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Abstract  This investigation employed different ANN 
infrastructures for predicting the quality of sugarcane juice 
under varying microfluidization pressures (50–200 MPa) and 
cycles (1–7) which was previously unexplored. Two hidden 
layer (HL) activation functions (tansigmoid, logsigmoid) and 
learning algorithms (LM, GDX) with varying hidden layer 
neurons (HLNs) were tested to predict the color, total phenol 
content, total flavonoid content, chlorophyll content, total 
and reducing sugars, polyphenol oxidase activity, peroxidase 
activity, sucrose neutral invertase activity, aerobic plate 
count, yeast and mold count, particle size, sensory score 
and sedimentation rate of sugarcane juice under different 
microfluidization processing conditions. Results showed that 
the combination of LM + logsigmoid, GDX + logsigmoid 
and GDX + tansigmoid produced > 90% prediction accuracy. 
Among these models, GDX + tansigmoid exhibited 91.7% 
accuracy on training, and 96% accuracy on testing using 
relatively lower number of neurons (10 HLNs), and was 
therefore selected to predict the quality characteristics of 
sugarcane juice.

Keywords  Sugarcane juice · High pressure · Food · 
Artificial intelligence · ANN · Enzyme

Abbreviations
ANN	� Artificial neural network
LM	� Levenberg–Marquardt
GDX	� Gradient descent with adaptive learning rate 

backpropagation
HLN	� Hidden layer neurons
T, L	� Tansigmoidal, Logsigmoidal
i, j, k	� ith, jth and kth neuron of the input, hidden and 

output layer, respectively
wij	� Network weight from the input to the hidden layer
vjk	� Network weight from the hidden to the output 

layer
bj	� Hidden layer neuron bias
bk	� Output layer neuron bias

Introduction

Due to the high complexity of biological materials, the 
design of processing operations and their control systems 
becomes difficult. In such cases, the use of generic 
regression models often fails to provide desired predictive 
results and therefore, advanced modelling techniques 
are required for better control and process optimization. 
Recently, the application of machine learning tools in 
bioprocessing operations has gained popularity due to 
its robustness, efficient pattern recognition capacity and 
adaptability to new and imprecise data (Bhagya Raj and 
Dash 2022). Among such tools, artificial neural networks 
(ANNs) have been widely applied for various food and food 
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waste processing operations such as drying (Tarafdar et al. 
2019a, b; Kumar et al. 2019), extraction (Muthusamy et al. 
2019), hydrolysis (Sirohi et al. 2021), pressure cooking 
(Torrecilla et al. 2007), extrusion (Dalbhagat and Mishra 
2019), filtration, food quality detection, fermentation (León-
Roque et al. 2016), and food traceability (Wang et al. 2017). 
Among such operations, microfluidization is an emerging 
liquid/semi-solid food processing technique that relies on 
high velocity impact, intense shear and occasional cavitation 
to alter the food quality characteristics as desired. Although 
microfluidization has been extensively used for several liquid 
food commodities such as carrot juice (Koley et al. 2020), 
peach juice (Wang et al. 2019), sea buckthorn juice (Abliz 
et al. 2021), sapodilla juice (Singh et al. 2022), yam juice 
(Liu et al. 2021), tomato juice (Dai et al. 2022), among many 
others; the application of ANN to the microfluidization 
process is extremely limited (Tarafdar et al. 2020; Santos 
et al. 2022). Considering that a substantial share of the 
work on food applications of microfluidization has been 
done in just the past 5 years, it is highly likely that this 
technique is expected to gain immense popularity among 
the juice processing industries in the near future. It is 
therefore essential that intelligent models be applied to 
this mechanical processing technique to initiate research in 
developing a process model that could enable the prediction 
of the quality parameters of beverages with variation in 
microfluidization processing conditions. To this effect, 
ANNs could be exploited to generate robust process models 
with adaptive prediction capabilities.

To provide a brief overview, ANNs are data-driven 
machine learning models that can process input signals 
in a similar way to that of the human brain. The basic 
infrastructure of ANN consists of an input layer (consisting 
of independent variables), one or more hidden layer (based 
on the complexity of the problem), and an output layer 
(consisting of dependent variables). Each layer consists 
of one or more nodes (or neurons) which can be fired (or 
activated) using a transfer function. ANNs exhibit the 
capability to recognize complicated patterns in data and 
can be trained through examples using various training 
algorithms (Abiodun et al. 2019). For supervised training, 
the ANN is provided with the inputs and outputs and allowed 
to learn the data pattern at a designated learning rate. The 
developed model can then be tested and validated through 
unknown inputs.

Although the use of ANN is expected to express 
its superiority over traditional multiple regression and 
semi-empirical models, this may not be the case for all 
bioprocessing operations. In such cases, it is important to 
evaluate the efficacy of ANN for the specific operation being 
dealt with. Therefore, in this work, ANNs were applied to 
the microfluidization process with sugarcane juice (plant-
based tropical thirst-quenching drink) as the test beverage. 

To the best of our knowledge, there are no studies that have 
modelled the microfluidization processing of sugarcane juice 
using ANN, till date. The current study will also evaluate 
the predictive capabilities of ANN with varying modelling 
conditions and provide the optimum model setup for the unit 
operation under consideration.

Materials and methods

Material procurement and processing

Sugarcane stems (var. Co0238) were procured from a farm 
in Kundeshwari, Kashipur, Uttarakhand (India). The stems 
were brought to the lab, cleaned, sized to 0.45 m length 
pieces and blanched in hot water at 90 °C for 5 min. The 
blanched stems were cooled under running portable water 
at 25 °C, and crushed using a twin-roller mechanical cane 
crusher to obtain the juice. The crushing operation was 
repeated thrice on each stem to recover maximum amount 
of sugarcane juice. The juice was then filtered through a 
muslin cloth and subjected to microfluidization.

Sugarcane juice was microfluidized in a lab-scale 
microf luidizer with a Y-type diamond interaction 
chamber (M-110P Microfluidics Corp., USA) under 
different pressure-cycle combinations. Four different 
microfluidization pressures (50, 100, 150, 200 MPa) and 
cycles (1, 3, 5, 7) were used. Passing the juice through the 
microfluidizer once constituted a single cycle. The outlet 
temperature of the juice was controlled at 25 °C through 
circulation of cold water. The microfluidized juice was 
collected in sterile glass bottles, capped, kept at 4 °C and 
analyzed for quality characteristics within 24 h.

Determination of sugarcane juice quality parameters

The microfluidization process was intended to preserve 
the quality of sugarcane juice in terms of maintaining the 
physico-chemical and functional properties, inactivating 
deteriorative enzymes, reducing microbial load and lowering 
the sedimentation rate. In this regard, a total of 18 responses 
including the total soluble solids (TSS), antioxidant activity 
by four assays (2,2-diphenyl-1picryl hydrazil radical 
scavenging, Ferric chloride antioxidant power, Hydroxyl 
radical scavenging activity and metal ion chelating activity 
assay), total phenolic content (TPC), total flavonoid content 
(TFC), aerobic plate count (APC), yeast and mold count 
(YMC), polyphenol oxidase activity (PPO), peroxidase 
activity (POD), sucrose neutral invertase activity (SNI), 
reducing sugars (RS) and total sugars (TS), chlorophyll 
content (CHL), color change (ΔE), sensory acceptability 
and sedimentation rate (SR) were evaluated using standard 
procedures. TSS was measured using a digital refractometer 
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(RX-7000, Atago, Japan). The detailed methodology of the 
antioxidant assays can be found in the work of Tarafdar et al. 
(2021a, b, c). TPC and TFC were analysed using the Folin-
Ciocalteu reagent assay (Singleton et al. 1999) and the AlCl3 
colorimetric assay (Chang et al. 2002), respectively. APC 
and YMC were determined using the protocols specified 
by APHA. PPO, POD and SNI were determined using the 
protocols given by Mao et al. (2007) and Etzbach et al. 
(2019). RS and TS was evaluated using the method detailed 
by Miller (1959) and Dubois et al. (1956), respectively. CHL 
was analysed using the method of Qudsieh et al. (2002), and 
ΔE was determined using a handheld colorimeter (Konika 
Minolta Chroma-400, Japan). SR was determined using 
the method described by Tarafdar et al. (2021a, b, c), and 
sensory acceptability was calculated on a 9-point hedonic 
scale with 29 semi-trained panellists with their prior consent. 
The major focus of this investigation was to elucidate the 
applicability of ANN to the microfluidization process.

Data modelling through artificial neural network

The data collected over 16 experiments was subjected to 
artificial neural network (ANN) modelling in MATLAB 
v. 2012b (MathWorks Inc., USA). The ANN architecture 
was built with one input, one hidden and one output layer 
with a feed-forward back propagation (FFBP) network. 
This network allows for the training error (difference in 
predicted output and actual output) to be backpropagated 
to the network thereby allowing it to re-evaluate its weights 
and biases. The backpropagation process continues till a 
desired minimum level of training error is obtained. The 
microfluidization pressure (50, 100, 150, 200 MPa) and 
number of cycles (1, 3, 5, 7) were fed to the model as inputs 
while the quality characteristics described earlier were 
provided as targets.

Different activation functions were used for constructing 
the ANN architecture. In the output layer, a linear 
approximation activation function (purelin) was used while 
in the hidden layer, both tansigmoidal and logsigmoidal 
activation functions were used individually, and their 
relative contribution in model improvement was evaluated 
based on the correlation coefficient (R) and the mean square 
error (MSE). The purpose of the activation functions was 
to determine if a particular input signal is important to the 
output prediction process. Additionally, the effect of two 
separate training algorithms namely, Levenberg–Marquardt 
(LM), and Gradient descent with momentum and adaptive 
learning rate backpropagation (GDX), on the model 
prediction capability was also tested. The training algorithms 
were chosen based on their speed of convergence (attainment 
of minimum error). LM is a fast-converging algorithm 
while GDX is a slow-converging algorithm. Although fast-
conveging algorithms can lead to more accurate training, 

it could sometimes overshoot the minimum error point 
hence, the latter was also considered. The number of 
hidden layer neurons (HLNs) was varied from 5 to 30 in 
steps of 5 neurons. The range of the neurons was decided 
based on preliminary model runs which showed network 
degeneration beyond 30 neurons. The training condition 
with the highest R (training) at the lowest possible HLN 
and MSE (validation), was considered desirable. The data 
was randomly divided into 70%, 15% and 15% for training, 
validation and testing, respectively using the dividerand 
command of MATLAB. The models were trained thrice 
and the best condition set based on higher training R was 
selected for further evaluation.

Results and discussion

Separate ANN models were constructed based on 
difference in training algorithms (LM, GDX), hidden layer 
transfer functions (tansigmoid or T, logsigmoid or L) and 
hidden layer neurons (5–30). Initially, the combination of 
these conditions was screened based on a cut-off criterion 
of R = 0.95 (Fig. 1A). Based on this preliminary screening, 
it was observed that LM + T models exhibited R in the 
range of 0.69–0.90 and were therefore, not considered 
further. Tansigmoidal functions vary in the range of − 1 
to + 1. Hence, the tansigmoidal function will generate 
a value closer to − 1 if the argument of the function is 
significantly negative, thus continuing the model learning 
process. In contrast, a logsigmoidal function which varies 
in the range of 0 to 1 will generate a value of 0 for any 
values that tend to be negative which will almost stop the 
model from learning from the dataset (Javed et al. 2022). 
This indicates that a faster convergence algorithm with 
tansigmoidal activation function may converge too fast and 
could lead to network degeneration which was observed in 
the current investigation (LM + T). In the remaining three 
conditions, two of the models (LM + L and GDX + L) met 
the desired criteria at HLNs > 15 (R = 0.97–0.99) while 
GDX + T model met the criteria at 10 HLNs (R = 0.958). 
It can be also inferred from the results that models with a 
tansigmoidal transfer function were able to reach R > 0.90 
at lower HLNs than models with a logsigmoidal transfer 
function. In case of LM + L, the algorithm may reach 
convergence sooner (due to LM) where it can reduce the 
learning rate (due to L) and thus achieve higher accuracy. 
However, with a slower convergence algorithm such as 
GDX which constitutes a variable learning rate component, 
both activation functions will lead to good prediction 
accuracy. Overall, the model GDX + T was preferred as 
it could reach the desired accuracy (R2 = 0.917) at lower 
HLNs, which was one of the criteria for model selection. 
Tansgimoidal activation function in the hidden layer has 
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also been preferred by other researchers for the prediction 
of hydration rate of chickpea (Kumar et  al. 2021), to 
quantify secondary metabolites in grapes (Boido et al. 
2022), modelling the volume and surface area of apple 

(Ziaratban et al. 2017) and for infrared, cabinet, vibro-
fluidized bed and vacuum drying of food commodities 
(Sadeghi et al. 2019; Subramanyam and Narayanan 2023; 
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Dhurve et al. 2021; Tarafdar et al. 2021c), among other 
works.

To further confirm the model selection, the validation 
MSE was considered based on a cut-off criterion of 0.1 
(Fig. 1B). It was observed that LM + L and GDX + T models 
showed MSE < 0.1 at 5 HLNs. Although both models had 
a lower R at 5 HLNs, the GDX + T model met the MSE 
criteria even at 10 HLNs and was therefore selected for 
the prediction of sugarcane juice quality parameters based 
on microfluidization pressure-cycle combinations. The 
developed model was then tested and validated with the 
remaining 30% of the data (divided equally), which was 
previously not used for training. The model revealed a 
R of 0.98 (R2 = 0.96) for testing, and 0.99 (R2 = 0.98) for 
validation (Fig. 1C). It is noteworthy that the test dataset 
which was used to test the prediction capability of the 
trained model showed 96% accuracy. Ciğeroğlu et  al. 
(2018) also suggested that closeness in the training and 
testing R2 is a sign of an efficient model. Further, to avoid 
model overfitting, the number of iterations was limited to 
the point where the error on the validation dataset exceeded 
the training error. The weights and bias of the selected 
model at constrained iterations has been shown in Table 1. 
To check whether the model predictions were unbiased, 
the error associated with each quality parameter at all 
microfluidization pressure-cycle combination was assessed. 
Figure 1D shows that the distribution of error was relatively 
uniform ensuring unbiased predictions.

Conclusion

This work successfully developed a neural network based 
intelligent model for predicting the quality characteristics 
of microfluidized sugarcane juice based on microfluidization 
pressures and cycles. The results revealed that the selected 
ANN architecture (GDX, tansigmoid, 10 HLNs) can be used 
to predict the juice characteristics with reasonably high 
accuracy (> 90%). Testing and validating the model with a 
new dataset also confirmed the prediction accuracy (96%) of 
the model. The findings of this work are meant to facilitate 
other researchers in developing ANN models for the 
microfluidization process of other food commodities. Such 
studies may lead to the development of a generalized neural 
network architecture for the microfluidization technology.
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