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Abstract Listeriosis is a severe disease caused by the food-
borne pathogen Listeria monocytogenes, posing a significant 
risk to vulnerable populations such as the elderly, pregnant 
women, and newborns. While relatively uncommon, it has a 
high global mortality rate of 20–30%. Recent research indi-
cates that smaller outbreaks of the more severe, invasive 
form of the disease occur more frequently than previously 
thought, despite the overall stable infection rates of L. mono-
cytogenes over the past 10 years. The ability of L. monocy-
togenes to form biofilm structures on various surfaces in 
food production environments contributes to its persistence 
and challenges in eradication, potentially leading to con-
tamination of food and food production facilities. To address 
these concerns, this review focuses on recent developments 
in epidemiology, risk evaluations, and molecular mecha-
nisms of L. monocytogenes survival in adverse conditions 
and environmental adaptation. Additionally, it covers new 
insights into strain variability, pathogenicity, mutations, and 
host vulnerability, emphasizing the important events frame-
work that elucidates the biochemical pathways from inges-
tion to infection. Understanding the adaptation approaches 
of L. monocytogenes to environmental stress factors is cru-
cial for the development of effective and affordable pathogen 
control techniques in the food industry, ensuring the safety 
of food production.
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Introduction

Listeria monocytogenes is a Gram-positive, facultative 
anaerobic bacterium that grows best at temperatures between 
− 0.4 °C and 44 °C, with an optimal temperature of 37 °C. 
It is motile between 22 and 28 °C but non-motile above 
30 °C (Won et al. 2020). It can able to survive with a wide 
pH range between 4.6 and 9.5, a relatively moderate water 
activity  (aw 0.90), and salinity levels of up to 20% (Te Giffel 
and Zwietering 1999). These bacterial growth parameters 
allowed them to survive and proliferate in unfavorable envi-
ronmental circumstances, which are frequently encountered 
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at food production plants. Consequently, L. monocytogenes 
is a significant food-borne pathogen that causes the illness 
known as listeriosis, which can manifest as sporadic infec-
tions or disease outbreaks (Buchanan et al. 2017).

Listeria monocytogenes is still a major contributor to mild 
to severe food poisoning. It might present as a mild, febrile 
sickness with few problems, or it can present as systemic lis-
teriosis, which is much more serious and often results in hos-
pitalization and even death (Osek et al. 2022). Despite the 
widespread presence of bacteria in the environment and the 
relatively frequent isolation of the bacterium in foods, the 
incidence of listeriosis is normally low in the general popu-
lation (Ricci et al. 2018). Systemic listeriosis is uncommon 
in healthy people but is more common in pregnant women, 
the elderly, and those with compromised immune systems 
(Mateus et al. 2013). Efforts to control L. monocytogenes in 
various food categories, particularly meats and meat prod-
ucts, have improved since the 1990s, leading to a decrease 
in its prevalence. However, over the past decade, the rate of 
disease has remained consistent, and new outbreaks have 
raised concerns about our understanding of the factors influ-
encing foodborne illness, including virulence, hosts, and 
food matrix. These outbreaks have also cast doubt on previ-
ous risk assessments (Desai et al. 2019). According to the 
most recent report from the European Food Safety Authority 
(EFSA) and the European Centre for Disease Prevention and 
Control (ECDC) in 2020, there were 1,876 confirmed cases 
of invasive listeriosis in humans in the member states of the 
European Union. The notification rate was 0.42 cases per 
100,000 people, with a high hospitalization rate of 97.1% 
(Osek et al. 2022). In the United States, the Centers for Dis-
ease Control and Prevention (CDC) reported approximately 
1600 cases of L. monocytogenes infections each year, with 
a hospitalization rate of around 94% (Carstens et al. 2019).

Overall, this review highlights the gravity of listeriosis, 
the challenges posed by L. monocytogenes in food safety, and 
the importance of gaining knowledge about its adaptation 
strategies. By comprehensively addressing epidemiological 
aspects, risk assessments, and molecular mechanisms, this 
review aims to contribute to the development of effective 
control measures for L. monocytogenes in the food industry.

Modern epidemiology breakthroughs

Since 2001, the reporting of listeriosis cases has been man-
dated in the United States. To effectively track pathogenic 
strains, identify associations and outbreaks of foodborne 
illnesses, and establish connections between clinical cases 
and specific food products, public health, and regulatory 
agencies have developed and implemented molecular typ-
ing methods such as whole genome sequencing (WGS) and 
pulsed-field gel electrophoresis (PFGE) (Maury et al. 2019). 

WGS provides a comprehensive nucleotide sequence of the 
entire bacterial genome, enhancing the precision of data 
used in routine epidemiological investigations by public 
health organizations. To analyze and compare WGS data, 
various bioinformatics tools have been developed (Brown 
et al. 2019). In the United States, regulatory bodies like the 
Food and Drug Administration (FDA) and the Center for 
Food Safety and Applied Nutrition (CFSAN) under the FDA, 
along with the Centers for Disease Control and Prevention 
(CDC), utilize WGS for their investigations. The FDA’s 
Center for Food Safety and Applied Nutrition examines vari-
ations in Single Nucleotide Polymorphisms (SNPs) and uti-
lizes whole genome multi-locus sequence typing (wgMLST) 
to assess the relatedness of different isolates and identify 
allele differences (Chen et al. 2017). The CDC, FDA, and 
the Food Safety and Inspection Service (FSIS) have incorpo-
rated or are in the process of implementing WGS as a regular 
practice. The FDA has developed the GenomeTrakr Data-
base, a publicly accessible database that contains numerous 
sequences of L. monocytogenes genomes, which continues 
to expand (Miro et al. 2020). The USDA FSIS and FDA 
collect isolates of L. monocytogenes, sequence them, and 
compare them for matching with the assistance of the CDC. 
This approach has led to the discovery of new outbreaks 
with fewer cases and previously uninvestigated food sources 
(Parida and Mohapatra 2016). Currently, the CDC is work-
ing on a 5-year molecular monitoring project to enhance 
the connection between clinical and food isolates, aiming to 
replace conventional testing methods. WGS is also valuable 
in researching the virulence, evolution, population diver-
sity, and global epidemiology of L. monocytogenes over both 
short and long terms (Miro et al. 2020).

Food vehicle and epidemics

There have been more outbreaks with fewer cases as a result 
of recent breakthroughs in detecting methods. Certain impli-
cated foods have not been considered as likely vectors based 
on past experience or risk assessments (Houlihan and Whit-
worth 2019). Recent epidemics have brought to light the 
importance of considering the risk of infection from even 
small doses and of expanding the population of suscepti-
ble persons to include children. The number of listeriosis 
outbreaks and isolated cases reported across the European 
Union has grown. There were 1763 confirmed cases of lis-
teriosis in humans in 2013, as reported by 27 EFSA mem-
ber states (EFSA, 2015). The rate of infections increased by 
8.6% from 2012 to 2014 reaching 0.44 cases per 100,000 
individuals, the majority of reported cases were report-
edly acquired at home (EFSA, 2022). The vast majority of 
reported cases reportedly originated from within the United 
States. For any zoonosis under EU observation, the average 
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rate of hospitalized cases is 99.1%. The European Union 
was responsible for 156 deaths out of a total of 1228 con-
firmed cases (or 69.7%). Seven incidents of food poisoning 
were reported by five Member States, and all of them were 
confirmed. (EFSA, 2015; EFSA, 2022) One of the foods 
used as a test subject was a mixed salad. Cheese, meat, pig 
meat, and vegetables and juices and their products rounded 
out the food carriers.

The number of foodborne illness outbreaks in the 
United States attributed to ready-to-eat (RTE) red meats 
and poultry decreased between 1998 and 2008, a result 
of both industry and government efforts. However, there 
was no decline in the frequency of listeriosis outbreaks 
that were linked to dairy products. Foods currently classi-
fied as “moderate risk” or “low risk” have been connected 
to several listeriosis outbreaks in the United States since 
2010 (Brusa et al. 2021). Besides this, fruits and vegeta-
bles including celery, lettuce, cantaloupe, sprouts, stone 
fruit, and caramel apples were also included. In March 
2015, a listeriosis outbreak linked to ice cream was uncov-
ered using routine surveillance. The route of transmission 
of Listeria is represented in Fig. 1. After looking back 
through the PulseNet database and the WGS data, we 
were only able to link nine of the patients to this outbreak 
(Pouillot et al. 2016). All of the patients were hospitalized 
(at least eight of them took the product while being treated 
for an existing illness), and two of them tragically lost their 
lives there. Ten cases of listeriosis have been connected to 

machine-cut, diced celery served at five Texas hospitals. 
All of the people who contracted listeriosis were over the 
age of 55, with an average age of 80, and they all had pre-
existing medical issues that necessitated hospitalization. 
In a total of five cases, listeriosis was the underlying cause 
of death (Gaul et al. 2013).

Whole peaches, nectarines, plums, and pluots were 
among the stone fruits recalled in July 2014 by a Califor-
nia packaging company due to concerns about L. monocy-
togenes contamination. After uploading the PFGE types 
from the stone fruits to PulseNet, researchers obtained 
four exact PFGE matches from patients in August (Chen 
et al. 2016). Subsequent investigation linked nectarines 
to two of the cases; in one patient it was nectarines; in 
the other, it was nectarines and peaches. WGS research 
(Chen et al. 2016) concluded that the other two incidents 
were unrelated to the recalled fruit. In 2014, five people 
feel unwell after eating sprouts; all five were hospitalized, 
and two died. Listeria monocytogenes was discovered in 
sprout and irrigation water samples during a routine FDA 
examination. In addition, L. monocytogenes was found in 
the environment after further testing (Garner and Kathar-
iou 2016). According to the WGS results, there was a close 
connection between all of the isolates. L. monocytogenes 
was still present in the workplace after that year, according 
to a follow-up investigation (Garner and Kathariou 2016; 
Moura et al. 2017).

Fig. 1  Schematic representation of transmission routes of Listeria monocytogenes 
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Potential impact on food safety

More than 200 diseases are known to spread through food 
and food products. According to annual reports from the 
World Health Organization (WHO) for the years 2007–2015, 
more than a million people contract food-borne infections 
annually (Mehlhorn 2016). The Centers for Disease Con-
trol and Prevention (CDC) reported that 76 million people 
in the USA are infected from food-borne infections every 
year, and 5000 of them die. Despite advancements in food 
product manufacture, the risk of food borne illnesses has 
increased over the past 20 years. According to estimates, 
about a quarter of the world’s population is susceptible 
to illnesses brought on by tainted food products, making 
mortality from such illnesses the primary cause of public 
health concern (CDC 2018). The WHO (2007–2015) rec-
ommendations state that 420,000 people die each year from 
food-borne infections, which cause one-third of all deaths in 
children under the age of five (Mehlhorn 2016).

Foodborne illnesses are caused by several different 
agents, including bacteria, viruses, and parasites, with bacte-
ria being the most common. One of the main factors respon-
sible for catastrophic illnesses in humans and animals is L. 
monocytogenes, which is spread through the eating of meat, 
poultry, and RTE foods like milk and other dairy products 
(Bintsis 2017). Milk only accounts for roughly 3% of the 
daily energy intake of Asian and African people, compared 
to estimates for Europe and Oceania countries where milk 
is a far more common staple. This explains why Asian and 
African populations receive only 6–7% of their dietary pro-
tein from animal sources (Górska-Warsewicz et al. 2019), 
whereas European nations receive 19%. Milk and milk prod-
ucts are high in protein, minerals like calcium, magnesium, 
selenium, riboflavin, vitamin  B5, and  B12, and are therefore 
essential for human growth and function, especially in the 
case of pregnant women and young children. However, 
these nutrients may also provide the ideal environment for 
the growth of contaminating bacteria like Listeria spp. and 
other slow-growing bacteria (Shamloo et al. 2019).

In 1983, Wechsler et al. (1983) discovered that 2% of 
pasteurized milk in Massachusetts had L. monocytogenes. 
Cheng and Han (2020) reported that L. monocytogenes 
causes mastitis in dairy cows and that this disease can taint 
the milk that the cows produce. Multiple studies on L. mono-
cytogenes in milk and dairy products have been conducted 
since then. Raw milk contamination rates as high as 45% 
in Spain and 12% in the United States have been observed 
(Fenlon and Wilson 1989). A Brazilian researcher studied 
the prevalence of Listeria spp. in raw and pasteurized milk 
between October 1989 and 1990 and identified that the bac-
teria in 12.7% of raw milk samples and 0.9% of pasteurized 
milk samples (Moura et al. 1993). Another study conducted 
over a year at a milk processing facility in Northern Ireland 

and published in 2019 found that 4.4% of raw milk samples 
and 5.6% of pasteurized milk samples were infected with 
Listeria spp., (Shamloo et al. 2019). A survey conducted in 
Latvia found that Listeria spp. was most commonly found 
in raw milk that had been prepared using traditional meth-
ods. Bulk milk from an organic dairy farm was most likely 
to have L. monocytogenes, while the rate of infection was 
found to be three times higher in milk samples from con-
ventional dairy farms, with 33 samples infected compared to 
211 samples (Konosonoka et al. 2012). Researchers in Ethio-
pia found that raw milk and other dairy products contained 
5.6% of Listeria spp., which includes L. monocytogenes. In 
a surprising finding, scientists determined that raw milk had 
the lowest contamination rate (18.9%) compared to all other 
types of milk (Seyoum et al. 2015).

A Finnish study found that milk could get contaminated 
after pasteurization. Bottled raw milk had higher L. mono-
cytogenes (4.8% vs. 1.7%) than fresh bulk tank milk (Rod-
ríguez-Díaz et al. 2022). Milk filter socks had 39% germs. 
They found that refrigerating milk reduced Listeria growth. 
The latest Iranian report from Isfahan found Listeria spp. in 
raw milk, ice cream, cream, and porridge at 5.49%, 19.04%, 
11.11%, and 4%, respectively (Shamloo et al. 2019). How-
ever, they found no Listeria spp. in the yogurt, butter, kashk, 
or cheese. L. innocua and L. monocytogenes were the two 
most dominant species, with prevalence rates of 5.44% and 
1.36%, respectively, according to earlier data from Iran 
(Sayevand et al. 2018).

Survival strategies of L. monocytogenes in adverse 
environmental conditions

Temperatures

Listeria monocytogenes, a versatile Gram-positive bacte-
rium, possesses adaptive mechanisms that enable it to grow 
and survive in a wide range of temperatures. The bacterium 
can withstand low temperatures without significant changes 
in its live population, allowing it to persist in refrigerated 
environments (Buchanan et al. 2017). When exposed to cold 
stress, L. monocytogenes exhibit distinct responses to ensure 
its survival. To accumulate compatible solutes and enhance 
its cold tolerance, L. monocytogenes utilizes a chill-activated 
transport system that facilitates the uptake of glycine betaine 
and carnitine from the surrounding environment (Angelidis 
and Smith 2003). These organic osmolytes, found in various 
foods, provide support for the bacterium’s ability to multiply 
and survive at lower temperatures. The gbu operon encodes 
the glycine betaine transporter (gbu), while the opuC ABC 
transporter, derived from the opuC operon, is responsible for 
the transport of carnitine in response to cold shock (Ange-
lidis and Smith 2003).
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In response to cold stress, the sigma factor protein σB 
(SigB) in L. monocytogenes plays a crucial role. SigB is 
activated upon temperature shift and enables the bacterium 
to accumulate solutes like betaine and carnitine (Dorey et al. 
2019). The absence of SigB impairs the bacterium’s ability 
to adapt to lower temperatures, particularly in stationary-
phase cells (Jaishankar and Srivastava 2017). SigB is also 
involved in regulating specific genes, such as the opuCA 
gene, which encodes the opuCA protein with ATPase-cou-
pled transmembrane transporter activity (Osek et al. 2022). 
At higher temperatures, L. monocytogenes responds by pro-
ducing heat shock proteins (HSPs). These proteins, catego-
rized into three classes, play roles in stabilizing, repairing, 
and preventing the aggregation of denatured proteins within 
the bacterial cell (Buchanan et al. 2017). Class I HSPs, 
including grpE, dnaK, dnaJ, groEL, and groES, act as intra-
cellular chaperones and are upregulated when heat-induced 
protein denaturation occurs. The regulation of class I HSP 
genes involves the HrcA repressor. In growth-restricting 
conditions, the alternative sigma factor SigB is essential 
for the transcription of class II HSP genes (Buchanan et al. 
2017). Class III HSP genes, such as clpP, clpE, and clpC 
operons, are negatively regulated by the ctsR regulator. The 
mcsB gene within the clpC operon produces mcsB kinase, 
which prevents the binding of ctsR to gene promoters, facili-
tating gene expression upon temperature increase (Buchanan 
et al. 2017).

pH

Foods that have undergone acidification, a common preser-
vation technique for dairy products, meat, and vegetables, 
create a low pH environment through fermentation by bac-
teria present in the raw food or added as starter cultures 
(Osek et al. 2022). L. monocytogenes encounters such acidic 
conditions in the digestive system of its host. The low pH 
environment leads to an increase in hydrogen proton con-
centration, inhibiting microbial growth. Interestingly, low 
pH also enhances the virulence of L. monocytogenes and 
protects against other environmental stressors, allowing 
the bacteria to persist (Chlebicz and Śliżewska 2018). To 
maintain optimal intracellular pH for growth and survival, 
L. monocytogenes employs various metabolic and homeo-
static mechanisms. It utilizes the glutamate decarboxylase 
(GAD) system and an internal proton pump to enhance 
cytoplasmic buffer capacity (Wiktorczyk-Kapischke et al. 
2023). The GAD mechanism is considered a primary mecha-
nism for intracellular homeostasis. Most L. monocytogenes 
strains possess five genes associated with GAD, including 
three decarboxylases (gadD1, gadD2, and gadD3) and two 
antiporters (gadT1 and gadT2) (Karatzas et al. 2012). These 
genes are located in three distinct genetic loci: gadD1T1, 
gadT2D2, and gadD3. Glutamate decarboxylase converts 

cytosolic glutamate to the neutral molecule γ-aminobutyrate 
(GABA), resulting in a drop in internal proton levels and an 
increase in the intracellular pH of L. monocytogenes cells 
(Osek et al. 2022).

In the food production environment, there are several sub-
lethal alkaline stress factors, such as detergents and disin-
fectants that L. monocytogenes encounters. The bacterium 
has developed mechanisms to tolerate high pH-related envi-
ronments, leading to cross-resistance against more severe 
stress factors like heat, alkali, ethanol stresses, and clean-
ing operations (Buchanan et al. 2017). L. monocytogenes 
responds to alkaline stress through various strategies to 
maintain cytoplasmic pH. These include deamination of 
amino acids and fermentation of carbohydrates to increase 
intracellular acid production. Additionally, the bacteria acti-
vate transporters and enzymes crucial for cell surface modi-
fications and proton retention (Diether and Willing 2019). 
Research has shown that monovalent cation-proton antiport-
ers play a vital role in maintaining neutral cytoplasmic pH, 
enabling bacterial growth under alkaline conditions (Osek 
et al. 2022).

Osmotic shock

The food-borne bacterium L. monocytogenes is remarkably 
resistant to osmotic stress and high salt concentrations. It 
grows in a 12% NaCl medium and can survive in a 20% 
NaCl environment (Osek et al. 2022). Plasmolysis and a 
drop in intracellular turgor pressure result from the high 
amounts of NaCl present in the environment, which limits 
bacterial growth. Increased osmotic pressure and decreased 
electrochemical potential across the cell membrane caused 
by NaCl effect on L. monocytogenes by disrupting the ATP-
generating process of oxidative phosphorylation (Osek 
et al. 2022). Listeria monocytogenes use both primary and 
secondary response mechanisms during osmoadaptation, 
its reaction to osmotic stress. The high-affinity KdpABC 
transporter system and the low-affinity system produced by 
the lmo0993 gene are essential for the organism to adjust to 
high salt concentrations (Buchanan et al. 2017). To survive 
in environments with a lot of salt, L. monocytogenes relies 
heavily on these transporters. Intriguingly, L. monocytogenes 
activates many osmotolerance-associated genes not only in 
response to osmotic stress but also to other stressful envi-
ronmental circumstances such as low temperature, low pH, 
and artificial food acidification. These genes aid the virus in 
replicating and adapting to its environment (Angelidis and 
Smith 2003). Genes involved in the uptake of b-glucoside, 
galactose, fructose, and cellobiose are downregulated in L. 
monocytogenes under osmotic stress conditions. When bac-
teria are subjected to osmotic stress, their growth rate slows 
down and they take in less glucose (Angelidis and Smith 
2003).
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Strain variation and pathogenicity

Listeria monocytogenes exhibit resistance and tolerance 
to both phages and quaternary ammonium disinfectants 
(quats). The ability to tolerate disinfectants can arise from 
the acquisition of new genes or gene mutations (Møretrø 
et al. 2017). Multiple efflux mechanisms, acquired through 
horizontal gene transfer, mediate resistance to quats. One 
such mechanism is mediated by Tn6188, typically found 
in serotype 1/2a strains, which carries qacH and facilitates 
the efflux of quaternary ammonium disinfectants (Müller 
et al. 2014). Another mechanism involves the gene bcrABC, 
carried by a separate transposon and commonly found on 
plasmids in strains belonging to various clonal groups and 
serotypes, which also mediates quat tolerance via efflux. 
Additionally, ermB, located on a chromosomal island, medi-
ates quat resistance in the CC8 clone associated with the 
2008 outbreak of listeriosis in Canada caused by deli meats 
(Partridge et al. 2018).

Different strains of L. monocytogenes have different lev-
els of virulence; however, serotype 4b is commonly linked 

to epidemics in the United States (Buchanan et al. 2017). 
The reported pathogenicity islands and genes found in L. 
monocytogenes are mentioned in Table 1. In animal and 
cell culture models, some strains are less infectious than 
others, and the processes driving this reduced virulence are 
not well known. Premature stop codons (PMSC) in the inlA 
gene of strains 1/2a, 12b, and 1/2c have been discovered 
through research, and this finding may have an impact on the 
strains’ ability to invade human epithelial cells (Cruz et al. 
2014). It takes a greater bacterial load (3 logs more cells) 
from PMSC isolates with inlA mutations compared to fully 
virulent cells (Cruz et al. 2014) to produce infection For 
some reason, certain strains of L. monocytogenes are more 
commonly discovered in food or processing environments 
than linked with clinical cases (Manuel et al. 2015). This 
may be because these strains have PMSC mutations in inlA. 
Serotype 1/2c PMSCs showed inlA but not inlB mutations, 
and no strains possessed lapB, aut, flopA, ami, or vip gene 
deletions. Although prfA gene changes that cause reduced 
virulence are infrequent, they have been connected to some 
strains (Buchanan et al. 2017). It appears that genes and gene 

Table 1  Pathogenicity Island and respective genes reported in L. monocytogenes 

LIPI Listeria pathogenicity island, PC-PLC Phosphatidylcholine-specific phospholipase C, PTS phosphotransferase system, – not reported

Island Gene Function References

LIPI-1 actA Actin polymerization and responsible for movement and cell-to-cell spread Pistor et al. (1994)
Autophagy evasion Cheng et al. (2018)
Biofilm formation and mediation of aggregation (Sibanda and Buys 2022)

mpl Process the PC-PLC into its active form Alvarez-Domínguez et al. (1997)
plcA Hydrolyze Glycosyl PI-anchored eukaryotic membrane proteins Marquis et al. (1997)
prfA Belongs to CAP (catabolite gene activator proteins) Guariglia-Oropeza et al. (2014)
plcB Mediate disruption of the double membrane secondary phagosome Petrišič et al. (2021)

LIPI-2 i-inlB2 – –
i-inlL – –
i-inlB1 – –
i-inlJ SMase disrupts phagosomes Kuenne et al. (2013)
i-inlI Internalins mediate invasion into human epithelial cells Kuenne et al. (2013)
i-inlH – –
i-inlG – –
smcL – –
i-inlF – –
i-inlE – –
surF3 – –

LIPI-3 llsAGHXBYDP Post-translational modification in homolysine and belongs to a family of 
modified virulence peptides

Clayton et al. (2014)

LIPI-4 lm4b_02324 Putative 6-phospho-betaglucosidas.e Maury et al. (2016)
lm4b_02325 Putative transcription antiterminator BgIG family Maury et al. (2016)
lm4b_02326 Known Maury et al. (2016)
lm4b_02327 Putative PTS system, cellobiose-specific enzyme component Maury et al. (2016)
lm4b_02328 Putative PTS system, cellobiose-specific enzyme component Maury et al. (2016)
lm4b_02329 Putative PTS system, cellobiose-specific enzyme component Maury et al. (2016)
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cassettes conferring resistance to quaternary ammonium 
disinfectants and phages were acquired from other bacteria 
via horizontal gene transfer. Possible improved resistance 
and adaptability to industrial settings in strains harboring 
these genes. Although several virulence factors have been 
identified, their effect on the organism is poorly understood 
(Muhterem-Uyar et al. 2018).

Resistance and persistence

Listeria monocytogenes “persistent strains” are bacterial 
clones that have been cultured repeatedly from the same 
environmental setting. Genome-based methods, such as 
pulsed-field gel electrophoresis (PFGE) or, more recently, 
next-generation sequencing (NGS), reveal that the molecu-
lar backgrounds of such isolates are identical (Unrath et al. 
2021). Tolerance to disinfectants, cold resistance, metal 
resistance, and the ability to produce biofilm all contrib-
ute to L. monocytogenes continued survival, among other 
characteristics. Food producers have a significant issue from 
persistent isolates since they are linked to cross-contami-
nation of food items and are rarely if ever, eradicated from 
environments where food is produced (Mazaheri et al. 2021). 
The persistence of L. monocytogenes may be influenced by 
several genetic factors, although the nature of these factors’ 
contributions to the persistence phenomenon is still unclear. 
This might be because it’s challenging to set up in vitro 
research in a way that correctly replicates the natural envi-
ronment seen in food-producing facilities (Osek et al. 2022). 
After cleaning and disinfection, persistent L. monocytogenes 
strains have been identified from settings associated with 
food production. There has been research on the connection 
between resistance to different biocides and the persistence 
of particular L. monocytogenes subtypes in various food pro-
cessing environments, but no conclusive link has been found 
(Mazaheri et al. 2021). On the other hand, studies have 
revealed a connection between some strains’ persistence 
and their ability to resist benzalkonium chloride, particularly 
those that are positive for the bcrABC gene cassette (Cherifi 
et al. 2018). Several researchers have looked into the con-
nection between L. monocytogenes biofilm development and 
survival in contexts where food is produced. In comparison 
to non-persistent strains, persistent strains typically exhibit 
higher biofilm development (Wiktorczyk-Kapischke et al. 
2022). The ability of two L. monocytogenes strains with 
and without persistent capacity to cling to stainless steel 
surfaces was studied. It was found that the biofilms created 
by persistent strains on stainless steel surfaces are thicker 
than those formed by strains found only intermittently. It 
was demonstrated that persistent strains had considerably 
larger mean adherent cell counts throughout a 24-h period at 
25 °C (Borucki et al. 2003). Besides this, the mixed biofilms 
formed by persistent L. monocytogenes and other bacteria 

often exhibit higher resistance to disinfectants and antibiot-
ics (Chen et al. 2023).

Previous studies have indicated that serotype 4b of L. 
monocytogenes, particularly the persistent strains, exhibits 
remarkable resistance to high temperatures and pressure. 
Persistent clones of L. monocytogenes have demonstrated 
stronger evidence of cadmium resistance compared to spo-
radic contaminating strains (Lee et al. 2013). However, both 
persistent and non-persistent populations of L. monocy-
togenes have shown similar frequencies of known cadmium 
resistance cassettes. The presence of the cadA1 gene, which 
provides lesser resistance to cadmium, was found to be more 
prevalent in persisters, while the cadA4 sequence was only 
present in non-persistent isolates (Palaiodimou et al. 2021). 
In environments associated with food production, persis-
tent L. monocytogenes populations tend to over-express two 
stress survival islets (SSIs) known as SSI-1 and SSI-2, which 
contribute to growth and survival under adverse conditions 
such as low pH, alkaline pH, and oxidative stress (Taylor 
and Stasiewicz 2019).

Novel strategies to control L. monocytogenes

The food industry has developed and executed a number 
of strategies for eliminating L. monocytogenes from the 
food supply. One of these is the use of gamma radiation in 
an irradiation processing method (Osek et al. 2022). This 
method of food preservation is used all around the world 
because it is safe and effective. When food is irradiated, 
harmful bacteria like L. monocytogenes and spoilage-
causing bacteria are eliminated (Munir and Federighi 
2020). Another method for sterilizing food and produc-
tion facilities against harmful microorganisms is the use 
of ozone (Panebianco et al. 2022). Gaseous ozone at a 
concentration of 50 ppm for 10 min has been found to 
kill planktonic cells and biofilm of reference and food-
related L. monocytogenes strains. A significant reduc-
tion in biofilm biomass and full inactivation of plank-
tonic cells after only 6 h of treatment (Panebianco et al. 
2022). This environmentally friendly technique is gen-
erally regarded as safe (GRAS). It has been suggested 
that gaseous ozone be utilized to reduce the possibility 
of L. monocytogenes contamination on food-contact sur-
faces and in final products (Botta et al. 2020). Phages 
offer a fresh alternative biological approach to control-
ling L. monocytogenes in the food chain (Kawacka et al. 
2020). The industrial guidelines to prevent Listeria con-
tamination during food processing is mentioned in Fig. 2. 
Phages are useful in the fight against bacterial diseases 
since they are only harmful to their host bacteria and not 
to any other microbes. They are crucial in the creation 
of fermented meals because they do not detract from 
the final product’s sensory qualities (Botta et al. 2020). 
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Commercial phage-based therapies, such as ListShield™ 
(Intralytics, Columbia, MD, U.S.) a cocktail of six vari-
ous lytic bacteriophages have been used to successfully 
decrease L. monocytogenes contamination in many food 
products, including RTE meats (Perera et al. 2015). It 
is reported that the ListShield™ successfully reduces L. 
monocytogenes levels in RTE foods by 82–98% (Perera 
et al. 2015).

Despite the promising results and suggestions, bacte-
riophages are only licensed in a few numbers of countries 
and laws often apply to specific bacteriophage products 
(Kawacka et al. 2020). Listex™ P100, for instance, sees 
extensive use on a global scale, particularly in the USA, 
Canada, and Switzerland. Połaska and Sokołowska, 
(2019) reported that its usage as a processing aid is legal 
in Australia, New Zealand, Israel, the Netherlands, and 
Switzerland, but that approval varies widely among coun-
tries. The existence of phage-resistant strains in food pro-
cessing facilities should be monitored, and more study 
is needed to determine the efficacy and safety of phage-
based therapies against L. monocytogenes in foods.

Conclusion

Listeria monocytogenes is a devastating food-borne illness 
that has a high global fatality rate, especially among the 
elderly, pregnant women, and newborns. Despite of rela-
tively consistent infection rates over the past decade, a new 
study has indicated that smaller outbreaks of the invasive 
form of the disease occur more frequently than previously 
thought. L. monocytogenes can be difficult to eradicate 
because of its capacity to build biofilms in food production 
environments, which contributes to its persistence and poses 
issues in eradication, and may result in contamination of 
food and facilities. To ensure food safety, it is important to 
understand how L. monocytogenes adapt to environmental 
stress factors so that efficient and cost-effective pathogen 
control methods can be developed for the food sector.

Future directions

There are still many unanswered questions about L. mono-
cytogenes and listeriosis that need to be investigated. The 

Fig. 2  Industrial guidelines to 
prevent Listeria contamination 
during food processing
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first step in keeping up with any shifts in epidemiology and 
spotting new patterns caused by L. monocytogenes is con-
stant surveillance and monitoring of outbreaks and infec-
tion rates. Identifying the causes of the uptick in localized 
invasions will allow for more precise measures to be taken 
against them. It is also important to study the biofilm devel-
opment and persistence mechanisms of L. monocytogenes 
in food production environments at the molecular level. To 
do so requires investigating potential survival mechanisms, 
such as biofilm-related genes and surface structures. In order 
to reduce the likelihood of contamination and subsequent 
occurrences of listeriosis, it will be essential to develop 
novel anti-biofilm chemicals and improve cleaning and sani-
tation methods.
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