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Abstract Adulteration of milk is a common practice that

concerns regulatory agencies, industry, and the population.

Despite the growing need for checking adulteration, the

current methods employed generally have low performance

and are highly dependent on manual labor. This study aims

to calibrate and validate a compact equipment (MilkoScan

FT1) that adopts a Fourier transform infrared spectroscopy

methodology to monitor adulteration in raw milk. Almost

2500 milk samples were used for reference spectrum

construction and 1650 samples were used to validate the

identification of the following five most commonly used

adulterants (at three different concentrations each): (1)

cornstarch, (2) sodium bicarbonate, (3) sodium citrate, (4)

formaldehyde, and (5) saccharose, plus the additions of two

levels of water or whey. To define the calibration with the

best performance in milk adulteration identification, 12

calibrations involving 8, 10, 12, 14, 16, or 18 factors, with

one or two outlier eliminations, were developed. The

results of sensitivity and specificity analyses, as well as

Kruskal–Wallis and Dunn multiple comparison tests,

revealed that the calibration that best identified the adul-

terants was the one involving 14 factors, with a single

elimination of outliers, exhibiting for all adulterants

simultaneously, 84% sensitivity and 100% specificity. The

calibration showed excellent sensitivity to cornstarch

([98%), sodium bicarbonate (100%), sodium citrate

(99%), and formaldehyde ([84%), indicating that this

calibration has good capacity for adulteration detection.

Thus, this methodology is a viable option for the dairy

industry to identify adulteration of raw milk.

Keywords FTIR � Validation � Calibration � Fraud � Cow
milk � Dairy industry

Introduction

Food adulteration is a very old practice that has become

more sophisticated over time (Kamal and Karoui 2015).

Foods with high nutritional value, such as milk, are the

most vulnerable to adulteration; as a result, the demand for

products with guaranteed authenticity is growing (Karoui

and De Baerdemaeker 2007).

In recent years, several adulteration practices have been

observed in milk, such as the addition of melamine in

China (Lim et al. 2016) and the additions of various other

compounds, such as sodium citrate, sodium hydroxide,

sodium chloride, saccharose, phosphates, carbonates,
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bicarbonates, hydrogen peroxide, urea, and formaldehyde

(Botelho et al. 2015), which have been reported in Brazil

and other countries such as India. Such adulteration creates

great concern for the entire production chain.

Owing to the sophisticated adulteration practices for

milk that have been adopted by the industry, producers, and

transporters, it is necessary to develop technologies for

identifying such fraud. However, the current methods

employed for this purpose generally have low analytical

performance, are highly dependent on manual labor, and

require the use of reagents (Harding 1995). These charac-

teristics hinder the implementation of large-scale moni-

toring programs, which hampers the analysis of all the

adulterants in milk routinely (Cassoli 2010). Another bar-

rier is the identification of adulteration as soon as it is

developed because, historically, adulteration must occur so

that methodologies can be developed to identify it (Cassoli

2010).

Because adulteration practices have become increas-

ingly refined, analytical methods must also become

increasingly sophisticated. Some examples of such meth-

ods include the use of Fourier transform infrared spec-

troscopy (FTIR) (Nicolaou et al. 2010; Cassoli et al. 2011;

Jawaid et al. 2013) and other spectroscopic and chro-

matographic techniques (Bogialli et al. 2004; Sassine et al.

2004; Andersen et al. 2005; Chen et al. 2005; Garcia et al.

2012), as well as milk scanning techniques to identify

adulteration (Santos et al. 2012).

The FTIR technique has been gaining interest for raw

milk quality control, especially because of its high level of

analytical capacity, low sample manipulation and use of

fewer reagents, resulting in less time, lower costs, and a

higher number of samples that can be analyzed in the same

time interval (Rodriguez-Saona and Allendorf 2011).

The basic assumption behind the application of spec-

troscopic techniques is based on the generation of a food

‘‘fingerprint’’ (Karoui and De Baerdemaeker 2007). A

dairy product with a certain chemical composition that is

exposed to a light source has a characteristic spectrum that

results from the absorption of various chemical compo-

nents (Karoui and De Baerdemaeker 2007). Because the

exact composition of any natural material changes

depending on the variety, season, location, and other

characteristics, it is necessary to have a set of representa-

tive spectra or ‘‘standards’’ that the test material can be

compared with to establish its quality or authenticity

(Karoui and De Baerdemaeker 2007).

Different FTIR instruments are available on the market

currently that range from compact (used for quality control

during the reception of milk by the industry) to high per-

formance (used by central laboratories with greater ana-

lytical capacities of up to 600 samples/h). Compact

equipment provides the industry with the possibility of

including FTIR in its raw material quality control pro-

grams, or even replacing traditional (chemical) methods

that are recommended by inspectors.

Thus, in an attempt to fulfill this need to develop rapid,

effective, and low-cost analytical methods for identifying

adulterated milk, this work aims to calibrate and validate a

compact FTIR instrument (MilkoScan FT1, Foss Analyti-

cal) for monitoring raw milk adulteration. The hypothesis

is that the FTIR equipment, which is being increasingly

used by industries to evaluate the composition of milk, can

identify the main adulterants in raw milk.

The results of this study can be applied directly to the

detection of adulterants and will thus help in protecting the

public health by improving the quality of marketed milk.

Materials and methods

Local development

The analyzed raw milk samples were obtained from a dairy

located in the middle region of Minas Gerais, Brazil, that

processes approximately 800,000 L of milk per day. The

industry uses the MilkoScan FT1 equipment for quality

control of the milk to analyze its fat, protein, casein, total

solids, urea nitrogen, freezing point, pH, etc.

Reference spectrum construction

For the reference spectrum construction, 2497 samples of

raw milk were collected over 6 months (from the begin-

ning of August 2014 to the end of January 2015, to rep-

resent variations in milk composition at different periods of

the year) from carrier trucks that arrived daily at the

industry. Milk samples were collected from each carrier

truck over the tank lid in 50 mL sterile vials using appro-

priate tools. All the samples were readily analyzed. These

samples represent the milk of every truck that arrived at the

industry during that 6-month period.

The analyses were performed with the FTIR MilkoScan

FT1 equipment. The equipment has the ability to scan the

entire middle infrared region with wavelengths between 2.0

and 10.8 lm (5012–926 cm-1), and the spectra were

exported and stored in electronic files (Foss Analytical

2011b). The equalization of the equipment was performed

monthly as recommended by the manufacturer (Foss

Analytical 2011a) to ensure spectral acquisition standard-

ization during the experimental period (Hansen 1998).

Prior calibration of the device, for milk composition

characterization (levels of fat, protein, casein, total solids,

urea nitrogen, freezing point, pH, etc.) was evaluated using

standard samples (VALACTA�) with the FOSS Integrator

software, which automatically calculates all of the
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calibration parameters [standard error (SE), standard error

calibration (SEC), and determination coefficient (R2)] and

includes the calibration feature ‘‘slope intercept’’ to per-

form all the necessary calculations to optimize the equip-

ment performance.

Calibration development

The spectral database was created using principal compo-

nent analysis (or factor analysis) with the Abnormal

Screening Module (ASM) software (Foss Analytical

2011b). One of the purposes of principal component

analysis (PCA) is to reduce the amount of data, i.e., to

adjust the information from the original data set and

replace it with a smaller set of latent variables (Dunn et al.

1989). In this type of analysis, the first principal compo-

nents (PCs) contain almost all the useful information for

the dataset, whereas the remaining PCs mainly contain

noise (Dunn et al. 1989). Therefore, a large number of

components should be chosen to better separate the useful

information from the noise (Dunn et al. 1989).

Hence, 12 calibrations were developed for the reference

spectrum and validation samples. Different numbers of

factors (or principal components) in the statistical model

were considered: 8, 10, 12, 14, 16, or 18 factors with one or

two outlier eliminations. During the first elimination of

outliers, sample spectra with large differences compared

with the average spectral values were discarded. Next, the

calibration curve was adjusted and used for the calculation

of the ‘‘scores.’’ During the second elimination of outliers,

after first excluding the outliers, the calibration curve was

adjusted, new differing spectra were then excluded, and the

calibration curve was again adjusted and used to calculate

newer ‘‘scores.’’ All calibrations were carried out using the

middle infrared region, with wavelengths between 2.0 and

10.8 lm (5012–926 cm-1).

The ‘‘score’’ calculation was based on the ‘‘spectral

distance’’ (Euclidean distance) between the test and the

reference samples. This distance is large or small for

samples that resemble or differ from the reference (Foss

Analytical 2011b).

The follow references were adopted to facilitate the

understanding of the results: (1) calibration 1: 8 factors

with a single elimination of outliers; (2) calibration 2: 8

factors with two eliminations of outliers; (3) calibration 3:

10 factors with a single elimination of outliers; (4) cali-

bration 4: 10 factors with two eliminations of outliers; (5)

calibration 5: 12 factors with a single elimination of out-

liers; (6) calibration 6: 12 factors with two eliminations of

outliers; (7) calibration 7: 14 factors with a single elimi-

nation of outliers; (8) calibration 8: 14 factors with two

eliminations of outliers; (9) calibration 9: 16 factors with a

single elimination of outliers; (10) calibration 10: 16

factors with two eliminations of outliers; (11) calibration

11: 18 factors with a single elimination of outliers; and (12)

calibration 12: 18 factors with two eliminations of outliers.

Sample preparation for validation

The milk used in this step was collected randomly from 25

carrier trucks and stored under refrigeration (\10 �C) until
use. The milk collected from each truck (65 L per collec-

tion day) was subsequently divided into 1-L samples to

receive adulterants at different concentrations.

Three or six percent water was added to each 1 L milk

sample, and the following compounds were added: (1)

cornstarch (at 500, 750, and 1000 mg L-1); (2) sodium

bicarbonate (at 600, 1200, and 1800 mg L-1); (3) sodium

citrate (at 500, 750, and 1000 mg L-1); (4) formaldehyde

(at 150, 300, and 450 mg L-1); and (5) saccharose (at 250,

500, and 750 mg L-1). In total, there were 750 samples of

adulterated milk containing water, and these samples were

analyzed 25 times.

To evaluate adulteration with whey, 3 or 6% whey was

added to each 1 L sample of milk, and the same com-

pounds at the concentrations listed above were also added.

In total, there were, therefore, another 750 samples of

adulterated milk with whey, and these samples were also

analyzed 25 times.

The control samples were raw milk, raw milk with water

(3 or 6%), and raw milk with whey (3 or 6%), and these

were also analyzed 25 times each. Therefore, 1625 samples

were analyzed, including the following: 1500 samples of

raw milk adulterated with water or whey (3 or 6%) with the

addition of five adulterants (at three concentrations each),

25 control samples of raw milk, and 25 samples adulterated

with only water or whey (3 or 6%).

Milk characterization and validation

The analyses were performed according to the procedures

recommended by the MilkoScan FT1 manufacturer (Foss

Analytical 2011a). The levels of fat, protein, casein, non-

fat solids, acidity, and density were measured to charac-

terize the milk composition. The ‘‘scores’’ were calculated

according to the data obtained with the 12 calibrations

developed in the previous step (‘‘Calibration development’’

section), using wavelengths between 2.0 and 10.8 lm
(5012–926 cm-1). Samples with scores greater than three

were considered adulterated.

To evaluate the accuracy of each calibration for the

detection of adulterated milk, the sensitivity (ability to

correctly identify adulterated samples) and specificity

(ability to correctly identify unadulterated samples) were

calculated (Erdreich and Lee 1981).
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The Kruskal–Wallis test was used for the detection of

each adulterant using the sensitivity from each calibration

(which involved 8, 10, 12, 14, 16, or 18 factors with one or

two eliminations of outliers). This test evaluates the posi-

tion of the averages with a ranking organization and pro-

vides a classification order from the best to the worst

average (lower average values are considered better). After

determining the ranking, the Dunn test was used to make

multiple comparisons between the results.

To define the calibration with the best performance, the

calibrations providing results with the highest specificity

were identified. Then, those providing results with the best

sensitivity were selected from this group.

All the estimates were calculated using R software

(version 3.2.4; R Foundation, Vienna, Austria) and a sta-

tistical significance level of 0.05.

Results and discussion

Reference spectrum construction

Milk composition is affected by a variety of factors

including season, lactation stage, type of feed given to the

animals, physiological state, milking interval, and genetic

factors, among other aspects (Heck et al. 2009). Thus, milk

samples from different regions and feed systems are also

subject to different seasonal effects that influence the main

components of raw milk (Chen et al. 2014). Consequently,

samples must represent this variability in the construction

of the reference spectrum (Soyeurt et al. 2009).

Therefore, the reference spectrum (Fig. 1) was con-

structed from the analysis of milk samples collected over

6 months (from August to January, a period which includes

the end of the dry season, the transitional period, and the

beginning of the rainy season in Brazil) to incorporate

seasonal variation. The averages (after the removal of

outliers) of the levels of fat, protein, casein, non-fat solids,

and acidity (measured as grams of lactic acid per deciliter

of milk) and density during these 6 months of data col-

lection are illustrated in Table 1.

Calibration development

After developing the 12 calibrations for the reference

spectrum and validation samples, which considered 8, 10,

12, 14, 16, or 18 factors with one or two outlier elimina-

tions in the statistical model, the results obtained for the

calibration using 10 factors (principal components) could

explain more than 90% of the spectral variation of the
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Fig. 1 Representative FTIR spectrum for the raw milk samples used in the reference spectrum construction
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samples used in the reference spectrum construction.

According to Heuer et al. (2001) and Karoui and De

Baerdemaeker (2007), it is necessary to choose factors that

represent approximately 90% of the spectral sample vari-

ability to construct a calibration model.

Some studies have obtained similar numbers of factors

in their calibrations. Cassoli et al. (2011) found that nine

factors were sufficient to explain 90% of the spectral

variation of the reference sample. Santos et al. (2013a)

developed models using six and seven factors that

explained more than 97% of the variance in multispectral

data, whereas Etzion et al. (2004) obtained better results in

determining the concentrations of proteins in raw milk

using nine factors in a partial least squares (PLS) model.

Validation

Because milk adulteration usually occurs due to the addi-

tion of substances at low concentrations (Cassoli et al.

2011), the validation-step calibrations were developed

using a number of factors that varied from 8 to 18 as

described above.

The factors used in this study were calculated using

calibration models that were automatically selected using

the ‘‘auto-select optimal’’ tool of the ASM software (Foss

Analytical 2011b). The selection of factors was based on

the predicted residual error of sum of squares (PRESS)

value, which indicates how well the model fits the cali-

bration data (Jawaid et al. 2013).

The results described in Table 2 reveal that among the

12 compared calibrations, calibration 12 (which included

18 factors with two eliminations of outliers) presented the

best classification based on the Kruskal–Wallis test.

Calibration 12 had the lowest value in the ranking but

did not differ (p[ 0.05) from calibrations 10 and 8 when

compared, using the Dunn test (Table 3).

The use of the calibration that includes the maximum

number of factors is not recommended when there are other

calibrations that are not significantly different. In such

cases, a calibration with a smaller number of factors should

be chosen (Tobias 1995). As the number of factors used

increases, the proportion of components that explain little

sample variation increases, more noise is introduced into

the calibration, and the small components cause

collinearity problems (Geladi and Kowalski 1986).

According to these criteria, calibrations 8 and 10 could be

chosen because they best identified adulterations in milk,

were not significantly different from calibration 12, and

involved fewer numbers of factors.

To better evaluate the calibrations obtained, the sensi-

tivity and specificity of each calibration have been plotted

(Fig. 2). However, examination of these data clearly reveal

that calibrations 8 and 10 do not exhibit 100% specificity;

in other words, based on the control samples (those without

any type of adulteration), these calibrations resulted in

some false positives.

Thus, if the choice of the calibrations that better identify

adulterations in milk is based on those that exhibit the

maximum specificities, in other words, no false positive

values (calibrations 3, 5, 6, 7, 9, or 11), then calibration 7

(14 factors and one removal of outliers), although it has not

been classified by the Kruskal–Wallis test as one of the best

calibrations, should be chosen because, as shown in

Table 3, this calibration does not statistically differ

(p[ 0.05) from calibrations 8 and 10 (previously ranked

better at identifying adulterants in raw milk) and includes

fewer factors.

The numbers of factors used to identify adulterants and

contaminants in milk by infrared spectroscopy vary widely

according to the compounds studied. Kasemsumran et al.

(2007) used near-infrared spectroscopy and determined that

Table 1 Milk sample

compositions
Fat (%) Prot. (%) SNF (%) Cas. (%) Ac. (g dL-1) Dens. (g mL-1)

Mean 3.51 3.14 8.77 2.43 0.154 1.031

Maximum 5.06 3.35 9.24 2.87 0.178 1.034

Minimum 2.95 2.94 8.38 2.28 0.141 1.028

CV (%) 6 2 1 2 4 0

Levels of fat, protein (Prot.), non-fat solids (SNF), casein (Cas.), acidity (Ac.), and density (Dens.) of the

samples used to construct the reference spectrum

CV coefficient of variation

Table 2 Average ranking of the calibrations after the Kruskal–Wallis

test

Cal. 12 Cal. 10 Cal. 8 Cal. 9 Cal. 4 Cal. 11

Ranking 1.1333 1.3500 1.6000 2.3667 2.4000 2.5500

S 0.0692 0.1136 0.1750 0.3566 0.2952 0.3887

Cal. 2 Cal. 7 Cal. 5 Cal. 3 Cal. 1 Cal. 6

Ranking 2.6833 2.7333 3.0167 3.2333 3.6167 4.7333

S 0.4182 0.4137 0.4495 0.4347 0.5165 0.6462

Lower values indicate better ranking positions

S standard error, Cal. calibration
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the best calibration model for milk adulteration with whey

used four factors in a PLS model. Sivakesava and Iruda-

yaraj (2002) defined 15 as the optimal number of factors

using the PLS method to identify tetracycline in milk.

Heuer et al. (2001) obtained a predictive model that con-

sisted of 19 principal components (factors) for the deter-

mination of acetone in cow milk. These results highlight

the need for proper equipment calibration, especially when

it is used to detect compounds that do not naturally belong

in milk.

Regarding the sensitivity analyses for calibration 7 for

all the adulterants added at different water or whey con-

centrations (Table 4), the data reveal that calibration 7 can

define all the adulterated samples with greater sensitivity,

regardless of the concentration and type of adulterant. For

example, the sensitivities were 100% after the addition of

sodium bicarbonate at all the tested concentrations of this

adulterant and after the addition of water or whey.

Using calibration 7, the addition of cornstarch and

sodium citrate resulted in sensitivities lower than 100% at

the lowest concentrations of these adulterants

(500 mg L-1). In contrast, the addition of formaldehyde

resulted in lower sensitivity when it was added at 150 or

300 mg L-1 together with whey (3 and 6%). This charac-

teristic demonstrates the capacity of whey to mask the

addition of formaldehyde. The sensitivity was close to

100% at the other adulterant concentrations.

Botelho et al. (2015) found sensitivities of 83.3, 100,

and 93.8% to the addition of 0.5–10% w/v (5–10 g L-1) of

cornstarch, sodium citrate, and formaldehyde, respectively,

based on a screening method that used attenuated total

reflectance (ATR) spectroscopy in the mid-infrared range

and multivariate classifications. Cassoli et al. (2011) found

maximum sensitivity (98%) in the detection of 0.075%

(750 mg L-1) sodium citrate in raw milk. Compared to the

results reported by Cassoli et al. (2011), the present work

produced better sensitivity values for this and other sodium

citrate concentrations.

At one of the concentrations used in this study, sac-

charose (up to 750 mg L-1) resulted in the lowest detec-

tion rate, particularly when whey was added to the samples.

However, these concentrations were very small, which may

explain the low identification rate of this adulterant. He

et al. (2010) were able to identify glucose adulterations in

raw milk at 1000 mg dL-1 using infrared spectroscopy

combined with two-dimensional correlation analysis. This

concentration is much higher than that used in the present

study. Liu et al. (2015) were able to identify 240 mg of

saccharose adulterant per liter of raw milk using infrared

spectroscopy combined with multivariate chemometric

techniques. However, these studies did not investigate any

other adulterants, such as water or whey, capable of

masking the addition of saccharose.T
a
b
le

3
M
u
lt
ip
le

co
m
p
ar
is
o
n
s
b
et
w
ee
n
th
e
tw
el
v
e
ca
li
b
ra
ti
o
n
s

C
al
.1

C
al
.2

C
al
.3

C
al
.4

C
al
.5

C
al
.6

C
al
.7

C
al
.8

C
al
.9

C
al
.1
0

C
al
.1
1

C
al
.2

1
.1
2
3
6
(0
.1
3
0
6
)

C
al
.3

0
.3
7
0
3
(0
.3
5
5
6
)

-
0
.7
5
3
4
(0
.2
2
5
6
)

C
al
.4

1
.0
2
2
4
(0
.1
5
3
3
)

-
0
.1
0
1
3
(0
.4
5
9
7
)

0
.6
5
2
1
(0
.2
5
7
2
)

C
al
.5

1
.0
7
4
3
(0
.1
4
1
3
)

-
0
.0
4
9
3
(0
.4
8
0
3
)

0
.7
0
4
0
(0
.2
4
0
7
)

0
.0
5
1
9
(0
.4
7
9
3
)

C
al
.6

-
0
.8
1
5
0
(0
.2
0
7
5
)

-
1
.9
3
8
6
(0
.0
2
6
3
*
)
-
1
.1
8
5
2
(0
.1
1
8
0
)

-
1
.8
3
7
3
(0
.0
3
3
1
*
)

-
1
.8
8
9
3
(0
.0
2
9
4
*
)

C
al
.7

1
.3
7
6
6
(0
.0
8
4
3
)

0
.2
5
3
0
(0
.4
0
0
1
)

1
.0
0
6
4
(0
.1
5
7
1
)

0
.3
5
4
3
(0
.3
6
1
6
)

0
.3
0
2
4
(0
.3
8
1
2
)

2
.1
9
1
6
(0
.0
1
4
2
*
)

C
al
.8

2
.4
8
7
7
(0
.0
0
6
4
*
)

1
.3
6
4
1
(0
.0
8
6
3
)

2
.1
1
7
5
(0
.0
1
7
1
*
)

1
.4
6
5
4
(0
.0
7
1
4
)

1
.4
1
3
4
(0
.0
7
8
8
)

3
.3
0
2
7
(0
.0
0
0
5
*
)

1
.1
1
1
1
(0
.1
3
3
3
)

C
al
.9

1
.7
4
6
1
(0
.0
4
0
4
*
)

0
.6
2
2
4
(0
.2
6
6
8
)

1
.3
7
5
8
(0
.0
8
4
4
)

0
.7
2
3
7
(0
.2
3
4
6
)

0
.6
7
1
8
(0
.2
5
0
9
)

2
.5
6
1
0
(0
.0
0
5
2
*
)

0
.3
6
9
4
(0
.3
5
5
9
)

-
0
.7
4
1
7
(0
.2
2
9
1
)

C
al
.1
0

2
.7
7
1
3
(0
.0
0
2
8
*
)

1
.6
4
7
6
(0
.0
4
9
7
*
)

2
.4
0
1
0
(0
.0
0
8
2
*
)

1
.7
4
8
9
(0
.0
4
0
2
*
)

1
.6
9
7
0
(0
.0
4
4
8
*
)

3
.5
8
6
2
(0
.0
0
0
2
*
)

1
.3
9
4
6
(0
.0
8
1
6
)

0
.2
8
3
5
(0
.3
8
8
4
)

1
.0
2
5
2
(0
.1
5
2
6
)

C
al
.1
1

1
.4
9
1
9
(0
.0
6
7
9
)

0
.3
6
8
3
(0
.3
5
6
3
)

1
.1
2
1
6
(0
.1
3
1
0
)

0
.4
6
9
5
(0
.3
1
9
3
)

0
.4
1
7
6
(0
.3
3
8
1
)

2
.3
0
6
9
(0
.0
1
0
5
*
)

0
.1
1
5
2
(0
.4
5
4
1
)

-
0
.9
9
5
8
(0
.1
5
9
7
)
-
0
.2
5
4
2
(0
.3
9
9
7
)

-
1
.2
7
9
4
(0
.1
0
0
4
)

C
al
.1
2

3
.9
0
8
3
(0
.0
0
0
0
*
)

2
.7
8
4
7
(0
.0
0
2
7
*
)

3
.5
3
8
0
(0
.0
0
0
2
*
)

2
.8
8
5
9
(0
.0
0
2
0
*
)

2
.8
3
4
0
(0
.0
0
2
3
*
)

4
.7
2
3
3
(0
.0
0
0
0
*
)

2
.5
3
1
6
(0
.0
0
5
7
*
)

1
.4
2
0
6
(0
.0
7
7
7
)

2
.1
6
2
2
(0
.0
1
5
3
*
)

1
.1
3
7
0
(0
.1
2
7
8
)
2
.4
1
6
4
(0
.0
0
7
8
*
)

C
o
m
p
ar
is
o
n
s
w
er
e
p
er
fo
rm

ed
af
te
r
th
e
ra
n
k
in
g
s
o
b
ta
in
ed

u
si
n
g
th
e
K
ru
sk
al
–
W
al
li
s
te
st
an
d
af
te
r
ap
p
ly
in
g
th
e
D
u
n
n
te
st
.
P
o
si
ti
v
e
v
al
u
es

in
d
ic
at
e
b
et
te
r
ro
w
re
su
lt
s,
an
d
n
eg
at
iv
e
v
al
u
es

in
d
ic
at
e

b
et
te
r
co
lu
m
n
re
su
lt
s

V
al
u
es

in
p
ar
en
th
es
es

ar
e
th
e
p
v
al
u
es
.
V
al
u
es

fo
ll
o
w
ed

b
y
an

as
te
ri
sk

(*
)
in
d
ic
at
e
co
m
p
ar
is
o
n
s
b
et
w
ee
n
th
e
li
n
es

an
d
co
lu
m
n
s
th
at
ar
e
si
g
n
ifi
ca
n
tl
y
d
if
fe
re
n
t
(p
\

0
.0
5
)
u
si
n
g
th
e
D
u
n
n
te
st
.
In

th
e
D
u
n
n
m
u
lt
ip
le

co
m
p
ar
is
o
n
te
st
,
w
h
ic
h
w
as

p
er
fo
rm

ed
af
te
r
th
e
ra
n
k
in
g
w
it
h
th
e
K
ru
sk
al
–
W
al
li
s
te
st
,
th
e
v
al
u
e
in

ea
ch

ce
ll
is
d
er
iv
ed

fr
o
m

th
e
d
if
fe
re
n
ce

b
et
w
ee
n
th
e
ca
li
b
ra
ti
o
n
o
f
th
e

co
lu
m
n
an
d
th
e
ro
w
.
F
o
r
ex
am

p
le
,
th
e
fi
rs
t
co
lu
m
n
re
p
re
se
n
ts

th
e
d
if
fe
re
n
ce
s
fr
o
m

C
al
ib
ra
ti
o
n
1
b
y
su
b
tr
ac
ti
n
g
th
e
o
th
er
s
(C
al
.2
,
C
al
.3
,
C
al
.4
,
et
c.
)

C
a
l.
ca
li
b
ra
ti
o
n

J Food Sci Technol (July 2017) 54(8):2394–2402 2399

123



To measure the effect of added water or whey per se, the

sensitivities of all 12 calibrations were calculated following

the addition of water or whey. When water was added at

6%, the sensitivity was 100% for all the tested calibrations,

except for calibration 11, for which the sensitivity was

95%. This result implies that regardless of the adulterants

used, the developed calibration could detect water at the

tested concentration. However, the sensitivities of the cal-

ibration for the diluents (3% water or whey) were low,

particularly when whey was added. However, even with

these low sensitivities, the calibrations were able to detect

the adulterants and not just the diluents.

The sensitivities of the different methods used to iden-

tify water or whey in raw milk are highly variable and

depend on the procedure used. Santos et al. (2012) were

able to identify 7% water adulteration in raw milk using the

image scanning method. Liu et al. (2015) detected the

addition of 1% water and 0.5% of whey with infrared

spectroscopy combined with multivariate chemometric

techniques. Santos et al. (2013b) and Santos et al. (2013a)

identified whey adulterations in milk at concentrations

greater than 7.5 g L-1 using soft independent modeling by

class analogy (SIMCA) classification models and mid-in-

frared spectroscopy. Cassoli et al. (2011) observed low

sensitivity even when high concentrations (20%) of whey

were added to raw milk using an FTIR method. Das et al.

(2011) identified adulterations in milk with 5% whey and

10% water with a novel method using an impedance sen-

sor. In contrast, Motta et al. (2014) obtained 1 lg mL-1 as

the detection limit for whey in raw milk via proteomic

analysis and liquid chromatography; however, this tech-

nique requires more extensive sample preparation and a

longer analysis time compared with infrared spectroscopy.

These results suggest that milk adulteration with whey is

difficult to identify probably owing to the chemical simi-

larity of whey and milk and because whey is a by-product

obtained during the cheese manufacturing process.

In this study, 25 samples of raw milk combined with

various contaminants were examined. The contaminants

included water or whey plus cornstarch, sodium
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Fig. 2 Sensitivities and

specificities of the tested

calibrations. Sensitivity, which

was measured for the

adulterated samples, and

specificity, which was measured

for the controls (unadulterated

samples), are presented as %

values for the 12 evaluated

calibrations. Calibration 7 has

been chosen as optimal for

identifying adulterations in milk

Table 4 Sensitivities of calibration 7 for all the adulterants

Adulterant (mg L-1)

Water or Cornstarch Sodium bicarb. Sodium citrate Formaldehyde Saccharose

Whey 500 750 1000 600 1200 1800 500 750 1000 150 300 450 250 500 750

Water (%)

3 32 96 100 100 100 100 100 100 100 100 60 100 100 56 48 60

6 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Whey (%)

3 4 92 100 100 100 100 100 96 100 100 28 88 100 16 24 32

6 12 92 100 100 100 100 100 92 100 100 40 96 100 12 24 44

Calibration 7 could define almost all the adulterated samples with high sensitivity values

Values are expressed in %
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bicarbonate, sodium citrate, saccharose, and formaldehyde

(at three different concentrations) in addition to the control

samples. Approximately 2500 samples were used to con-

struct the reference spectrum, which served as a standard

for the comparison of the test sample spectra (adulterated).

Using sensitivity and specificity analyses based on the

evaluation of the milk with the developed calibration as

well as with the ranking from the Kruskal–Wallis test and a

Dunn multiple comparison test, the results revealed that the

developed calibration expressed a good overall capacity for

the detection of adulterations of raw milk. The calibration

that best identifies the adulterants (calibration 7) exhibits

84% sensitivity (or 16% false negative rate) and 100%

specificity (0% false positive rate), and does not differ

statistically from calibration 10, which exhibits 89% sen-

sitivity (Fig. 2).

Conclusion

Based on the results obtained in this study, it can be con-

cluded that the equipment that employs the FTIR

methodology, after calibrations, displayed excellent sensi-

tivity and specificity. Thus, this approach is a viable option

for the identification of adulterants of raw milk.

As a rapid methodology that does not require reagents or

sample preparation, FTIR is an optimal alternative for

detecting adulterations, particularly because the equipment

is already in use in the most industry to determine milk

composition. Thus, this methodology has the potential to

contribute to protect public health and improve the quality

of marketed milk.
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