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Abstract One of the most troublesome postharvest dis-

eases of citrus fruits is sour rot, caused by Geotrichum

citri-aurantii. Sour rot reduces the shelf life of the fruits

leading to massive economic losses. This study investi-

gated the potential for a combination of cinnamaldehyde

and citral (CC; 1: 2, v/v) at reducing the incidence of sour

rot postharvest and its possible effect on fruit quality. Our

findings show that CC could totally inhibit germination of

G. citri-aurantii spores, with the minimum inhibitory

concentration (MIC) and minimum fungicidal concentra-

tion (MFC) both being 0.80 mL L-1. The combination

(CC) acted against G. citri-aurantii by targeting the chitin

content of the cell wall. Wax ? CC (WCC; 1 9 MFC)

treatment also showed high efficiency in reducing the

incidence of sour rot, which was 40% lower than in the

control group by day 8 when all the fruits in the latter were

rotten. Apart from vitamin c (Vc) content which was higher

in the test group than in the control group, WCC treatment

did not have any significant effect on the quality of the

citrus fruits, the examined fruit quality parameters being

weight loss rate, coloration index, firmness, pH, total sol-

uble solid (TSS) content, Vc content, as well as solid acid

ratio. These results indicate that the combination of cin-

namaldehyde and citral (CC, 1: 2, v/v) can be used as a

natural preservative to alleviate the progress of sour rot in

citrus fruits postharvest.

Keywords Cinnamaldehyde � Citral � Citrus fruits �
Geotrichum citri-aurantii � Antifungal activity � Cell wall
integrity

Introduction

Fruit spoilage by fungi is a major concern during storage as

it affects the fruit quality and shortens their shelf life (Liu

et al. 2017; Suwanamornlert et al. 2018). Citrus fruits in

particular are susceptible to several postharvest diseases

which cause extensive losses. Among these diseases

include sour rot caused by Geotrichum citri-aurantii,

which greatly deteriorates the fruit quality, leading to

massive economic losses in citrus fruit industry (Deng et al.

2018; Singh and Sharma 2018). Developing any potential

control measures is thus a significant part in maintaining

quality and extending the shelf-life of citrus fruits.

Currently, the management of sour rot postharvest is

generally through use of synthetic chemicals or their

mixtures (Li et al. 2019; Zhou et al. 2014). However, the

effect of chemical fungicides to control sour rot is limited,

and their prolonged use may lead to the development of

fungicide-resistant pathogens (Bazioli et al. 2019; Mckay

et al. 2012). Moreover, fungicide residues left on fruit

surfaces may seriously affect the health of the consumers

and pollute the environment (Chen et al. 2019; Liu et al.

2017). This has prompted efforts to develop non-hazardous

and highly bioactive approaches to control sour rot disease

in postharvest citrus fruits (Bazioli et al. 2019; Duan et al.

2018; Wuryatmo et al. 2014), among which include the use

of plant essential oils.

Essential oils (EOs) are recognized by consumers as

natural components of plants, making their application in

the control of certain postharvest diseases of fruits and
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vegetables highly favored as they are reported to have

broad fungicidal properties and are safer to both the con-

sumers and to the environment than the synthetic fungi-

cides (Boubaker et al. 2016; Shao et al. 2015). For

example, cinnamaldehyde and citral are generally accepted

as safe (GRAS) for human health and environment and

have been registered by the Food and Drug Administration

(FDA) as flavoring agents in foods (Wang et al.

2016, 2018a, b). Moreover, studies by Camele et al. (2012)

and Manso et al. (2015) revealed that cinnamaldehyde and

citral have strong inhibitory activities against postharvest

Aspergillus, Fusarium, Penicillium and G. citri-aurantii in

in vitro, being able to significantly reduce their postharvest

diseases (Wu et al. 2017; Duan et al. 2018; Suwanamorn-

lert et al. 2018; Tejeswini et al. 2014), thus can potentially

be used in the control of sour rot. However, essential oils

have low solubility in water and a very strong aroma which

might be unpleasant to the consumers, hence limiting their

application in postharvest fruit preservation (Ali et al.

2014; Fan et al. 2014). A combination of EOs and wax is

preferred as it not only does not have a strong aroma but

also effectively prevents the occurrence of postharvest

disease, extending the shelf life of fruits while retaining

and/or improving their natural appearance as well as

improving the nutritional quality (Fan et al. 2014; Wu et al.

2017; Bazioli et al. 2019; Kong et al. 2019).

This study focused on (1) determining the antifungal

effects of cinnamaldehyde, citral, and a combination of

cinnamaldehyde and citral (CC) against mycelial growth

and spores germination of G. citri-aurantii in vitro, (2)

estimating the capacity of CC to control the occurrence of

sour rot in vivo, and the effect of combination of wax ?

CC (WCC) on the quality of the citrus fruits, and (3)

evaluating the effects of CC, and cinnamaldehyde and

citral individually on the cell wall and cell membrane

integrity of G. citri-aurantii.

Materials and methods

Pathogen

Geotrichum citri-aurantii used in this study was isolated

from infected citrus fruits and identified by morphological

and molecular biology methods. They were incubated on

potato dextrose agar (PDA) at 28 ± 2 �C and the spore

concentration adjusted to 5 9 106 spores mL-1 using a

haemocytometer.

Fruit

Mature Satsuma mandarin fruits (Citrus unshiu Marc. cv.

Miyagawa Wase) were harvested on 21th October, 2017,

from a local orchard (latitude 27� 87’ N, longitude 112� 9’
E, altitude 44 m above sea level) near Xiangtan University,

Xiangtan, China. Healthy fruits of uniform size and with-

out scars were chosen for the experiments.

Chemicals

Cinnamaldehyde (99%) was obtained from Darui Fine

Chemicals Co., Ltd, Shanghai, China, and citral (95%) was

obtained from Sigma-Aldrich (St. Louis, MO, USA). Cin-

namaldehyde, citral and CC solutions were prepared by

dissolving the requisite amount in Tween-80 (0.05%, v: v)

and topped up to the final volume using distilled water. All

the chemicals used were of analytic grade.

Effect of cinnamaldehyde, citral and CC on mycelial

growth

This was tested in vitro by agar dilution method (Wu et al.

2017). Briefly, CC stock solution was added into sterilized

PDA medium to generate final concentrations of 0, 0.20,

0.40, and 0.80 mL L-1. Similarly, final concentrations of

cinnamaldehyde (0, 0.125, 0.25, 0.50, and 1.00 mL L-1) or

citral (0, 0.125, 0.25, 0.50, and 1.00 mL L-1) were

respectively added into PDA media. The mended media

(20 mL) were poured into sterilized petri dishes (90 mm

diameter). A 6-mm diameter disc of inoculum was cut from

the edge of an actively growing culture on PDA plates with

a sterile cork borer, and placed at the center of each new

petri dish. Each treatment was performed in triplicate and

the culture plates incubated at 28 ± 2 �C for 2 days. The

lowest concentration that completely inhibited the growth

of the pathogen after the 2 d of incubation was considered

as the MIC. The lowest concentration that prevented 99.5%

growth of the pathogen after 4 d of incubation was regar-

ded as the MFC.

Effect of cinnamaldehyde, citral and CC on spore

germination

For the potato dextrose broth (PDB) incubation method,

cinnamaldehyde (0.27 mL L-1), citral (0.53 mL L-1) and

CC (0.80 mL L-1) were separately added into PDB, each

with a final concentration of 106 spores mL-1. The mix-

tures were each incubated for 3, 6 and 9 h in triplicate at

28 ± 2 �C, in a shaking incubator at 160 r min-1. Spores

in PDB without essential oils served as the control group.

The spore germination at 3, 6 and 9 h of incubation was

monitored under the microscope (Wu et al. 2017), and the

percentage germination of spores calculated according by

the formula;
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Spore germination ¼ Number of germinated spores

Total number of spores
� 100%

Effect of CC on the incidence of sour rot

This was determined in vivo as previously described (Duan

et al. 2018; Fan et al. 2014) but with minor modifications.

All fresh citrus fruits were surface-sterilized by immersing

in sodium hypochlorite solution (2%, v/v) for 2 min, then

washed with distilled water, wounded (depth of 3 mm and

width of 3 mm) with a sterile needle, inoculated with 20

lL of G. citri-aurantii spore suspension (105 spores mL-1),

and left to air-dry. After being inoculated with fungi, the

fruits were sprayed with wax amended with CC at 0 9 and

1 9 MFC. Fruits with wax and pathogen inoculation were

used as a control. The inoculated fruits were kept in sealed

incubators at 25 ± 2 �C to ensure high relative humidity

(85–90% relative humidity). Twenty Satsuma mandarin

fruits constituted a single replicate, and each treatment was

performed in triplicate. The incidence rate of disease

(measured by counting the number of green mold-infected

wounds) was calculated as follows:

Disease germination ¼ Number of rotten wounds

Total number of wounds
� 100%

Fruit quality parameters

Fruits were randomly chosen from each of the test and

control groups (similar to those described in Sect. 2.6) after

storage at an interval of 2 d. Physiological fruit quality

indicators, including weight loss rate, coloration index,

firmness, pH, total soluble solid content (TSS), titrat-

able acidity (TA), and vitamin C (Vc) content were tested.

The methods used were included in previous papers (Fan

et al. 2014; Wilkerson et al. 2013).

Effects of cinnamaldehyde, citral and CC on the cell

wall integrity of G. citri-aurantii

The distribution of chitin in the cell wall of G. citri-au-

rantii was analyzed by calcofluor white (Sigma, St. Louis,

MO, USA) staining coupled with fluorescence microscopy

(Nikon ECLIPSE TS100, Japan) (OuYang et al. 2019).

Cinnamaldehyde (0.27 mL L-1), citral (0.53 mL L-1) and

CC (0.80 mL L-1) were added into PDB with a final

concentration of 106 spores mL-1. The mixtures were

incubated for 3, 6 and 9 h in triplicate at 28 ± 2 �C in a

shaking incubator at 160 r min-1, then centrifuged at

4000 g min-1 for 10 min. The collected spores were

stained with 10 lL of calcofluor white (CFW) stain and 10

lL KOH (10%), following the manufacturer’s instructions.

Fungal cultures in PDB without essential oils were used as

a control, and the samples were observed under a fluores-

cence microscope.

Effects of cinnamaldehyde, citral and CC on plasma

membrane integrity

Membrane integrity (MI) was examined by the method of

Wu et al. (2017). Cinnamaldehyde (0.27 mL L-1), citral

(0.53 mL L-1) and CC (0.80 mL L-1) were added into

PDB with a final concentration of 106 spores mL-1. The

mixtures were incubated for 3, 6 and 9 h in triplicate at

28 ± 2 �C in a shaking incubator at 160 r min-1, then

centrifuged at 4000 g min-1 for 10 min, washed with

distilled water and suspended in PBS (0.05 mol L-1,

pH = 7.0). The suspension was then stained with propid-

ium iodide (PI) (0.01 g L-1) in a 37 �C water bath for

5 min and washed twice using PBS. Fungal culture in PDB

without EOs was used as a control. The number of spores

in bright-field constituted the ‘total number of spores’. The

stained spores that could be observed under the fluorescent

microscope (Nikon ECLIPSE TS100, Japan) were counted

and MI calculated according to the formula:

MI %ð Þ ¼ 1� Number of stained spores

Total number of spores

� �
� 100%

Statistical analysis

Each assay was performed in triplicate, and the data ana-

lyzed using SPSS 19.0 Software. Significance in differ-

ences between mean values of the data sets were

determined using Duncan’s Multiple Range test (P\ 0.05)

following one-way ANOVA.

Results

Mycelial growth in vitro

The mycelial growth of G. citri-aurantii in vitro consid-

erably decreased with increase in concentrations of cin-

namaldehyde, citral and CC (Table 1). The MIC values of

cinnamaldehyde, citral and CC were equal to their MFC

values, which were estimated to be 0.50, 1.0 and 0.80 mL

L-1 respectively. Basing on the ratio of the MIC values of

cinnamaldehyde and citral (0.5: 1.0), a combination ratio of

1: 2 was chosen for the formation of CC. When the CC

treatment completely inhibited the growth of G. citri-au-

rantii, the concentrations of cinnamaldehyde and citral in

the mixture were only 0.27 and 0.53 mL L-1, respectively.
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Inhibition of spore germination

The effects of cinnamaldehyde, citral and CC on the ger-

mination of G. citri-aurantii spores is shown in Fig. 1.

After 3 h of incubation, all spores in the three treatment

groups had not germinated, while those in the control group

had germinated with a rate of 12.58 ± 1.72% (P\ 0.05).

6 h after incubation, the germination rates in the cin-

namaldehyde, citral and CC groups were 0.00 ± 0.00,

6.67 ± 1.36, and 0.00 ± 0.00%, respectively, which were

significantly lower than that of the control group

(49.82 ± 6.06%, P\ 0.05). By 9 h of incubation, the

germination rate in the control group increased to

90.47 ± 2.34%, while those of the test groups treated with

cinnamaldehyde and citral individually were only

5.66 ± 7.81 and 10.81 ± 1.82%, respectively. Spores in

the CC group had not germinated at all even after the 9 h

incubation period.

Effect of CC treatment on the incidence of sour rot

decay

WCC (1 9 MFC) effectively reduced sour rot decay of

citrus fruits (Fig. 2a), and alleviated the disease progres-

sion in inoculated citrus fruits treated with WCC (Fig. 2b).

Table 1 The effect of cinnamaldehyde, citral and CC on the mycelia of G. citri-aurantii

Treatment Concentration (mL L-1) Inhibitory rate (%)

1 d 2 d 3 d 4 d

cinnamaldehyde 0.125 23.07 ± 13.32c 32.79 ± 2.84c 16.07 ± 7.73c 4.54 ± 0.00c

0.25 53.84 ± 0.00b 63.93 ± 2.84b 50.89 ± 4.09b 40.26 ± 5.62b

0.50 100.00 ± 0.00a 100.00 ± 0.00a 100.00 ± 0.00a 100.00 ± 0.00a

1.00 100.00 ± 0.00a 100.00 ± 0.00a 100.00 ± 0.00a 100.00 ± 0.00a

citral 0.125 12.90 ± 9.68c 11.24 ± 3.55d 7.17 ± 2.26d 3.62 ± 0.96d

0.25 53.22 ± 7.39b 50.30 ± 6.15c 44.15 ± 6.92c 33.15 ± 6.69c

0.50 100.00 ± 0.00a 73.37 ± 3.07b 68.30 ± 0.00b 63.23 ± 1.67b

1.00 100.00 ± 0.00a 100.00 ± 0.00a 100.00 ± 0.00a 100.00 ± 0.00a

CC 0.20 45.00 ± 9.35b 28.89 ± 3.14c 23.33 ± 1.89c 15.63 ± 0.00c

0.40 100.00 ± 0.00a 66.67 ± 0.00b 54.67 ± 1.89b 42.71 ± 0.73b

0.80 100.00 ± 0.00a 100.00 ± 0.00a 100.00 ± 0.00a 100.00 ± 0.00a

Data presented are the means ± standard error of pooled data (n = 3). Columns with different letters at each time point of each treatment

indicate significant differences according to Duncan’s multiple range test (P\ 0.05)
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Fig. 1 The effects of cinnamaldehyde, citronellal and CC on the

germination of G. citri-aurantii spores. The data presented are the

means of pooled data. Error bars indicate the SDs of the means

(n = 3)
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Fig. 2 a Decay incidence in inoculated fruit treated with WCC

(0 9 and 1 9 MFC) during storage at 25 ± 2 �C for 5 d and 85%-

90% relative humidity; b Disease progression in inoculated citrus

fruit treated with CC (0 9 and 1 9 MFC) during storage at

25 ± 2 �C and 85%-90% RH. The data presented are the means of

pooled data. Error bars indicate the SDs of the means (n = 3)
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Fruits in the control group began to decay 3 d post inoc-

ulation, with 7 ± 3% decay rate, at which time, the CC

treated fruits were not infected at all. Following 8 d of

inoculation, the citrus fruits in the control group were all

rotten and covered by a visible white mold layer, while the

fruits in the 1 9 MFC WCC treatments had incurred a sour

rot rate of only 60 ± 0%, with merely watery lesions

visible.

Effects of CC treatment on fruit quality parameters

WCC (1 9 MFC) treatment did not significantly affect the

quality of citrus fruits (Table 2). The weight loss rate,

coloration index, firmness, pH, TSS content, as well as

solid acid ratio were not influenced by the WCC treatments

after storage at 25 ± 2 �C for 6 d. However, the Vc content

in WCC treated fruits was about 39.33% and 21.54%

higher than in WCK-treated fruits after 2 and 6 days,

respectively.

Effects of cinnamaldehyde, citral and CC on the cell

wall integrity

As shown in Fig. 3, cinnamaldehyde and CC treatments

significantly affected the distribution of chitin on the cell

walls of G. citri-aurantii spores. The cell walls of spores in

the control group and citral treated group showed a normal

deposition of chitin. The spores in the cinnamaldehyde and

CC treated groups markedly showed weaker fluorescence

than the other treatments after 3 h incubation. Similarly,

the blue fluorescence of cells in the CC treated group was

weaker than the corresponding single treatments and the

control group as observed at 6 and 9 h incubation.

Effects of cinnamaldehyde, citral and CC

on the plasma membrane integrity

The MI values of G. citri-aurantii spores treated with citral

or CC greatly decreased with increase in incubation time,

Table 2 Effects of the WCK and WCC (1 9 MFC) treatments on postharvest qualities of citrus fruit inoculated with G. citri-aurantii during
storage at 25 ± 2 �C for 6 d

Quality index Treatments Inoculation period (d)

0 2 4 6

Weight loss rate (%) WCK 0.00 ± 0.00a 2.04 ± 0.36a 3.66 ± 0.61a 6.19 ± 0.69a

WCC (1 9 MFC) 0.00 ± 0.00a 2.06 ± 0.30a 3.80 ± 0.49a 6.48 ± 0.71a

Coloration index WCK -1.18 ± 1.53a -0.30 ± 1.20a 0.54 ± 1.26a 1.98 ± 1.38a

WCC (1 9 MFC) -2.57 ± 1.71a -1.05 ± 1.41a 0.20 ± 1.17a 1.84 ± 1.47a

Firmness (kg/cm2) WCK 0.83 ± 0.08a 1.01 ± 0.11ab 0.86 ± 0.09a 1.07 ± 0.17a

WCC (1 9 MFC) 0.83 ± 0.08a 0.98 ± 0.16b 0.83 ± 0.15a 1.03 ± 0.32a

pH WCK 2.95 ± 0.12a 3.18 ± 0.07a 3.07 ± 0.08a 3.11 ± 0.04a

WCC (1 9 MFC) 2.95 ± 0.12a 3.04 ± 0.03a 3.13 ± 0.06a 3.12 ± 0.25a

TSS (%) WCK 13.43 ± 0.40a 14.07 ± 0.23a 14.70 ± 0.26a 14.53 ± 0.31a

WCC (1 9 MFC) 13.43 ± 0.40a 14.47 ± 0.61a 14.73 ± 0.21a 14.40 ± 0.40a

Solid acid ratio WCK 14.90 ± 0.78a 17.60 ± 0.64a 21.65 ± 0.91a 28.75 ± 5.90a

WCC (1 9 MFC) 14.90 ± 0.78a 18.76 ± 3.55a 22.89 ± 2.69a 43.11 ± 10.08a

Vc (mg/100 g) WCK 14.23 ± 0.65a 22.42 ± 0.99b 25.23 ± 0.65a 25.02 ± 0.75b

WCC (1 9 MFC) 14.23 ± 0.65a 31.24 ± 2.12a 23.08 ± 1.08a 30.41 ± 2.82a

Data presented are the means ± standard error of pooled data (n = 3). Different capital letters and lowercase letters indicate significant

differences of columns and rows at each time point according to Duncan’s multiple range test (P\ 0.05), respectively

Control

Cinnamaldehylde

Citral

3 h 6 h 9 h

CC 

Fig. 3 The effects of cinnamaldehyde, citronellal and CC on the cell

wall of G. citri-aurantii spores observed under a fluorescence

microscopy after staining with calcofluor white (CFW) stain
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as opposed to the relatively high levels observed in the

control group and cinnamaldehyde treated group

(100.00 ± 0.00%, P\ 0.05) (Fig. 4). By 3 h of incuba-

tion, the MI values of all groups were 100.00 ± 0.00%, but

as the exposure time increased to 9 h, treatment with CC

resulted in a decreased MI value (33.38 ± 1.59%) com-

pared to the corresponding single treatments of cin-

namaldehyde (100.00 ± 0.00%) and citral

(55.71 ± 5.15%), with the control group retaining an MI

value of 100.00 ± 0.00%.

Discussion

Cinnamaldehyde and citral have been reported to strongly

inhibit growth of a wide range of fungal species (Utama

et al. 2002; Duan et al. 2018; Gao et al. 2018; Wu et al.

2017). For example, at a concentration below 0.2%, cin-

namaldehyde can completely inhibit growth of Aspergillus,

Fusarium, Penicillium and Rhizopus in vivo (Manso et al.

2015; Tejeswini et al. 2014), and citral exhibit significant

antifungal efficiency against postharvest Botrytis cinerea,

P. expansum, P. digitatum, and P. italicum (Camele et al.

2012; OuYang et al. 2019; Wang et al. 2018a, b). In this

study, cinnamaldehyde and citral individually exhibited

very good fungicidal actions against G. citri-aurantii with

MFC values of 0.50 and 1.00 mL L-1 respectively. In

addition, cinnamaldehyde and citral treatments signifi-

cantly reduced the germination rate of G. citri-aurantii

spores, an observation that is consistent with findings by

Thavong et al. (2011) and Wang et al. (2018b).

The combination of Cinnamaldehyde and citral (CC,

v/v, 1:2) inhibited the growth of G. citri-aurantii with MFC

of 0.80 mL L-1, the concentrations of cinnamaldehyde and

citral in the mixture being 0.27 and 0.53 mL L-1, respec-

tively. These values are almost half the MICs of each of the

individual components, implying that within the combi-

nation, very low concentrations of each essential oil com-

ponent is required to realize a significantly great inhibitory

effect, hence pointing towards a kind of cooperative

mechanism to their antifungal activity. Similarly, CC

treatment totally inhibited germination of G. citri-aurantii

spores during the 9 h incubation period yet separate treat-

ments with cinnamaldehyde and citral during the same

duration of time resulted in growth of some spores with

rates of 5.66 ± 7.81% and 10.81 ± 1.82% respectively.

These results imply that the combination of cinnamalde-

hyde and citral (CC) was highly effective at inhibiting

overall growth of G. citri-aurantii than the individual

components, an observation consistent with those reported

by Hossain et al. (2016), Stević (2014), Sukatta et al.

(2008), Suwanamornlert et al. (2018) and Zhou et al.

(2019) that the combination of two or more individual

components of essential oils might have higher antifungal

potential than the individual components acting alone. In

fact, Li et al. (2019) too alluded to the fact that the

antimicrobial activities of fungicides can be enhanced by

combining them with other antimicrobial agents or a

variety of them.

A recent study by Ji et al. (2019) reported that the

increase in antifungal activity of combinations of EOs was

due to the cumulative effect of the mechanisms of the

individual EOs in the mixture. Cinnamaldehyde is known

to exert its antifungal activity by disrupting the cell wall

(OuYang et al. 2019; Shreaz et al. 2016), while citral

inhibits fungal growth by disrupting the cell membrane

(Tao et al. 2014; Zhou et al. 2014). Basing on the report by

Ji et al. (2019), we hypothesized that the effect of CC

against G. citri-aurantii was relate to the destruction of

both the cell wall and the cell membrane. Our results

showed that CC treatment significantly weakened the blue

fluorescence of G. citri-aurantii spores in the test samples

than in the control group and the individual treatment

groups, suggesting that CC damaged the cell wall integrity

by reducing the chitin content. However, the cell mem-

brane integrity of the spores in CC treatment did not lower

compared to those of the control and the individual treat-

ment groups, suggesting that the inhibitory mechanism of
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Fig. 4 The effects of cinnamaldehyde, citronellal and CC on the

plasma membrane of G. citri-aurantii spores, a stands for the

percentage of plasma membrane integrity; b stands for the PI staining

results of bright field and fluorescent images. The data presented are

the means of pooled data. Error bars indicate the SDs of the means

(n = 3)
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CC was not associated with damage of the cell membrane.

On the contrary, while examining the antifungal mecha-

nism of a combination of cinnamaldehyde (45 mg L-1) and

citral (70 mg L-1) against P. expansum, Wang et al.

(2018a, 2018b) found that the drug combination targeted

the membrane structure but not the cell wall structure. This

discrepancy may be caused by the difference in combina-

tion ratios of the individual EO components and the dif-

ference in strains used for the study. According to our

current results, the inhibitory effect of CC evidently pro-

ceeded through destruction of cell wall integrity, with citral

probably enhancing the ability of cinnamaldehyde to

damage the cell wall. This suggests that the antifungal

mechanism of a combination of EOs is not a simple

superposition of individual mechanisms but rather an

interaction between the two components resulting into a

stronger, single mechanism, that might be very significant

in reducing or eliminating the incidence of occurrence of

resistant fungal pathogens.

From our current results, CC effectively inhibited G.

citri-aurantii not only in vitro, but also in vivo. 1 9 MFC

of CC proved highly effective at inhibiting the occurrence

of sour rot in vivo, its effectiveness at controlling the

incidence of sour rot being significantly higher than that of

cinnamaldehyde alone. Similarly, the incidence of fruit

decay in 0.80 mL L-1 CC treatment was 60%, at which

time, all the fruits in the control group had decayed. This

incidence rate is less than the 80% fruit decay rate for the

0.50 mL L-1 cinnamaldehyde treatments reported in our

previous study (Wu et al., 2017). This confirms that com-

bining cinnamaldehyde and citral enhances their in vivo

antifungal ability against citrus fruit pathogens, which may

be related to their good antifungal abilities plus their ability

to induce defense responses in citrus fruits (Gao et al. 2018,

Wang et al. 2016 and Fan et al. 2014). This results also

show that a low concentration of the constituent essential

oils is required in the combination (CC) to realize signifi-

cant inhibitory effect which solves the concerns by Tejes-

wini et al. (2014) and Catherine et al. (2012) that a higher

concentration of the antimicrobial compound was needed

both in vivo than in vitro to realize significant inhibitory

effect.

Apart from the Vc content which was higher in the test

samples than in the control group, CC treatment had very

minor effects on fruit quality parameters. Previous studies

have similarly reported that cinnamaldehyde and citral

reduced postharvest decay in fruits without exacerbating

any fruit quality parameters (Duan et al. 2018; Fan et al.

2014; Gao et al. 2018; Wang et al. 2016). The observed

increase in Vc content could actual be of nutritional

advantage to the consumers and a testimony to reports that

EOs do improve the nutritional quality of fruits (Fan et al.

2014; Wu et al. 2017; Bazioli et al. 2019; Kong et al.

2019). The combination of cinnamaldehyde and citral is

therefore a potentially promising botanical fungicide to

suppress G. citri-aurantii growth in the control of sour rot

in citrus fruits.

In conclusion, the combination of cinnamaldehyde and

citral (1:2, v/v) act by reducing the chitin content to destroy

the integrity of fungal cell wall thus effectively inhibiting

the growth of G. citri-aurantii both in vitro and in vivo.

Very low concentrations of the individual components are

required to form the combination, and a 1 9 MFC WCC

treatment which effectively inhibits the fungal growth,

does not impair the fruit quality indicating that it should be

considered for use in the postharvest management of sour

rot in citrus fruits.
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