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Abstract The effect of ohmic heating method (OHM) on

quality and quantity attributes of black grape molasses was

investigated and compared with the conventional heating

method (CHM). Results showed that the samples prepared

by OHM had the highest antioxidant activity than CHM.

Increasing of voltage gradient had a positive effect on the

saving of antioxidant activity. Changes in pH for OHM

were lower than CHM. Heating methods had no significant

effect on phenol content. Antioxidant capacity and phenol

content of treated samples were lower than the fresh

sample at the same water content. The titratable acidity of

treated samples using CHM was higher than the OHM. The

OHM saved about 2.4–7.2-fold of processing time and 6.3-

fold of energy consumption than the CHM. Heat generation

and electrical conductivity depended on sample moisture

content. OHM provides minimal damage to the sensory

characteristics. As a final result, the OHM significantly

improved the quality and saved the quantity parameters of

the grape molasses processing than the CHM.

Keywords Conventional heating � Phenol content �
Antioxidant � Energy � Grape molasses

Introduction

Grape molasses commonly used in Middle Eastern food

because of their high sugar content like glucose and fruc-

tose, minerals and organic acids (Özcan et al. 2015; Gurak

et al. 2010). Conventional thermal processing including,

classical and vacuum evaporation methods, is the most

common method in the processing industry of grape juice

concentrate (Helvacıoğlu et al. 2018; Kayışoğlu and

Demirci 2006). Processing under vacuum stated to lower

the boiling point and possibly prevent the decomposition of

fruit juice components due to excessive and long-term

application of heat. This is while Helvacıoğlu et al. (2018)

showed that the quality of grape molasses (phenolic com-

pounds, total phenol contents, and antioxidant activity)

produced by the traditional method was higher than that

produced by conventional vacuum evaporation technique

(CVET). Also, Kayışoğlu and Demirci (2006) reported that

the sedimentation during heating and color of grape

molasses in CVET were two important problems because

the color of molasses using CVET was not much preferred

in the market by consumers. The internal resistance by

conventional heating resulted in very heterogeneous treat-

ment and the notable quality loss of product (Hosainpour

et al. 2014; Özcan and Al-Juhaimi 2017). Therefore, the

use of new methods to process products that can overcome

or minimize these problems is essential.

The modern food industry has focused on the develop-

ment of new techniques to produce a safe, high-quality

product with a long shelf life. Various emerging techniques

in the food industry have been studied, including pulsed

electric field, cold atmospheric plasma, ultrasound, high-

pressure processing and ohmic heating (Ahmad et al.

2019). Among the emerging methods of food processing,

ohmic heating seems to be an interesting alternative for
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processing of different food materials such as fruit and fruit

juice (Icier et al. 2017; Fadavi et al. 2018), meat cooking

(Inmanee et al. 2019; Engchuan et al. 2014), dairy pro-

ductions (Costa et al. 2018; Ferreira et al. 2019a, b), and

cereals (Deleu et al. 2019; Dias-Martins et al. 2019), when

compared to the conventional processing. The advantages

of ohmic heating compared to conventional heating

includes maintaining the color and nutritional value of

food, uniform heating, short processing time, and higher

yield (Costa et al. 2018; Fadavi et al. 2018). The electric

current passing through food material causes rapid heat

generation and thus faster heating of food in the ohmic

heating system. The amount of heat generated inside the

food is directly related to the voltage gradient and the

electrical conductivity (Darvishi et al. 2015). In recent

years, the interest in using the ohmic heating method has

been increased for the concentration of fruit juice such as

pomegranate juice (Icier et al. 2017), sour cherry juice

(Sabancic and Icier 2017), tomato juice (Fadavi et al.

2018), and orange juice (Darvishi et al. 2019).

Although several researches have been conducted on the

conventional grape molasses production (Helvacıoğlu et al.

2018; Özcan et al. 2015; Kayışoğlu and Demirci 2006), but

to the best of our knowledge no investigation was found on

the production of grape molasses by the ohmic heating

method. Therefore, the aim of the present study was to

comparatively evaluate (1) quality parameters (antioxidant

activity, phenol content, pH, titratable acidity, and total

soluble solids) and sensory evaluation, (2) processing time

and heating rate, heat generation, energy consumption of

grape molasses produced by ohmic heating and conven-

tional methods. Also, variations of internal heat generation

and electrical conductivity of grape juice during the con-

centration process were evaluated as a function of moisture

content and sample temperature.

Materials and methods

Grape juice preparation

Amount of 100 kg of fresh black grape was purchased from

the local fruit market, Kurdistan, Iran. Based on seller

information, the grape samples were harvested in 5/10/

2018 from a grape farm in the mountainous areas of Kur-

distan. The experiments were conducted at 11/10/2018

(1 week after harvest). Samples washed using tap-water

then processed to grape juice using a juice extractor. Juice

samples passed through the filter.

Ohmic heating method

Figure 1 shows the schematic and picture of the static

ohmic heating system. The ohmic heating unit consisted of

a rectangular cell, two removable electrodes (316L stain-

less steel) with a 100 mm gap between them, a power

analyzer (Dina Co, Iran) for measurement of electrical

current, voltage and power consumption, three thermo-

couples (NTC- type) with Teflon coated, a voltage regu-

lating transformer (1 kW, 0–330 V, 50 Hz, MST-3, Toyo,

Japan), a microcontroller board, and a personal computer.

Variation of the mass sample recorded by a digital balance

(EK-5055, China) with ± 0.1 g accuracy which is placed

under the ohmic cell, as shown in Fig. 1.

About 225 ± 1 g of fresh black grape juice with

19 ± 0.5 �C initial temperature was used in each experi-

ment. Ohmic heating process was carried out until the juice

moisture ratio reached to 0.22 ± 0.03 by using different

voltage gradients 15, 20, 25 and 30 V/cm at 50 Hz fre-

quency. Voltage, current, mass and temperature data were

measured at 1 s time intervals (Dt = 1 s) during heating

and passed this information to the computer with a RS 232.

After each test, the electrodes were rinsed using a brush

and distilled water.

Conventional heating method

About 225 ± 0.5 g of fresh grape juice was poured into a

laboratory beaker (Pyrex glass) and then heated using a

laboratory heater (Aryan Azma Co, Iran) with maximum

power. The temperature of the juice sample measured using

thermocouples (NTC- type) and recorded at 1 s time

intervals (Dt = 1 s) during the heating process.

Moisture content

The instantaneous moisture content of juice sample was

determined as follows (Darvishi et al. 2015):

Mt ¼
1þM0ð Þ �m0

mt

� 1 ð1Þ

where Mt is the moisture content at any time of heating (kg

water/kg dry matter), m0 and M0 are the initial mass (kg)

and moisture content (kg water/kg dry matter) of fresh

juice sample, respectively, and mt is the mass of sample at

any time of heating (kg). The moisture content of the juice

sample at any time of the concentration process than the

fresh juice presented as follows:

Xw ¼ Mt

Mo

ð2Þ

where Xw is the moisture content ratio (dimensionless) of

juice sample at any time of the concentration process.
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Electrical conductivity

The electrical conductivity was calculated as follows (Icier

and Ilicali 2004):

r ¼ I� L

V� A
ð3Þ

where r is the electrical conductivity (S/m), I is the current

flowing through the sample (A); V is the applied voltage

(V), A is the sample contact surface with the electrode

(m2).

Due to evaporation of the sample water during the

heating process, the sample contact surface with the elec-

trode was reduced and the sample density raised continu-

ously, thus an effective contact area and instantaneous

density should be considered in Eq. (3) as follows (Fadavi

et al. 2018; Darvishi et al. 2015):

A ¼ mt

qt � L
ð4Þ

where qt and mt are the instantaneous sample density (kg/

m3) and mass of sample (kg) at any time of heating,

respectively. The variation of density of grape juice sam-

ples with concentration ratio and temperature calculated

using the following equation (Bayindir 1993):

qt ¼ 740þ 430 exp 0:01Xð Þ � 0:000555 Tþ 273:15ð Þ ð5Þ

where T is the juice sample temperature (�C) and X is the

concentration ratio of juice sample (dimensionless).

Heat generation

The volumetric heat generation in the ohmic system was

determined as follows (Sabancic and Icier 2017):

VHG ¼ r� rVj j2 ð6Þ

where VHG is the volumetric heat generation (W/m3) and

rV is the applied voltage gradient (V/m). Heat generation

rate was determined as follows:

HG ¼ r� rVj j2ut ð7Þ

where HG is the heat generation (W) and ut is the volume

of the sample at any time of the heating process (m3).

Energy consumption

The energy consumption during OHM and CHM was cal-

culated, respectively, as follows (Nouroallahi et al. 2018):

EOHM ¼
X

VI� Dtð Þ ð8Þ

ECHM ¼ P� t ð9Þ

where P is the power consumption of electrical heater (W),

t is the processing time (s), Eoh and Econ are the energy

consumption (J) by OHM and CHM, respectively.

Quality assessment

Total soluble solids (TSS) were determined by refrac-

tometer (Atago, Japan) at 20 �C and results were expressed

as percentage. Titratable acidity (TA) was measured by

titrating 3 mL of sample in 27 ml DW with 0.1 N NaOH

up to pH 8.2. The results were expressed as percentage of

tartaric acid. The pH of samples was measured using a pH

meter (Metrohm 827, Switzerland).

TP was extracted from 0.5 mL of sample in ice cold

2 mL HCl-methanol-distilled water (1: 80: 19% v/v) for

12 h at 4 �C and then centrifuged at 12,0009g for 15 min

at 4 �C. The TP content in extracts was determined

Fig. 1 Sketch drawing of

experimental ohmic heating

system
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according to the Folin–Ciocalteu procedure (Singleton

et al. 1999) with some modification as described previously

(Koushesh Saba and Moradi 2016). Briefly, 20 lL of the

prepared extract was added to 250 lL distilled water,

750 lL of 1:10 Folin–Ciocalteu reagent: water solution

and 800 lL of Na2CO3 (7.5%, w/v). The mixture was

incubated at 30 �C for 60 min then; absorption was mea-

sured at 765 nm. The results were expressed as mg of gallic

acid equivalents (GAE) per 100 mL of the sample using

aqueous gallic acid standard.

Antioxidant activity (AA) was measured using the 2,2-

diphenyl-1-picrylhydrazyl (DPPH) radical scavenging

assay as described by Patras et al. (2009). The absorbance

was measured at 515 nm using a spectrophotometer (Unico

UV-2100, USA). AA was expressed as the percentage

inhibition of the DPPH radical and was determined using

the following equation:

AA %ð Þ ¼ Abscontrol � Abssample

Abscontrol

� �
� 100 ð10Þ

Sensory profiling

The sensory evaluation of samples was done by a panel of

five experts on the hedonic scale according to a 1–10 point

scale ranging from ‘‘very strong dislike’’ to ‘‘very strong

like’’. Color, viscosity, flavor, and aroma were evaluated

by this method and the average values were used for

assessing the acceptability by the consumers.

Statistical analysis

All experiments were performed at least three times. The

results were expressed as average ± standard deviation,

and ANOVA analysis and Duncan test were used for

determining statistical significance. Microsoft Excel was

used for plotting 2D view of the results.

Results and discussion

Heating rate and processing time

The trend of juice sample temperature during the heating

process is shown in Fig. 2. Temperature of sample reached

to 90.7 ± 0.9 �C and then the evaporation process started.

The temperature of juice samples under OHM increased

faster than the CHM.

Heating rate of OH treatments is 4 to 17-fold higher than

the conventional treatment (Table 1). Heating rate

increased with increasing voltage gradient because

increased input energy increased the activity of water

molecules (Icier and Ilicali 2005; Sarkis et al. 2013; Dar-

vishi et al. 2015). Processing time for OHM is 2.4 to 7.2-

fold lower than the CHM (Table 1). Furthermore, pro-

cessing time reduced about threefold by increasing voltage

gradient from 15 to 30 V/cm. These findings were in line

with previous reports (Icier and Ilicali 2005; Sarkis et al.

2013; Darvishi et al. 2015).

Electrical conductivity

Variations of electrical conductivity as function of sample

temperature and moisture content ratio are shown in Fig. 3.

Applied voltage gradient was not significantly affected the

electrical conductivity during warming (P[ 0.05). During

warming up, the electrical conductivity increased linearly

from 0.2 to 0.75 S/m with increasing temperature of juice

sample from 18 �C (as initial temperature) up to boiling

point. At high gradient voltages of 25 and 30 V/cm, for the

temperatures between 72 and 74 �C, a sudden bubbling

took place and impaired the linearity of electrical con-

ductivity. The increase in the electrical conductivity values

with temperature is related to the reduced drag of ions

(Fadavi et al. 2018; Icier and Ilicali 2004). Icier et al.

(2008) reported that the electrical conductivity of grape

juice increased 0.3-0.8 S/m with increasing temperature

from 20 to 80 �C at 20–40 V/cm voltage gradient. Also,

Tankesh (2018) found that the electrical conductivity of red

grape juice increased linearly from 0.25 to 0.8 S/m with

increasing temperature from 30 to 85 �C at 20–40 V/cm

voltage gradient.

The electric conductivity has been decreased rapidly

when the boiling process started due to the formation of gas

bubbles which worked as electrical insulation (Darvishi

et al. 2015; Fadavi et al. 2018). The rate of formation of gas

bubbles in high voltage gradient was more. Therefore, the

decrease of electrical conductivity was visible at the
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different heating methods
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beginning of boiling. After the boiling step, the electrical

conductivity decreased with decreasing moisture content

ratio of juice sample (0.22 B Xw\ 1). The concentration

of sugar and soluble solid in the juice samples increased

with decreasing moisture content. The concentration

dependence of the electrical conductivity of the juices has

been explained by the increased drag for the movement of

ions with increasing concentration (Darvishi et al. 2015).

The sugar might act as an electric insulator and reduced the

flow of electrical current from the juice sample. A similar

trend has been observed by Castro et al. (2003), Icier

(2003) and Icier and Ilicali (2004). Castro et al. (2003)

reported that an increase in soluble solids and sugar content

of strawberry-based products decreased electrical conduc-

tivity from 0.5 to 0.05 S/m. Similarly, Icier (2003) con-

cluded that, as the sugar content increased, the electrical

conductivities of the liquid solutions decreased while the

acidity of the juices enhanced their electrical

conductivities.

Heat generation and energy consumption

According to Fig. 4a, the heat generation in juice sample

increased sharply during warming up due to increasing of

electrical conductivity. The amount of the generated heat

rapidly decreased with the starting of boiling and evapo-

ration process. The same trend of heat generation reported

by Sabancic and Icier (2017) and Darvishi et al. (2015) for

ohmic concentration of sour cherry juice and tomato juice,

respectively. The heat generation in high voltage gradient

was larger than the low voltage gradient. The heat gener-

ation values at the beginning of boiling were 400 W,

702 W, 1058 W and 1395 W for 15 V/cm, 20 V/cm, 25 V/

cm and 30 V/cm, respectively. However, the heat genera-

tion values at the end of concentration process decreased

dramatically to 40.5 W for 15 V/cm, 112 W for 20 V/cm,

112.5 W for 25 V/cm and 264 W for 30 V/cm.

Variations of moisture content ratio of juice sample

during the concentration process are shown in Fig. 4b. The

warming up period for juice sample (Xw = 1) were 333 s

for 15 V/cm, 145 s for 20 V/cm, 92 s for 25 V/cm, and

77 s for 30 V/cm. The warming up period decreased with

increasing voltage gradient (P\ 0.05) due to more heat

generation in higher voltage gradient at the same time.

Decreasing of heat generation in juice sample caused to

reduction rate of evaporation and increment of processing

time. The average values of energy consumption are shown

in Table 1. The voltage gradient had no significant effect

Table 1 Average of heating rate, processing time and energy consumption at different heating conditions

Method Level

heating

Heating rate

(�C/s)
Processing

time (min)

Energy

consumption

(kJ)

Sensory parameters#

Color Viscosity Flavor Aroma

OHM 15 0.211 (± 0.009)a 30.1 (± 0.28)a 479 (± 7.1)a 7.45 (± 1.20)a 7.01 (± 1.23)a 7.49 (± 1.00)a 7.43 (± 1.95)

20 0.425 (± 0.042)v 18.8 (± 3.6)b 477 (± 1.5)a 7.60 (± 1.05)a 7.59 (± 1.09)a 8.00 (± 0.90)a 7.09 (± 1.74)

25 0.626 (± 0.004)c 14.2 (± 2.8)c 460 (± 6.3)ab 8.01 (± 0.90)a 7.90 (± 1.57)a 8.20 (± 0.60)a 8.01 (± 0.36)

30 0.885 (± 0.031)d 10.1 (± 0.4)d 471 (± 5.5)a 8.03 (± 0.75)a 7.41 (± 1.80)a 8.00 (± 1.23)a 7.32 (± 1.31)

CHM – 0.052 (± 0.009)e 73.2 (± 1.1)e 3036 (± 46)c 3.85 (± 1.50)b 7.18 (± 0.95)a 3.90 (± 1.25)b 3.90 (± 1.95)

*The results are mean of triplicate ± standard deviation
a–eMeans with different letters on them in columns and rows are significantly different at 5% level
#Sensory parameter values were scored from a score of ten

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

0 10 20 30 40 50 60 70 80 90 100

Ee
ct

ric
al

 co
nd

uc
�v

ity
 (S

/m
)

Sample temperature (ºC)

15 V/cm

20 V/cm

25 V/cm

30 V/cm

Ev
ao

ra
�o

n
pe

rio
ed

(0
.2

2≤
X w

<1
)

Boiling

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

0.2 0.4 0.6 0.8 1.0

El
ec

tr
ic

al
 co

nd
uc

�v
ity

 (S
/m

)

Moisture content  ra�o (-) 

15 V/cm
20 V/cm
25 V/cm
30 V/cm

W
ar

m
in

g
up

 (X
w

= 
1)
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ture and moisture content ratio of black grape juice during ohmic

heating
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on the specific energy consumption using CHM

(P[ 0.05). The needed energy for the production of grape

molasses using OHM is 6.4-fold lower than the CHM.

Quality parameters

According to Fig. 5a, there were no significant differences

in TSS values among treatments (P[ 0.05). The TA of

samples prepared by OHM varied from 0.60 to 0.87%,

while the TA of samples processed using CHM was 1.50%

(Fig. 5b). The concentrated samples prepared by CHM had

the highest TA. The TA at high voltage gradient levels (25

and 30 V/cm) was lower than the low voltage gradient

levels (15 and 20 V/cm). The decrease in TA might be due

to the higher rate of heating at higher voltage gradient,

which resulted in the conversion of organic acids into

sugars in large extent. The findings of Chakrabortya and

Athmaselvi (2014) for guava juice and Tankesh (2018) for

grape juice are in line with these results. Results also

revealed that TA of concentrated samples acquired with

OHM was significantly lower than CHM. It could be due to

the electrochemical degradation of organic acids during

OHM. Moreover, TA reduction of subjected samples to the

higher voltages gradient enhanced the possibility of an

electrochemical reaction. Mercali et al. (2014) proposed

electrolysis of water and electrode corrosion as mecha-

nisms of ascorbic acid degradation during the ohmic

heating of acerola pulp.

The average pH of the concentrated samples prepared

with OHM varied between 2.64 and 3.42, while the pH of

samples prepared with CHM was2.14 (Fig. 5c). The pH

values of grape juice concentrated by reverse osmosis

varied between 2.91 and 2.98 (Gurak et al. 2010) in the

temperature range of 20–50 �C. Cosme et al. (2018) and

Gurak et al. (2010) reported that the low value of pH

indicated a high acidity due to the existence of tartaric,

malic and citric acids in concentration grape juice. The pH

of fresh grape juice in the current study was 3.69. The pH

difference of concentrated samples (using OHM) with the

fresh sample decreased when higher voltage gradient was

used. Also, the pH difference of CHM treatment with the

fresh sample was higher than OHM. Heating rate and

processing time have been reported as effective parameters

on change percentage of pH (Fadavi et al. 2018; Darvishi

et al. 2019). It has been reported that heating rate increased

pH because the organic acids converted into sugars or

utilized for energy synthesis (Chattopadhyay et al. 1992).

The heating rate increased by increasing the voltage gra-

dient and the processing time of the product decreased that

might reduce the pH changes. The same results have been

reported when ohmic heating was used for tomato, orange

and pomegranate juices (Fadavi et al. 2018; Darvishi et al.

2013, 2019).

The key phenolic compounds of all grape variety were

gallic acid, 3,4-dihydroxybenzoic acid, catechin, 1,2-di-

hydroxybenzene (Özcan et al. 2017a, b). When comparing

the TP and AA properties of treatment and fresh samples, it

should be noted that the fresh sample had more moisture

content than the treated samples and should be considered

the concentration ratio. Figure 5d showed the TP of grape

juice concentrate in different thermal treatments. No sig-

nificant difference was observed among TP of concentrated

samples using CHM and OHM (P[ 0.05). The TP of

OHM and CHM treatments was lower than the fresh juice

at the same moisture content. As can be seen, both heating

processes, OHM and CHM, significantly reduced the TP of

treated samples than the fresh samples in the same moisture

content (P\ 0.05). Also, TP was not significantly influ-

enced by the applied voltage gradient (P[ 0.05). The

presented results by Yildiz et al. (2009) suggested that

conducted ohmic heating at the gradient voltage of

10–40 V/cm did not cause any difference in TP content of

pomegranate juice. In contrast, the decreasing trend of TP

during the concentration of pomegranate juice produced by

ohmic heating has been reported by Sabanci et al. (2018).

Based on these results, it seems that several factors such as

the technological treatment, food matrices, and processing
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conditions might have an effect on the TP content of fruit

and vegetable juice during thermal and electro-thermal

treatment.

The antioxidant potential of samples was assessed by

scavenging effects on the DPPH radicals (Fig. 5e). There

was no significant difference between treated samples with

CHM and OHM performed at 15 V/cm (P[ 0.05), while

the grape juice concentrated by OHM-30 V/cm had the

greatest AA. The AA of submitted samples to OHM

increased from 77.0 to 85.3% with increasing voltage

gradient from 15 to 30 V/cm. Under OHM, the processing

time was greater and the degradation of AA was more at

lower voltage gradient that was in line with previous

findings (Darvishi et al. 2019). The AA of both heating

methods was lower than the fresh sample when these

values compared at the same moisture content. Helvacıoğlu
et al. (2018) reported that the pro-oxidant and antioxidant

molecules might be formed depending on the degree of

applied thermal treatment in grape molasses production.

During heat treatment antioxidants in food can be degraded

and new components with antioxidant activity can be

formed.

Sensory profiling

The results of sensory evaluation are shown in Table 1. For

the four traits studied, the samples processed in the ohmic

heating method had a higher score than the conventional

heating samples (P\ 0.01). It was not observed significant

difference among the score of color, aroma and viscosity at
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Fig. 5 Quality parameters of grapemolasses versus heating condi-

tions. a–dMeans with different letters on them in columns and rows are

significantly different at 5% level (Results are mean of replication

(n = 3) ± standard deviation). *It should be noted that the moisture

content of fresh juice and concentrated samples are 92.2% and 26.2%

wet basis. The values of TP and AA are presented in 100 mL of

material. For comparison between TP and AA of fresh and

concentrated samples, values of TP and AA of concentrated samples

should be divided into 3.52 because juice samples concerned about

3.52-fold
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different gradient levels for treated samples using OHM

(P[ 0.05).

Conclusion

The effect of two heating methods including ohmic and

conventional heating was evaluated on the quality param-

eters and engineering aspects of the grape molasses pro-

cessing. The samples prepared by CHM had the highest TA

and lowest pH. The TSS and TP values of the final product

were not significantly affected by the heating method and

voltage gradient. Increasing the voltage causes less

reduction in the pH of the concentrated juice than the fresh

juice. The AA of samples in OHM treatment was higher

than the OHM (P\ 0.05). Results showed that the pro-

cessing time in OHM was 2.4 to 7.2-fold lower and the

heating rate was 4 to 17-fold higher than the CHM. The

OHM saved up to 6.3-fold in energy consumption com-

pared with CHM. Applied voltage gradient had no signif-

icant effect on energy consumption (P[ 0.05). The heat

generated in the juice sample during the concentration

process decreased with decreasing moisture content of

juice sample and it caused to the reduction rate of evapo-

ration and increment of processing time. The electrical

conductivity increased linearly from 0.2 to 0.75 S/m with

increasing temperature up to the boiling point during

warming up (Xw = 1) and then decreased with decreasing

moisture content ratio of juice sample during evaporation

process (0.22 B Xw\ 1). It can be noted that the OHM

provided better quality and significantly saved the engi-

neering parameters than the CHM during the processing of

grape molasses.
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