejuvenation

schedule (Avritzer et al. 2006; Garg et al. 1998; Silva et al.

2006; Vaidyanathan and Trivedi 2005; Xie et al. 2005).

For time-based rejuvenation, the stochastic models dis-

cussed in Sect. 2 are enhanced to incorporate aging-related

bugs and the rejuvenation triggers at various levels of

granularity. The resulting models are no longer Markovian.

Int J Syst Assur Eng Manag (Oct-Dec 2010) 1(4):340–350 345

123

We have solved such models using a combination of phase-

type expansions and deterministic and stochastic Petri nets

(DSPN) type techniques (Lindemann 1998; Wang and

Trivedi 2009). To solve and optimize these models, besides

the input parameters discussed in Sect. 2, we need

parameters for various proactive recovery actions and the

time to failure distribution due to aging-related failures.

Before the system is deployed, a distribution and its

parameters will have to be based on past experience.

During the operation of the system, time to failure data can

be collected and used to parameterize the optimization

model. It is possible to directly use the measured time-to-

failure data in the optimization of the rejuvenation schedule

via the notion of total time on test (TTT) transform to avoid

the error-prone process of fitting of this data to a distri-

bution (Barlow and Campo 1975; Dohi et al. 2000). The

scheme is then a closed-loop feedback control system

(Hellerstein et al. 2004) where the ‘‘fixed-time’’ is adaptive

in response to monitored time-to-failure data. A rejuvena-

tion trigger interval, as computed in time-based rejuvena-

tion, adapts to changing system conditions, but its

adaptation rate is slow as it only responds to failure

occurrences that are expected to be rare.

Condition-based rejuvenation instead does not need time

to failure inputs; it computes the rejuvenation trigger

interval by monitoring system resources and predicting the

time to exhaustion of resources for the adaptive scheduling

of software rejuvenation (Avritzer and Weyuker 1997;

Castelli et al. 2001; Garg et al. 1998; Pertet and Nara-

simhan 2004; Vaidyanathan and Trivedi 2005). Garg et al.

(1998) measured variables such as free main memory, used

swap space, and file table size in a network of UNIX

workstations. These measured variables showed a statisti-

cally significant (decreasing or increasing) trend over time.

Using a non-parametric technique, Garg et al. determined

the global aging trend and calculate the estimated time

until complete exhaustion via linear extrapolation for each

resource. In case some form of rejuvenation or periodicity

is already implemented by the system, as in the Apache

Web server (Grottke et al. 2006), piecewise linear (Castelli

et al. 2001), autoregressive time series with deterministic

seasonal component (Grottke et al. 2006), nonlinear sta-

tistical methods (Hoffman et al. 2006), and fractal-based

methods (Shereshevsky et al. 2003) have also been used on

such data. Regardless of the prediction method used, the

resources selected for monitoring must be determined to

minimize the monitoring overhead. Design of experiment

(DOE) and analysis of variance (ANOVA) have been used

to answer this question (Matias et al. 2010; Matias et al.

2010; Montgomery 2004). All the published methods pre-

dict the times to exhaustion of individual resources, but

time to system failure is a complex combination of these

times. Predicting time to failure is an open question.

Whatever schedule and granularity of rejuvenation is

used, the important question is what improvement this

implies on system availability, if any. Published results are

based on either analytic models (Vaidyanathan et al. 2001)

or simulations (Dohi et al. 2000). Early results of a mea-

surement experiment at Tokyo Institute of Technology are

very encouraging, where rejuvenation increased the MTTF

by a factor of two (Kourai 2008, personal communication,

January 9) on the system reported in (Kourai and Chiba

2007).

6 Case studies of analytic models

In this section, we discuss quantitative assurance via ana-

lytic models.

6.1 SIP on IBM WebSphere

In (Trivedi et al. 2008), we model a SIP (Session Initiation

Protocol) service consisting of the WebSphere Application

Server and a proxy server running on IBM BladeCenter

hardware. Figure 4 presents the IBM SIP Application

Server cluster configuration. It consists of two BladeCen-

ters each having four blade servers (which we call nodes).

Each blade server has WebSphere Application Server

(WAS) Network Deployment v6.1 installed. In the cluster,

two nodes (one in each chassis) are configured as proxy

servers to balance SIP traffic and perform failover. The

other nodes host application servers. The SIP application

installed on the application servers is back-to-back user

agent (B2BUA), which acts as a proxy for SIP messages in

VoIP call sessions. Twelve application servers are paired in

groups of two; each of these are known as replication

domains.

This configuration provides high availability by using

hardware and software redundancy and escalated levels of

recovery. Besides, different types of fault detectors,

detection delays, failover delays, restarts, reboots and

repairs are considered. Imperfect coverages for detection,

failover and recovery are incorporated. Software redun-

dancy used is with identical replicas and not design

diversity. Mitigation method for software failures is to first

try automated restart and in case that does not work,

manual restart followed by node reboot and only as a last

resort manual repair is utilized. Clearly, designers of this

system assume that failures due to Mandelbugs are much

more likely than those due to Bohrbugs.

Availability model computations are based on a set of

interacting submodels of all system components capturing

their failure and recovery behavior. It is important to

highlight that the parameter values used in the calculations

are based on several sources, including field data, high

346 Int J Syst Assur Eng Manag (Oct-Dec 2010) 1(4):340–350

123

availability testing, and agreed-upon assumptions. The top

level is a fault tree (shown in Fig. 5) whose nodes represent

all of the software and hardware failures. At this level, it is

possible to capture the system structure that tells whether

the whole system is available given the state of the soft-

ware and hardware subsystems.

Some of the hardware subsystems are broken down into

more detailed fault trees. In (Trivedi et al. 2008), these are

then included in the top-level fault tree model, but they

could also have been separated into mid-level models.

Which to choose depends on the nature of the system, the

complexity of the models at each level, the modeler’s

Fig. 4 IBM SIP Application

Server clusterad. Adapted from

Trivedi et al. (2008)

Fig. 5 Top-level fault tree

model. Adapted from Trivedi

et al. (2008)

Int J Syst Assur Eng Manag (Oct-Dec 2010) 1(4):340–350 347

123

preference, and the behavior of the analysis algorithms.

Some subsystems represented by fault tree leaves can have

states where the system is up but with some components

non-operational and undergoing repair. Failures are

sometimes followed by successful reconfiguration (‘‘cov-

ered’’) but sometimes bring the system down. Such systems

are not easily modeled with fault tees, but can be modeled

with Markov chains. The SIP system was modeled with

several different Markov chain submodels of fault tree

leaves. In other words, a hierarchical approach was used.

For example, Fig. 6 shows the availability model for the

two application servers in one replication domain (all six

replication domains have the same Markov chain model).

This model captures two different automated failure

detectors, manual detector, automated and manual restarts,

reboots and manual repair besides failover to the other

application sever in the pair. Escalated levels of recovery

and imperfect coverage for each phase of recovery are also

modeled. In (Trivedi et al. 2008), sensitivity analysis of

availability was carried out in order to indicate the failure

types and recovery parameters that are most critical in their

impact on overall system availability. Models in (Trivedi

et al. 2008) and (Trivedi et al. 2010) were responsible for

the sale of the system by IBM to a Telco customer.

6.2 Software rejuvenation schedule

Dohi et al. (2000) analytically derive the optimal software

rejuvenation schedules maximizing the system availability

for time-based rejuvenation. The aging behavior of the

software systems as well as rejuvenation and repair are

modeled as a semi-Markov process; the transition diagram

for one of the models is depicted in Fig. 7.

A non-parametric statistical algorithm is then developed

to estimate the optimal software rejuvenation schedule,

provided that the sample data to characterize the system

failure times is given. It is important to highlight that the

proposed statistical algorithm is useful in determining the

optimal rejuvenation schedule early in the operational

phase; in contrast, the probability distribution of the system

failure time cannot easily be estimated from a few data

samples. Moreover, the non-parametric approach does not

even require any assumption concerning the underlying

failure time distribution. Finally, the estimators of the

optimal software rejuvenation schedule have nice conver-

gence properties.

7 Conclusions

We have discussed models for quantifying availability of a

software system. We have considered reactive recovery

techniques for Mandelbugs and availability models that

incorporate these recovery techniques. For aging-related

bugs, a powerful proactive recovery technique is rejuvena-

tion. We discussed rejuvenation scheduling and availability

Fig. 6 Replication domain

availability model. Adapted

from Trivedi et al. (2008)

Fig. 7 Semi-Markov diagram. Adapted from Dohi et al. (2000)

348 Int J Syst Assur Eng Manag (Oct-Dec 2010) 1(4):340–350

123

models for software systems when rejuvenation is used to

deal with aging.

References

Adams E (1984) Optimizing preventive service of the software

products. IBM J Res Dev 28(1):2–14

Arlat J, Costes A, Crouzet Y, Laprie J-C, Powell D (1993) Fault

injection and dependability evaluation of fault tolerant systems.

IEEE Trans Comput 42(8):913–923

Avižienis A, Chen L (1977) On the implementation of N-version

programming for software fault tolerance during execution. In:

Proc. IEEE computer software and applications conference,

Chicago, pp 149–155

Avritzer A, Weyuker EJ (1997) Monitoring smoothly degrading

systems for increased dependability. Empir Softw Eng 2(1):59–77

Avritzer A, Bondi A, Grottke M, Trivedi KS, Weyuker EJ (2006)

Performance assurance via software rejuvenation: monitoring,

statistics and algorithms. In: Proc. international conference on

dependable systems and networks 2006, Philadelphia, pp 435–444

Barlow RE, Campo R (1975) Total time on test processes and

applications to failure data analysis. In: Barlow RE, Fussell J,

Singpurwalla ND (eds) Reliability and fault tree analysis. SIAM,

Philadelphia, pp 451–481

Bernstein L, Kintala C (2004) Software rejuvenation. CrossTalk

17(8):23–26

Bharadwaj R (2008) Verified software: the real grand challenge. In:

Meyer B, Woodcock J (eds) Verified software: theories, tools,

experiments. Lecture notes in computer science, vol 4171,

Springer, Berlin, pp 318–324

Bolch G, Greiner S, de Meer H, Trivedi KS (2006) Queueing networks

and Markov chains modeling and performance evaluation with

computer science applications, 2nd edn. Wiley, New York

Candea G, Cutler J, Fox A (2004) Improving availability with

recursive microreboots: a soft-state system case study. Perform

Eval 56(1–4):213–248

Cassidy KJ, Gross KC, Malekpour A (2002) Advanced pattern

recognition for detection of complex software aging in online

transaction processing servers. In: Proc. international conference

on dependable systems and networks, Washington, pp 478–482

Castelli V, Harper RE, Heidelberger P, Hunter SW, Trivedi KS,

Vaidyanathan K, Zeggert WP (2001) Proactive management of

software aging. IBM J Res Dev 45(2):311–332

Chen D, Selvamuthu D, Chen D, Li L, Some RR, Nikora AP, Trivedi

KS (2002) Reliability and availability analysis for the JPL

remote exploration and experimentation system. In: Proc inter-

national conference on dependable systems and networks,

Bethesda, pp 337–344

Cisco Systems (2001) Cisco catalyst memory leak vulnerability.

Document ID:13618, Cisco Security Advisory. http://www.cisco.

com/warp/public/707/cisco-sa-20001206-catalyst-memleak.shtml.

Accessed 22 Dec 2010

Devraj A, Mishra K, Trivedi KS (2010) Uncertainty propagation in

analytic availability models. In: Proc. IEEE symposium on

reliable distributed systems, New Delhi

Dohi T, Goševa-Popstojanova K, Trivedi KS (2000) Statistical non-

parametric algorithms to estimate the optimal software rejuve-

nation schedule. In: Proc. 2000 Pacific rim international

symposium on dependable computing, Los Angeles, pp 77–84

Dohi T, Goševa-Popstojanova K, Trivedi KS (2001) Estimating

software rejuvenation schedule in high assurance systems.

Comput J 44(6):473–485

Dumitras T, Srivastava D, Narasimhan P (2005) Architecting and

implementing versatile depend-ability. In: Gacek C, Romanov-

sky A, de Lemos R (eds) Architecting dependable systems, vol

III. Lecture notes in computer science, vol 3549, Springer,

Berlin, pp 212–231

Garg S, Puliafito A, Telek M, Trivedi KS (1995) Analysis of software

rejuvenation using Markov regenerative stochastic Petri net. In:

Proc. sixth international symposium on software reliability

engineering, Toulouse, pp 24–27

Garg S, van Moorsel A, Vaidyanathan K, Trivedi KS (1998) A

methodology for detection and estimation of software aging. In:

Proc. ninth international symposium on software reliability

engineering, Paderborn, pp 283–292

Garg S, Huang Y, Kintala CMR, Trivedi KS, Yajnik S (1999) Performance

and reliability evaluation of passive replication schemes in applica-

tion level fault tolerance. In: Proc. 29th annual international

symposium on fault tolerant computing, Madison, pp 15–18

Gray J (1986) Why do computers stop and what can be done about it?

In: Proc. 5th symposium on reliability in distributed systems, Los

Angeles, pp 3–12

Grottke M, Trivedi KS (2005a) Software faults, software aging and

software rejuvenation. J Reliab Eng Assoc Jpn 27(7):425–438

Grottke M, Trivedi KS (2005b) A classification of software faults. In:

Supplemental proc. sixteenth international IEEE symposium on

software reliability engineering, Chicago, USA, pp 4.19–4.20

Grottke M, Trivedi KS (2007) Fighting bugs: remove, retry, replicate

and rejuvenate. IEEE Comput 40(2):107–109

Grottke M, Trivedi KS (2008) Analysis of the escalated levels of

failure recovery approach. Working paper, University of Erlan-

gen-Nuremberg, Nuremberg

Grottke M, Li L, Vaidyanathan K, Trivedi KS (2006) Analysis of

software aging in a web server. IEEE Trans Reliab 55(3):411–420

Grottke M, Matias R Jr, Trivedi KS (2008) The fundamentals of

software aging. In: Proc. first IEEE workshop on software aging

and rejuvenation, Seattle

Grottke M, Nikora A, Trivedi KS (2010) An empirical investigation

of fault types in space mission system software. In: Proc. 2010

IEEE/IFIP international conference on dependable systems and

networks, Chicago, pp 447–456

Hellerstein J, Diao Y, Parekh S, Tilbury DM (2004) Feedback control

of computer systems. Wiley, New York

Hoffman G, Malek M, Trivedi KS (2006) A best practice guide to

resource forecasting for the Apache webserver. In: Proc. Pacific

rim dependability conference, Riverside, pp 183–193

Hong Y, Chen D, Li L, Trivedi KS (2002) Closed loop design for

software rejuvenation. In: Proc. workshop on self-healing,

adaptive and self-managed systems, New York

Horning JJ, Lauer HC, Melliar-Smith PM, Randell B (1974) A

program structure for error detection and recovery. In: Lecture

notes in computer science, vol 16, Springer, Berlin, pp 177–193

Hsueh M-C, Tsai TK, Iyer RK (1997) Fault injection techniques and

tools. IEEE Comput 30(4):75–82

Huang Y, Kintala C, Kolettis N, Fulton N (1995) Software

rejuvenation: analysis, module and applications. In: Proc.

twenty-fifth international symposium on fault-tolerant comput-

ing, Pasadena, pp 381–390

Hunter SW, Smith WE (1999) Availability modeling and analysis of a

two node cluster. In: Proc. 5th international conference on

information systems, analysis and synthesis, Orlando

Kourai K, Chiba S (2007) A fast rejuvenation technique for server

consolidation with virtual machines. In: Proc. international

conference on dependable systems and networks 2007, Edin-

burgh, pp 245–255

Lanus M, Liang Yin, Trivedi KS (2003) Hierarchical composition and

aggregation of state-based availability and performability mod-

els. IEEE Trans Reliab 52(1):44–52

Int J Syst Assur Eng Manag (Oct-Dec 2010) 1(4):340–350 349

123

http://www.cisco.com/warp/public/707/cisco-sa-20001206-catalyst-memleak.shtml
http://www.cisco.com/warp/public/707/cisco-sa-20001206-catalyst-memleak.shtml

Laprie J-C (ed) (1992) Dependability, basic concepts and terminol-

ogy. Springer, New York

Laprie J-C, Arlat J, Béounes C, Kanoun K, Hourtolle C (1987)

Hardware and software fault tolerance: definition and analysis of

architectural solutions. In: Proc. 17th international symposium

on fault-tolerant computing, Pittsburgh, pp 116–121

Lee I, Iyer RK (1995) Software dependability in the Tandem

GUARDIAN system. IEEE Trans Softw Eng 21(5):455–467

Lindemann C (1998) Performance modelling with deterministic and

stochastic Petri nets. Wiley, New York

Liu Y, Ma Y, Han J, Levendel H, Trivedi KS (2005) A proactive

approach towards always-on availability in broadband cable

networks. Comput Commun 28(1):51–64

Mainkar V, Trivedi KS (1996) Sufficient conditions for existence of a

fixed point in stochastic reward net-based iterative methods.

IEEE Trans Softw Eng 22(9):640–653

Marshall E (1992) Fatal error: how Patriot overlooked a Scud.

Science 255:1347

Matias R Jr, Freitas Filho PJ (2006) An experimental study on

software aging and rejuvenation in web servers. In: Proc. 30th

IEEE annual international computer software and applications

conference, Chicago, vol 1, pp 189–196

Matias R Jr, Trivedi KS, Maciel P (2010) Using accelerated life tests

to estimate time to software aging failure. In Proc. IEEE

international symposium on software reliability engineering, San

Jose, pp 211–219

Matias R Jr, Barbetta PA, Trivedi KS (2010) Accelerated degradation

tests applied to software aging experiments. IEEE Trans Reliab

59(1):102–114

Meeker WQ, Escobar LA (1998) Statistical methods for reliability

data. Wiley, New York

Mendiratta VB (1999) Reliability analysis of clustered computing

systems. In: Proc. ninth international symposium on software

reliability engineering, Paderborn, pp 268–272

Mendiratta VB, Souza JM, Zimmerman G (2007) Using software

failure data for availability evaluation. In: Designer and devel-

oper forum, GLOBECOM 2007, Washington

Montgomery DC (2004) Design and analysis of experiments, 6th edn.

Wiley, New York

Narasimhan P, Dumitras T, Pertet S, Reverte CF, Slember J,

Srivastava D (2005) MEAD: support for real-time fault tolerant

CORBA. Concurr Comput Pract Exp 17(12):1527–1545

Nelson W (1982) Applied life data analysis. Wiley, New York

Nicol D, Sanders W, Trivedi KS (2004) Model-based evaluation:

from dependability to security. IEEE Trans Dependable Secur

Comput 1(1):48–65

Pertet S, Narasimhan P (2004) Proactive recovery in distributed

CORBA applications. In: Proc. international conference on

dependable systems and networks, Florence, pp 357–366

Pertet S, Narasimhan P (2005) Causes of failure in web applications.

Carnegie Mellon University Parallel Data Lab Technical Report,

CMU-PDL-05-109

Pietrantuono R, Russo S, Trivedi KS (2010) Online monitoring of

software system reliability. In: Proc. dependable computing

conference, Tokyo, pp 209–218

Raymond ES (1991) The new hacker’s dictionary. MIT, Cambridge

Sahner RA, Trivedi KS, Puliafito A (1996) Performance and

reliability analysis of computer systems. Kluwer, Boston

Sato N, Nakamura H, Trivedi KS (2007) Detecting performance and

reliability bottlenecks of composite web services. In: Proc.

ICSOC, Vienna

Shereshevsky M, Crowell J, Cukic B, Gandikota V, Liu Y (2003)

Software aging and multifractality of memory resources. In:

Proc. international conference on dependable systems and

networks, San Francisco, pp 721–730

Silva L, Madeira H, Silva JG (2006) Software aging and rejuvenation in a

SOAP-based server. In: Proc. fifth IEEE international symposium

on network computing and applications, Cambridge, pp 56–65

Smith WE, Trivedi KS, Tomek L, Ackeret J (2008) Availability

analysis of multi-component blade server systems. IBM Syst J

47(4):621–640

Tai A, Chau S, Alkalaj L, Hecht H (1999) On-board preventive

maintenance: a design-oriented analytic study for long-life

applications. Perform Eval 35(3–4):215–232

Tobias P, Trindade D (1995) Applied reliability, 2nd edn. Kluwer,

Boston

Tomek L, Trivedi KS (1991) Fixed-point iteration in availability

modeling. In: Dal Cin M (ed) Proc. fifth international GI/ITG/

GMA conference on fault-tolerant computing systems, Springer,

Berlin, pp 229–240

Trivedi KS (2000) Availability analysis of Cisco GSR 12000 and

Juniper M20/M40. Cisco Technical Report

Trivedi KS (2001) Probability & statistics with reliability, queueing

and computer science applications, 2nd edn. Wiley, New York

Trivedi KS, Vasireddy R, Trindade D, Nathan S, Castro R (2006)

Modeling high availability systems. In: Proc. Pacific rim

dependability conference, Riverside, pp 11–20

Trivedi KS, Wang D, Hunt DJ, Rindos A, Smith WE, Vashaw B (2008)

Availability modeling of SIP protocol on IBM Websphere. In: Proc.

pacific rim dependability conference, Taipei, pp 323–330

Trivedi KS, Wang D, Hunt J (2010) Computing the number of calls

dropped due to failures. In: Proc. IEEE international symposium

on software reliability engineering, San Jose, pp 11–20

Vaidyanathan K, Trivedi KS (2005) A comprehensive model for

software rejuvenation. IEEE Trans Dependable Secur Comput

2(2):124–137

Vaidyanathan K, Harper RE, Hunter SW, Trivedi KS (2001) Analysis

and implementation of software rejuvenation in cluster systems.

In: ACM SIGMETRICS conference on measurement and

modeling of computer systems, Cambridge, USA, pp 62–71

Vilkomir SA, Parnas DL, Mendiratta VB, Murphy E (2005)

Availability evaluation of hardware/software systems with

several recovery procedures. In: Proc. twenty-ninth annual

international computer software and applications conference,

Edinburgh, UK, pp 473–478

Wang D, Trivedi KS (2009) Modeling user-perceived reliability

based on user behavior graphs. Int J Reliab Qual Saf Eng

16(4):303–330

Wang D, Fricks R, Trivedi KS (2003) Dealing with non-exponential

distributions in dependability models. In: Kotsis G (ed),

Performance evaluation—stories and perspectives, Österreichi-

sche Computer Gesellschaft, Wien, pp 273–302

Winslett M (2005) Bruce Lindsay speaks out. In: ACM SIGMOD

Record, June 2005, pp 71–79

Xie W, Hong Y, Trivedi KS (2005) Analysis of a two-level software

rejuvenation policy. Reliab Eng Syst Saf 87(1):13–22

350 Int J Syst Assur Eng Manag (Oct-Dec 2010) 1(4):340–350

123

	Software fault mitigation and availability assurance techniques
	Abstract
	Introduction
	Classification and treatment of software faults
	Software fault classification
	Software fault mitigation techniques

	Quantified availability assurance
	Recovery from failures caused by Mandelbugs
	Proactive recovery and aging-related bugs
	Case studies of analytic models
	SIP on IBM WebSphere
	Software rejuvenation schedule

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

