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Abstract
The complex societal challenges of the twenty-first Century require scientific
researchers and academically educated professionals capable of conducting
scientific research in complex problem contexts. Our central claim is that
educational approaches inspired by a traditional empiricist epistemology insuf-
ficiently foster the required deep conceptual understanding and higher-order
thinking skills necessary for epistemic tasks in scientific research. Conversely,
we argue that constructivist epistemologies (developed in the philosophy of
science in practice) provide better guidance to educational approaches to pro-
mote research skills. We also argue that teachers adopting a constructivist
learning theory do not necessarily embrace a constructivist epistemology. On
the contrary, in educational practice, novel educational approaches that adopt
constructivist learning theories (e.g., project-based learning, PjBL) often main-
tain traditional empiricist epistemologies. Philosophers of science can help
develop educational designs focused on learning to conduct scientific research,
combining constructivist learning theory with constructivist epistemology. We
illustrate this by an example from a bachelor’s program in Biomedical Engi-
neering, where we introduce conceptual models and modeling as an alternative
to the traditional focus on hypothesis testing in conducting scientific research.
This educational approach includes the so-called B&K method for
(re-)constructing scientific models to scaffold teaching and learning conceptual
modeling.
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1 Introduction

Contemporary undergraduate and graduate programs aim to educate students to
become researchers and professionals capable of conducting practice-oriented
scientific research. Examples are educational programs in the engineering sci-
ences, the medical sciences, and the agricultural and environmental sciences. It
also includes educational programs in scientific disciplines such as synthetic
and systems biology that aim at practical applications in the longer term.
Scientific research in these domains aims at knowledge and tools that enable
developing and designing interventions and predicting or investigating their
consequences in the targeted real-world system.1

Our central question is how to teach conducting scientific research. In
current academic education, scientific research is often trained in a novel
educational approach called project-based learning (PjBL), where students ‘learn
by doing.’ However, the results of this educational approach are often below
expectations. Teachers find that the epistemic quality of students’ research work
is superficial—students do not develop a deep understanding of relevant theo-
retical knowledge, their approaches often lack creativity, and they do not think
critically enough during the research process (personal communication).2 We
will elaborate on these expectations of teachers in Section 2 and Section 4, and
analyze the issue of how to teach in conducting scientific research from an
educational and an epistemological angle (in Section 2 and 3, respectively).

From the epistemological angle, we argue that teaching scientific research
requires an adequate epistemological view in terms of which teachers and
researchers talk about research practices. We suggest that an epistemology
suitable for practice-oriented research practices should address three distinct
aspects: how perception is related to descriptions of ‘facts’ and ‘state of affairs’
(and vice versa); how new scientific knowledge is created; and how scientific
knowledge is justified (Table 1, first column). Our analysis contrasts two
epistemological views (Table 1, second row), and we argue (in Section 3) that

1 In the engineering sciences, activities such as: experimental design, prototyping, running tests, interpreting
the results, including the test results in the new model or design, and upscaling are an integral part of scientific
research practices.
2 These concerns are expressed by teachers and teaching teams involved in PjBL (project-based learning) in
academic engineering education programs. We did not find any studies in the educational literature examining
the extent to which PjBL supports the development of students’ ability to conduct scientific research in solving
the problem posed in the PjBL project.
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constructivist epistemologies suit practice-oriented research better than tradition-
al empiricist epistemologies.

In this paper, constructivist epistemology refers to accounts of epistemic activities (e.g.,
ways of scientific reasoning) in constructing and justifying scientific knowledge. The body
of literature contributing to constructivist epistemologies in the practice-oriented philosophy
of science (Ankeny et al., 2011) is vast. Therefore, we do not aim to present a complete
overview but only list several examples in this footnote.3 Constructivist epistemologies, in
short, focus on how epistemic entities (e.g., empirical laws, and scientific concepts and
models) are constructed – taking into account contextual factors such as the roles of
cognitive, technological, and mathematical instruments, the specific disciplinary perspective
and epistemic strategies of scientific researchers, the epistemic purposes in practice-oriented
research, and the roles of epistemic and pragmatic criteria as well as other normative
concerns in constructing and testing.

However, while constructivist epistemologies are better suited to describe their own
research practices, it appears that teachers in academia often express themselves in a
vocabulary closer to the traditional empiricist view of science, even when designing
educational approaches such as project-based learning (PjBL) that focus on learning to
conduct scientific research.

Table 1 Epistemological views

Epistemology concerns three levels: I. Traditional Logical
positivist & Empiricist
epistemology.

II. Constructivist epistemology

1. Perception (how perception of the
world turns into knowledge of
facts, vice versa):

Aristotelian empiricism Galilean empiricism

2. Production (how knowledge is
created):

Context of Discovery:
No logic of discovery

Context of Construction:
Methodologies and epistemic strategies

in knowledge construction

3. Justification (how knowledge is
tested and justified):

Context of Justification:
Inductive reasoning,

and the
Hypothetical-deductive
method

Rational acceptability in constructing
and testing, guided by epistemic and
pragmatic criteria.

3 Examples of contributions to constructivist epistemologies: the critical evaluation of laws of nature, initiated
by Cartwright (1983, 1989, 1999); the emphasis on the role of interventions in scientific research by Hacking
(1983); the issue of applying science (Boon, 2006; Cartwright, 1974); the roles in scientific reasoning of
analogies (Hesse, 1966; Nersessian, 2009b), concepts and formation of concepts (Rheinberger, 1997, Feest,
2008, Andersen, 2012, Nersessian, 2009b, Boon, 2012, Rouse, 2011, 2015), conceptual change (Andersen,
2012; Andersen & Nersessian, 2000; Kuhn, 1970; Nersessian, 1992), scientific understanding (De Regt et al.,
2009), models (Bailer-Jones, 2009; Morrison & Morgan, 1999), modeling and model-based reasoning (Boon
& Knuuttila, 2009; Giere, 1988, 1999, 2010; Giere, 2006; Knuuttila & Boon, 2011; Magnani, 2014; Magnani
& Bertolotti, 2017; Nersessian, 2009a; Nersessian & Patton, 2009), epistemic and pragmatic criteria (Chang,
2009, 2014, 2017, 2020; Hacking, 1992; Kuhn, 1970), and inductive risk and values (Biddle, 2016; Douglas,
2000; Kukla, 2016; Wilholt, 2009, 2013); the role of context in deriving phenomena from data (Bogen &
Woodward, 1988; Leonelli, 2011, 2014, 2019; Leonelli & Boumans, 2020); the roles of perspectives through
theories, concepts, and technological instruments (Boon, 2020a; Giere, 2006; Van Fraassen, 2008); the
challenges of interdisciplinarity (MacLeod, 2018,); and, the role of experimentation and technological
instruments (Hansson, 2015; Radder, 2003; Rheinberger, 1997).
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Therefore, our educational angle concerns educational approaches in teaching sci-
entific research (Section 2). Project-based learning (PjBL) is motivated by a so-called
constructivist learning theory. Learning theories address how students learn. Construc-
tivist learning theories are a response to so-called cognitivist learning theories.4 In
short, constructivist learning theories emphasize the importance of experiences and
posit that students learn by doing, for example, by engaging with concrete contexts and
authentic practices. However, constructivist learning theories have many faces much
discussed in scholarly literature. For our purpose, we focus on how constructivist ideas
have inspired educational approaches such as PjBL.

Relevant here is that constructivist learning theories generally emphasize that ‘learning by
doing’ should be supported by appropriate scaffolding. Vygotsky (1978, Orig. 1920th)
introduced the general concept of ‘scaffolding’ as a crucial aspect of constructivist learning
theories. Scaffolding was initially described as the support provided by the more knowl-
edgeable adults or peers to the learners to complete tasks beyond their level of competence
(Wood et al., 1976). Nowadays, it is also defined as adaptive and temporary support to
develop learners’ skills and enhance knowledge (Lin et al., 2011). Moreover, educators and
educational research have expanded the focus on scaffolding from teachers and peers to
tools, reflection guides, and frameworks designed to help learners develop skills and
knowledge beyond their reach (Smit et al., 2013). Our reference to scaffolding includes
the latter interpretation. However, in educational practice, there is often a lack of scaffolding
in PjBL that focuses on learning how to conduct scientific research.5,6 We argue that this
neglect of the crucial role of scaffolding may be due to a traditional epistemology at the root
of how educators think and speak about scientific research. Traditional epistemologies tend
to neglect the crucial role of concepts and structures required to ‘see’ something when
‘learning by doing’ and ‘letting students find out themselves’ (also see Table 1 and footnote
4).7 We explain this misconception by the distinction (proposed by Matthews, 1993)

4 Cognitivist learning theory focuses on the acquisition of knowledge and internal mental structures. It
emphasizes the crucial role of concepts and structures in students’ learning processes to receive, organize,
understand, and store information. Knowledge acquisition is described as a mental activity that involves
internal coding and structuring by the learner. The learner is seen as a very active participant in the learning
process. Teachers help students make sense of, organize, and link knowledge. In addition, teachers provide
learning strategies that promote students’ learning. However, a potential shortcoming of cognitivist approaches
is the connection between knowledge, concepts, and theories, on the one hand, and concrete experiences
related to these epistemic entities, on the other (Ertmer & Newby, 2013, repr. 1993).
5 This finding in actual educational practice, in which we engage as philosphers and educational researchers, is
supported by a recent systematic review of literature on teaching interdisciplinarity in engineering education.
PjBL is a widely used educational approach to promote students’ skills in interdisciplinarity and interdisci-
plinary research, but we found virtually no evidence that the development of these skills is actively supported
(i.e., scaffolded) in PjBL projects (Van den Beemt et al., 2020). The general premise in concrete educational
settings seems to be that these skills develop naturally in PjBL.
6 Relevant to our context is that, while the concept of scaffolding has been studied significantly in early
learning and school education, the literature on the use of scaffolding in higher education is scarce.
7 A closely related concern discussed in educational psychology is that the constructivist approach in
educational practices (as in PjBL) may come at the expense of providing students with adequate concepts,
structures, and learning strategies emphasized in cognitivist learning theories (footnote 4). Ertmer and Newby
(2013, repr. 1993), therefore, defend combining insights from cognitivist and constructivist approaches on
learning-theoretical grounds. We will add that this is also necessary based on the constructivist epistemology
appropriate to actual research practices. This epistemology necessitates the provision of scientific concepts,
structures, and learning strategies to teaching scientific research.
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between Aristotelian versus Galilean empiricism at the level of perception (Table 1 and
Section 3).

Altogether, it is essential to recognize that adopting a constructivist learning theory
does not necessarily imply that teachers embrace a constructivist epistemology – on the
contrary, in educational practice, constructivist learning theories are often combined
with traditional empiricist epistemologies. The role of traditional epistemological views
may explain why educational approaches such as PjBL motivated by constructivist
learning theories often ignore the importance of scaffolding. Conversely, constructivist
epistemologies explain the crucial role of scaffolding in constructivist educational
approaches.

These insights into the epistemological and educational issues in teaching practice-
oriented scientific research have helped us better understand teachers’ difficulties when
implementing PjBL projects. Section 4 illustrates how philosophers of science helped
implement a constructivist epistemology in an educational redesign of PjBL in a
bachelor’s program in biomedical engineering. In this PjBL project, students conduct
scientific research to develop a biomaterial that remedies a medical condition. Crucial
to our approach was to steer away from a vocabulary in which students first learn to
think about scientific research in terms of research questions and testing hypotheses. In
our alternative approach, students learn that scientific research involves constructing
scientific knowledge and understanding for a specific epistemic purpose (e.g., to
develop a biomaterial that meets specified functions and requirements). That is why
we introduced conceptual modeling as an overarching skill in scientific research. The
resulting scientific knowledge and understanding of the problem, and then a possible
solution, is called conceptual models. Students are scaffolded by learning assistants
trained in conceptual modeling, who assist them in developing their scientific under-
standing of the problem and possible solutions by learning to ask questions, search
answers in the literature, and select and implement relevant information into their
‘story’ (i.e., the conceptual model). The so-called B&K method for (re)-constructing
scientific models (Boon, 2020b) is thus used as a scaffold in teaching and learning
conceptual modeling. In this way, students learn to recognize the construction of
scientific models as a crucial activity in scientific research and experience that the
resulting model is used iteratively as a ‘tool for thinking’ in further research.

2 Teaching practice-oriented scientific research

2.1 Twenty-first-century professionals: The ability to conduct scientific research

Regulatory bodies of many countries such as The Bologna Working Group (2005), The
National Accreditation Organisation (NVAO, 2005) in the Netherlands and Flanders,
and The Accreditation Board for Engineering and Technology (ABET, 2018) in the
USA, urge that the complex societal challenges of the twenty-first-Century call for
professionals having a unique set of professional and academic skills.

Our focus is the ability to conduct scientific research to generate knowledge and
tools for dealing with these complex societal challenges (i.e., knowledge and tools not
only to understand but also to improve the world). The knowledge, skills, and attitude
required for such comprehensive ability are often referred to as intended learning
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outcomes (ILOs) in education policy documents. The ILOs related to research in ABET
(2018) assume that graduates have an ability such as to: “identify, formulate, and solve
complex engineering problems by applying principles of engineering, science, and
mathematics,” “develop and conduct appropriate experimentation, analyze and inter-
pret data, and use engineering judgment to draw conclusions,” and “acquire and apply
new knowledge as needed, using appropriate learning strategies.” Meijers et al. (2005)
put more weight on the ability to conduct scientific research than ABET (2018). They
emphasize the task of “gaining new knowledge and new insights in a goal-oriented
methodological way,” which they consider fundamental to any academic program,
including university-level engineering programs.

2.2 Project-based learning (PjBL) as an approach to teaching and learning scientific
research

The educational challenge is how to teach all this. The call for professionals with a
much broader professional and academic skill-set (than what academic education
initially aspired) and new insights into how people learn have led to new educational
approaches. Higher education is increasingly changing from a traditional instructivist
“chalk and talk” lecture-practice approach to constructivist approaches such as project-
based learning (PjBL), problem-based, and challenged based learning (Du et al., 2013;
Fernandes, 2014; Gavin, 2011; Lehmann et al., 2008; Mills & Treagust, 2003;
Moallem, 2019; Vila et al., 2017).

We will focus on PjBL and how this educational approach teaches to conduct
scientific research. The main features of PjBL are the application-oriented approach
and creating a conducive learning environment that provides the challenges that
professionals and experts usually face in real-life (Kanigolla et al., 2014; Kolmos &
Graaff, 2015; Roessingh & Chambers, 2011). These challenges require professionals to
have a deep conceptual understanding of the topics and the ability to critically evaluate
and use the knowledge in authentic contexts (Bédard et al., 2012, Woods, 2012,
Kokotsaki et al., 2016, Beier et al., 2019).8

Policy documents highlight the significance and the potential to reach the intended
learning outcomes (ILOs) promoted through these educational strategies, particularly
regarding the broader professional skills such as problem-solving, communication, and
collaboration (Alorda et al., 2011; Chen & Yang, 2019; Guo et al., 2020; Teixeira et al.,
2020; Vila et al., 2017). However, it has not been significantly demonstrated that,
through PjBL approaches, students also develop a deep conceptual understanding of
scientific knowledge relevant to their discipline and higher-order thinking skills
(HOTS) such as epistemic, critical, and creative thinking (Masek & Yamin, 2011;
Mills & Treagust, 2003; Pinho-Lopes & Macedo, 2014; Polanco et al., 2004; Van den
Beemt et al., 2020). Such understanding and skills are crucial to conducting scientific
research aimed at new knowledge relevant to the practical problem.

This finding in the educational research agrees with experiences from teachers
involved in PjBL education at our university. In teacher-team meetings, they repeatedly

8 We recommend Sawyer (2014) for an accessible overview of learning theories. Sawyer shows that new ideas
about learning are based on a number of different sources: cognitive psychology, studies of how scientists
actually work, and an epistemology away from logical empiricism.
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report that students deliver superficial projects due to not sufficiently managing to
integrate disciplinary knowledge into their projects and not readily grasping how to link
research and design in a problem-solving task. More specifically, teachers believe that
students lack understanding of scientific theories —which introductory courses intend
to teach—, so that students often do not use scientific theories and scientific ways of
reasoning (i.e., ‘scientific thinking’) in formulating and dealing with research questions.
Moreover, teachers often claim that students lack a critical and investigative attitude
towards scientific research (Ahern et al., 2019).

These findings suggest that the current PjBL approaches do not substantially
contribute to the achievement of ILOs required for scientific research in complex
problem-solving. Also, a more substantial understanding of how students can be
supported to understand scientific research is lacking.

2.3 How to teach higher-order thinking skills (HOTS) needed in conducting
scientific research

Our concern is the intended learning outcomes (ILOs) related to the knowledge, skills,
and attitudes required to conduct scientific research. Realizing these ILOs requires
developing deep conceptual understanding in concord with higher-order thinking skills
(HOTS). The term ‘thinking skills’ refers to cognitive processes or intellectual capac-
ities (Small, 2020), while the qualifier ‘higher-order’ alludes to abilities such as:
integrating, reasoning using abstract concepts, and manipulating abstract concepts
(Fischer, 1980, King & VanHecke, 2006). The more specific ability to conduct
scientific research, in particular research related to complex real-world problems,
involves HOTS that concern students’ ability to: systematically analyze ‘real’ problems
(Meijers et al., 2005), apply science (Boon, 2006), integrate heterogeneous information
(Boon, 2020b; Mansilla, 2010; Van Baalen & Boon, 2015, 2017), reason and reflect
(Meijers et al., 2005), and to think critically (Ahern et al., 2019; Miri et al., 2007;
Payan-Carreira et al., 2019), analytically and analogically (Nersessian & Newstetter,
2014), creatively (De Vries & Lubart, 2019) and interdisciplinary (ABET, 2018;
Mansilla, 2010; Meijers et al., 2005; Nersessian & Patton, 2009; Spelt et al., 2009;
Van den Beemt et al., 2020).

The educational challenge is how to teach and learn these HOTS. In current higher-
education practices, the idea is widely adopted that HOTS develop ‘naturally’ in
educational approaches that promote ‘learning by doing’ such as PjBL (Kolmos &
Graaff, 2015; Mills & Treagust, 2003; Strobel & Van Barneveld, 2009). However,
educational research provides ample evidence that the development of HOTS requires
deliberate training and scaffolding, rather than developing ‘naturally’ in PjBL settings
(Barzilai & Zohar, 2014; Brookhart, 2010; Collins, 2014; Hattie, 2010; Higgins et al.,
2005; Hmelo-Silver et al., 2007; Khosa & Volet, 2013; Kirschner et al., 2006; Reiser &
Tabak, 2014; Soufi & See, 2019; Zohar & Barzilai, 2013).

We analyze this shortcoming of current educational practices that aim to train
students in conducting scientific research from an educational angle (next section)
and an epistemological angle (in Section 3).
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2.4 Constructivist learning theories

Problem- and Project-based Learning (PBL and PjBL) are motivated by learning
theories referred to as constructivism. We will suggest that the limited success in
promoting deep conceptual understanding and HOTS has more to do with the lack of
systematic and purposefully designed ‘scaffolds’ to support students in developing this
than with flaws inherent to constructivist learning theories.

To better understand the issues raised so far, we need to delve a little deeper into
constructivist learning theories (constructivism for short). Learning theories such as
constructivism seek to explain the cognitive processes of learning. Roughly, construc-
tivism proposes that people learn by structuring knowledge that is new to them
(‘assimilation’) and connecting this to their prior knowledge and experience, which
usually requires a partial reconstruction (‘accommodation’) of the existing cognitive
structures (Fosnot & Perry, 1996; Piaget, 1970). In this way, knowledge gets meaning
for the learner, and the learner begins to understand the knowledge, for example, the
knowledge offered in a science course. In brief, constructivism assumes that the
processes of meaning formation and developing understanding (e.g., of a scientific
concept) involve that learners establish relationships and connections between prior
knowledge and experiences (e.g., Bélanger, 2011, also see footnote 4).

Two remarks are important for a proper understanding of constructivism. First, con-
structivist learning theories do not claim that students are supposed to construct scientific
knowledge (e.g., Newton’s theory). The point is instead that the students develop ‘deep
conceptual understanding’ (of the meaning) of a scientific concept or theory by establish-
ing relationships with their own experiences (generated in interactions with the environ-
ment, including objects, teachers, and experts) and with knowledge (e.g., concepts and
structures) that they already understand. A didactic approach to achieve the mentioned
understanding is given in the history and philosophy of science (HPS) tradition. Authors in
this tradition (e.g., Chang, 2004; Conant, 1957; Matthews, 2002, 2014) suggest letting
students ‘reconstruct’ a scientific concept or theory by conducting experiments and
reasoning processes, thus letting them experience its genesis along the lines of its history
in science. Another didactic approach promoted in this context is conceptual mapping. In
this approach, students deepen their understanding of a concept by drawing relationships
with other concepts, through which a concept gets contextualized (e.g., Edmondson &
Novak, 1993, Novak, 2010). Other authors argue that learning processes to understand
scientific concepts and theories involve ‘knowledge restructuring’ in the sense of concep-
tual change (Duschl & Gitomer, 1991).9 Still another didactic approach is model-based
reasoning (e.g., Nersessian, 1992, 2009a, Magnani ed. 2014, Magnani & Bertolotti eds.
2017), which involves encouraging students to construct models of a problem or a system
(e.g., Newstetter, 2005, Schwarz, et al., 2009, Duschl & Grandy, 2013, Boon, 2020b).
Scientific concepts and models are the typical epistemic entities produced in practice-
oriented scientific research. This is why we have implemented these authentic activities
(i.e., the construction of scientific concepts and models) in PjBL practices aimed at
teaching and learning scientific research (Section 4).

9 Originally, educational approaches such ‘conceptual mapping’ and ‘knowledge restructuring in the sense of
conceptual change’ were based on cognitivist learning theories. Also see footnote 4.
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Our second remark concerns the crucial role of interactions with competent others
and culture, referred to as ‘the mediation of more knowledgeable others’ and ‘cultural
mediation.’ This theory is often called social or socio-cultural constructivism.10 Con-
structivist learning theories generally consider the development of cognition as amental
process of individual learners. Socio-cultural constructivism emphasizes the role of
interaction with the social-cultural world for learning. On the one hand, such interaction
provides clear-cut information (e.g., written sources such as textbooks and scientific
articles) and tools (e.g., scaffolds, methods, and conceptual frameworks), and on the
other hand, allows for collaboration and conversation with competent others (e.g.,
teachers and experts) who guide the student in seeing or recognizing connections and
meaningful relationships, and also in articulating what would otherwise remain ‘men-
tal’ (Sawyer, 2014).11

Project-based learning (PjBL) is an educational approach inspired by constructivist
learning theories. A burning question —based on our own experiences in this type of
education and on findings in the literature as summarized above— is why the role of
scaffolds is so often (deliberately) ignored in the educational design and why it is often
assumed that students’ project work should be supervised by ‘non-expert’ tutors in the
role of process facilitator.

Teachers who strongly believe in the correctness of minimal guidance in PjBL use
phrases such as: ‘learn-by-doing,’ ‘self-directed learning,’ ‘let them discover it them-
selves,’ ‘they learn by making errors,’ ‘do not give them answers,’ ‘they must find their
own way,’ ‘give them a pile of books and let them find the knowledge themselves,’
‘they can consult an expert for questions,’ ‘providing methods will indoctrinate them,’
and ‘tutors should be facilitators of the process, not experts (as experts are tempted to
give answers and guidance).’ This approach of minimal guidance disregards important
insights from cognitivist learning theories about acquiring and understanding knowl-
edge (see footnote 4). We conclude that educational literature provides sufficient
grounds to accept the crucial role of scaffolding in PjBL.

In addition, we conjecture that the omission of scaffolding and the downplaying of
expert roles of tutors in PjBL approaches is due to a traditional empiricist epistemology
directing how teachers think and speak about conducting scientific research (see
Table 1). In a naïve understanding, the traditional epistemology supports the belief
that observations ‘speak for themselves,’ implying that students do not need guidance
to interpret and contextualize what they see, experience, or read (see
Section “Aristotelian versus Galilean empiricism” below).

10 In educational sciences, two constructivist learning theories are usually distinguished, namely radical
constructivism (as an interpretation of Piaget, 1970) and socio-cultural constructivism (as an interpretation
of Vygotsky, 1978, 2012). Useful summaries are given by Confrey (1994, 1995), Fosnot and Perry (1996),
Liu and Matthews (2005), Bélanger (2011), and Sawyer (2014). Our focus is on the latter.
11 To illustrate what is meant by ‘seeing,’ ‘recognizing,’ and ‘articulating,’ promoted in a socio-constructivist
learning theory (c.f. Vygotsky, 1978), it is worth considering this quote from Joe Rouse: “Conceptual
articulation enables us to entertain and express previously unthinkable thoughts, and to understand and talk
about previously unarticulated aspects of the world” (cited from a conference paper at SFSU, Rouse,
March 2009; also see Rouse, 2011, 2015).
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3 Constructivist epistemology

3.1 The need for a vocabulary to talk about the construction of knowledge
in research practices

Although constructivist epistemologies are widely accepted—especially in recognizing
that scientific theories can change and do not provide absolute truth—, it appears
challenging to translate these insights into a vocabulary that productively grasps
scientific research practices. We often observe that students, teachers, and researchers
talking about science tend to combine a relativist-subjectivist vocabulary that stresses
the social-constructivist character of science (which expresses an outsider/observer
perspective on science), on the one hand, and a realist-objectivist vocabulary (usually
combined with a traditional empiricist epistemology) when they talk about their
scientific discipline or research (which expresses an insiders perspective of science),
on the other.12

The conflicting philosophical vocabularies (often present in one person) illustrate
that students, teachers, and researchers do not yet have an adequate vocabulary to talk
about the construction of knowledge in scientific research practices. In promoting a
constructivist epistemology, we follow in the footsteps of Hanson (1958), who argues
against the strict distinction between the context of discovery and justification main-
tained by philosophers in the logical empiricist and H-D tradition. Hanson pledges that:

“more philosophers must venture into these unexplored regions in which the logical
issues are often hidden by the specialist work of historians, psychologists, and scientists
themselves. We must attend as much to how scientific hypotheses are caught [discov-
ery], as to how they are cooked [justified]” (Hanson, 1958, 1089).

We take Hanson’s suggestion to heart and propose that educational practices aimed
at teaching and learning scientific research require an epistemology that adequately
accounts for the justification of knowledge and the construction process.

3.2 Constructivist epistemology for the construction of new knowledge

Table 1 compares a traditional empiricist (including the hypothetical-deductive meth-
od) and a constructivist epistemology by distinguishing between perception, produc-
tion, and justification of knowledge. Here, we further develop this distinction to foster a
vocabulary better suited to practice-oriented scientific research. Importantly, construc-
tivist epistemologies emphasize the role of context, whereas traditional epistemologies
emphasize the universal character of knowledge. Accordingly, typical epistemic entities
in traditional epistemologies are (universal) theories and laws, whereas constructivist
epistemologies usually focus on (context-dependent) scientific concepts and models,
and empirical laws.

Furthermore, in traditional empiricist epistemologies, the prevalent idea about the
nature of knowledge (related to what is considered the aim of scientific research)
focuses on the (context-independent) descriptive nature of knowledge. In contrast,

12 This combination of apparent contradictory presuppositions about science can even be observed in the list
that summarizes the established view on the nature of science (NOS) that must be taught in secondary science
education (McComas et al., 1998, p. 513; McComas, 2014).

16    Page 10 of 23 European Journal for Philosophy of Science (2022) 12: 16



constructivist epistemologies pay attention to its (context-dependent) functional char-
acter, sometimes referred to as knowledge being an epistemic tool used in further
reasoning about, for example, a practical problem.

These differing views about the character and purpose of knowledge also entail
differing ideas about what scientific methodology should achieve. For example, tradi-
tional empiricist epistemologies focus on collecting evidence for confirmation or
falsification of theories and laws based on the outcomes of tests, such as statistical
analysis of empirical data (primarily inductive reasoning) or experimental tests of
hypotheses (primarily hypothetical-deductive reasoning). On the other hand, construc-
tivist epistemologies focus on rational acceptability in the knowledge construction
process — i.e., epistemic and pragmatic criteria for accepting knowledge guide these
methodologies. Traditional empiricist and constructivist epistemologies share epistemic
criteria—such as ‘empirical adequacy,’ ‘internal logical consistency,’ ‘coherency with
accepted knowledge,’ and ‘statistical significance’— but adhere to different pragmatic
criteria. Examples of pragmatic criteria in traditional epistemologies are ‘universal-
ity,’ ‘generality,’ ‘simplicity,’ and ‘explanatory strength.’ On the other hand,
constructivist epistemologies emphasize epistemic uses of knowledge in appli-
cation contexts, which involves pragmatic criteria that guide choices in con-
structing and testing new knowledge. Examples are ‘relevance to epistemic
purposes,’ ‘internal coherency and intelligibility (to allow for reasoning based
on the model),’ and ‘explanatory and predictive power’ — often next to
normative criteria related to a broader context.

Finally, constructivist epistemologies also address the contribution of instruments
that shape knowledge, such as experimental set-ups and measurement techniques,
mathematical tools, and scientific concepts and conceptual frameworks, which are
continuously developed and justified in research practices.

3.3 Aristotelian versus Galilean epistemology in constructivist learning theories

We use Matthews’ (1993) analysis of apparent epistemological assumptions in con-
structivist learning theories to elaborate how (usually implicitly held) philosophical
presuppositions can play a role in how constructivist learning theories are translated
into teachers’ educational approach and educational vocabulary.

Based on Matthews, we distinguish between what he calls Aristotelian empiricism
and what we will call Galilean empiricism (also see Table 1). Matthews summarizes
Aristotelian empiricism as:

“an empiricist, individualistic, reflective [mirroring] or correspondence theory of
knowledge (the ‘spectator theory’): knowledge was something generated by, and
residing inside, an observer” (Matthews, 1993, 363).

Galilean empiricism, on the other hand, makes a distinction between:

“the theoretical object of science, which is a system of mathematically expressed
definitions, principles, concepts, and relations, and the real objects of science,
which are the materials, events, and objects in the world that are grasped,
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described, and by suitable instrumentation and experimentation, manipulated by
scientists,” (ibid 365, our emphases).

Crucial to Galilean empiricism is that scientific knowledge is not derived from carefully
looking at, say, a real pendulum. Instead, scientific researchers approach what they see
(e.g., the real pendulum) with a collection of conceptual and mathematical instruments
(partly invented by the same researchers) to construct a representation or a ‘descrip-
tion.’ The constructed representation or description is the theoretical object. To em-
phasize his point, Matthews quotes Pierre Duhem:

“[if the scientific researcher enters the laboratory] without theory it is impossible
to regulate a single instrument or to interpret a single reading; we have seen that
in the mind of the physicist there are constantly two sorts of apparatus; one is the
concrete apparatus in glass and metal manipulated by him, the other is the
schematic and abstract apparatus which theory substitutes for the concrete and
on which the physicist does his reasoning [Duhem, 1906/1954, p. 182]” (cited in
Matthews, 1993, 366, our emphases).

Galilean empiricism emphasizes that scientific researchers use all kinds of
conceptual, technological, and mathematical instruments —or apparatus, as
Duhem puts it— to arrive at a ‘description’ of what they ‘see’ when looking
at the real world. This account of scientific research explains how a theoretical
object (or phenomenon) is constructed and subsequently referred to by a
scientific concept (e.g., the ideal harmonic oscillator). Constructivist epistemol-
ogy agrees in this regard with Galilean empiricism.

Assume that, as Matthews suggests, teachers (implicitly) combine a construc-
tivist learning theory with Aristotelian empiricism, denying the inherent role of
concepts and theories in ‘describing’ what someone ‘sees’ in the laboratory.
Moreover, assume that these teachers also adopt a (Piagetian) constructivist
learning theory stressing that learning processes should happen ‘naturally.’13

Perhaps, these are the philosophical and educational presuppositions based on
which teachers think scaffolding in teaching and learning to conduct scientific
research (e.g., in PjBL) is unnecessary. In short, a constructivist learning theory
does not necessarily imply that teachers embrace a constructivist epistemology
– on the contrary, constructivist learning theories can be combined with tradi-
tional empiricist epistemologies. On the other hand, constructivist epistemol-
ogies make the crucial role of scaffolding in constructivist educational ap-
proaches such as PjBL much more plausible.

13 In later work, Piaget nuances the idea of natural development. He explains that his “earlier model had
proved insufficient... The central new idea is that knowledge proceeds neither solely from the experience of
objects nor from an innate programming performed in the subject but from successive constructions,” (Fosnot
& Perry, 1996, p.18).
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3.4 A vocabulary based on constructivist epistemology guiding the educational
design of PjBL

In our contribution to redesigning PjBL in a biomedical engineering bachelor
program, a constructivist epistemology guides our vocabulary for discussing
scientific research. Thus, instead of explaining scientific research firstly in
terms of hypotheses and tests, we propose that modeling and model-based
reasoning are central to the construction of knowledge in practice-oriented
scientific research practices (Bailer-Jones, 2009; Boon, 2020b; Boon &
Knuuttila, 2009; Magnani, 2014; Magnani & Bertolotti, 2017; Morrison &
Morgan, 1999; Nersessian, 2009a; Newstetter, 2005). In particular, we focus
on conceptual modeling14 (rather than mathematical modeling, which is much
more common as a learning objective).15 Furthermore, we emphasize that
scientific knowledge construction involves various instruments (technological,
conceptual, mathematical) and reasoning methods (e.g., deductive, inductive,
abductive, analytical, analogical, interpretative, integrative, creative, imaginative,
and mathematical). At the same time, we seek to avoid extreme forms of
relativism and subjectivism by emphasizing the crucial roles of (1) the material
world, which puts restrictions on what researchers can claim, (2) epistemic and
pragmatic criteria that impose limitations and demands on the many modes of
scientific reasoning, and more broadly (3) the socio-cultural world, understood
as consisting of scientific communities that develop, establish (justify) and
convey both the knowledge of its field as well as how to handle epistemic
and pragmatic criteria in scientific reasoning towards new knowledge (e.g.,
Oreskes, 2019).

A constructivist epistemology that fits our goal focuses on “how knowledge is
constructed in practice-oriented scientific practices.” This question adds several other
elements. For example, it emphasizes that knowledge construction is usually directed
towards a specific epistemic purpose. Moreover, it assumes that the justification of the
knowledge (e.g., the conceptual model) largely occurs in the construction process
(Boumans, 1999; Knuuttila & Boon, 2011). Accordingly, students are requested to
justify why existing scientific knowledge implemented in the model ‘applies’ (e.g., is
relevant to describe or explain the medical condition); and which kinds of measure-
ments they would need to investigate the phenomenon; and also why, when judged
from the epistemic purpose, certain simplifications are appropriate (Boon, 2020b).
Thus, the constructivist epistemology addresses the construction process’ ‘logic’ or
‘method’ (c.f. Hanson, 1958). This ‘logic’ is turned into a scaffold that guides students
in the construction of conceptual models. The scaffold, called “a method for
(re-)constructing scientific models” or B&K method for short (Boon, 2020b), is not
an algorithm but teaches students to systematically recognize and understand the
aspects that need to be ‘built into’ the model (Boumans, 1999) along with critical
reasoning considering aspects just mentioned.

14 See for example Knuuttila and Boon’s (2011) analysis of how Sadi Carnot constructed the model of the
ideal heat engine. Carnot’s model can be considered an example of a conceptual model.
15 Our focus on (conceptual) modeling does not mean that we deny the roles of inductive, deductive, or
hypothetical-deductive reasoning (including the formulation of hypotheses) in scientific research. Instead,
these kinds of reasoning are considered part of the modeling activities.
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4 Philosophy of science in educational practice

4.1 Implementing conceptual modeling for learning to conduct scientific research

In 2013, our university’s bachelor program Biomedical Engineering adopted a project-
based learning (PjBL) pedagogy. The bachelor program consists of 12 modules, each
designed around a theme in which students carry out a project assignment in project
groups and receive courses related to the project theme. For example, the first module is
organized around the theme ‘biomaterials.’ The project assignment is to design a
biomaterial for a biomedical problem such as ‘replacing the oesophagus after cancer.’
In addition, the module includes courses linked to the theme, such as organic, inor-
ganic, and polymer chemistry, biochemistry, anatomy, physiology, mathematics, and
statistics.

In 2018, the educational program was evaluated, which resulted in several chal-
lenges, mainly those already mentioned in the previous section (e.g., the limited uses of
scientific knowledge in their projects, leading to results below expectations).

The first author of our article was, as a philosopher, involved in the teacher-
team to advise on the program’s redesign. Her advice consisted of implementing
an alternative epistemological view and pedagogical approach to project-based
learning (PjBL). In the original approach, the student-project assignment sug-
gested an empiricist methodology (specifically, the hypothetical-deductive meth-
od, consisting of observation, research-question, hypothesis, and test, Hempel,
1966). The point is that the assignment’s description agrees with the vocabulary
that teachers and researchers commonly use when talking about research. How-
ever, it does not agree very well with how researchers go about when conducting a
research project. The teachers agreed that scientific modeling is central to their
scientific research and design practices and that hypothesis testing is only one
aspect.16

We introduced the notion of conceptual modeling as distinct from mathemat-
ical modeling. Thus, the ‘ability to construct conceptual models’ became the
central learning objective. In developing the students’ research-project assignment,
we used (parts of) the method for constructing scientific models proposed in Boon
(2020b) as a scaffold for guiding the students. The assignment consists of two
consecutive phases.

The assignment in phase 1 is to develop a conceptual model of the problem, for
example, a scientifically informed conceptual model of the oesophagus and its
functioning in the body. The students have to develop the model in such a way
that it allows for thinking about possible biomaterial solutions to replace the
oesophagus. Furthermore, the model must allow for pointing out the functional
criteria the solution should meet. While constructing the model, the students
become aware that the context and purpose need to be considered – for example,
to see the difference between the conceptual model of the oesophagus constructed
for their epistemic purpose (i.e., to design a replacement utilizing a biomaterial)
and the conceptual model that a surgeon or oncologist has in mind when thinking

16 In developing this approach we are indebted to the pioneering work of Nersessian and Newstetter c.s. at
Georgia Tech (e.g., Nersessian & Newstetter, 2014; Newstetter, 2005).
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about surgery. In the modeling process, the students investigate the problem and
the relevant scientific literature. We assume that this approach contributes to
developing their higher-order thinking skills (HOTS, e.g., analytical, integrative,
and critical thinking). The assignment in phase 2 is to construct a conceptual
model for their design-idea to solve the medical problem, which next to the HOTS
just mentioned, also requires creative thinking.

The introduced ‘conceptual modeling approach’ aims to solve the mentioned
educational problems. Its implementation in the module fits a constructivist
epistemology. First, it assumes a clear link between scientific research and design
(reflected in the assignment’s two phases). Second, it allows for the use of
scientific knowledge in ways that go beyond deduction and induction in tradition-
al empiricist epistemology. Furthermore, in this approach, students begin to model
a problem or design-idea based on their rudimentary understanding of the problem
or solution. Thus, the preliminary conceptual model becomes an epistemic tool for
further development of the model (Knuuttila & Boon, 2011). Finally, it functions
as a hub where heterogeneous information (scientific and empirical knowledge,
relevant variables and parameters, measurement methods, pragmatic criteria con-
cerning the solution) is collected and integrated into a coherent whole (Nersessian
& Patton 2009, Boon, 2020b).

How the ‘conceptual modeling approach’ is implemented in this module also
agrees with socio-constructivist learning theories. In learning to construct concep-
tual models, the project groups are scaffolded (i.e., learning to use a method for
constructing a scientific model, Boon, 2020b) by learning-assistants whom we
educated for this role. They play a much more significant role in the students’
learning pathway than ‘tutors as non-expert facilitators’ in more common ap-
proaches to PjBL (e.g., Van den Beemt et al., 2020). Crucial to their role is to
make students aware of the need to ask relevant questions to develop the concep-
tual model. For example, “how does this work,” “what is the composition of
tissue,” “how does it get its elasticity and permeability,” and “what are (advan-
tages/disadvantages) of existing solutions”? Students will have to search textbooks
and scientific literature for information on these questions that they must integrate
into the conceptual model. This process will lead to new questions, new searches,
and answers that will deepen the understanding in an iterative process.

Students’ HOTS are promoted because they are encouraged to analyze,
contextualize, articulate, search and apply relevant scientific knowledge, inte-
grate heterogeneous kinds of information, and evaluate the emerging conceptual
model against epistemic and pragmatic criteria such as adequacy, consistency,
coherency, relevance, intelligibility, and usefulness in regard of the scientific
and practical problem-context at hand.

4.2 Interdisciplinary research by philosophers of science and educational scientists

Evaluating whether this constructivist epistemology and pedagogical approach to
PjBL successfully promotes students’ HOTS for conducting scientific research on
complex problems requires solid educational research. At present, our team
—consisting of philosophers of science, educational researchers, curriculum de-
velopers, teachers, the learning-assistants, and students— is conducting an
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interdisciplinary research project aimed at (i) (empirically) investigating the ef-
fects of the redesign on students’ learning outcomes (ILOs), (ii) developing a more
explicit conceptualization of the ILOs concerning the HOTS required in scientific
thinking when conducting scientific research, and (iii) improving the educational
design of PjBL approaches to reach these ILOs more successfully, including the
development of effective scaffolding and the teaching of philosophy of science.17

We can already share some salient observations. Initially, the first-year students got
confused about the notion ‘conceptual modeling,’ but in their reflections at the end of
the project, they reported that “when the penny dropped,” they found it straightforward.
They expressed this in sentences like: “Conceptual modeling is just how we think!”
The teachers have also indicated that the projects’ quality is considerably higher and
that the students show better understanding and more enthusiasm and self-confidence
about their projects.

4.3 Roles for philosophers of science in educational practices

In the redesign of PjBL in this educational program, philosophers of science have made
several contributions18:

– to articulate the discrepancy between educational ideas (based on construc-
tivist learning theories) that form the basis for expectations about PjBL
versus the actual (unsatisfactory) learning outcomes of this approach – thus
creating awareness among teachers that this is a non-trivial, complex
challenge in academic education,

– to clarify implicit philosophical presuppositions about what students are able to
‘see’ when entering scientific research – thus explaining why PjBL approaches
often do not meet the expectations about the development of deep conceptual
understanding and higher-order thinking skills (HOTS) and why scaffolds and
well-prepared learning assistants are crucial to the development of HOTS in PjBL
approaches,

– to propose a vocabulary in which the construction of scientific models is a
significant scientific activity in practice-oriented scientific research,

– to promote conceptual modeling—rather than applying science and hypothesis
testing— as an overarching learning objective that helps students develop scientific
thinking,

– to design and implement scaffolds that support students’ learning to
(systematically) construct and reconstruct (scientifically-informed) conceptual
models(e.g., the B&K method for constructing scientific models),

– to develop and teach a philosophy of science course to raise students’ awareness of
their ‘pictures of science’ and explain conceptual modeling as part of a possible
alternative, and

17 Our philosophy of science teaching is focused on relevant aspects of constructivist epistemology. We
thereby strive for students’ understanding of scientific models, in particular, the philosophical understanding
that scientific models cannot be literal representations of their target, and the importance of the role of
conceptualization in the construction of models. Further details of this education are not covered in this article.
18 In our example (Section 4), these contributions relate to the instructional design, the implementation, and
the teaching of conceptual modeling in the project.
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– to emphasize and explain the role of researchers’ epistemological responsibility.19

In short, philosophers of science introduced a vocabulary into the educational
practice that better reflects (constructivist) epistemologies of research practices
concerning scientific methodologies, the ‘logic’ of constructing knowledge, the
role of epistemic strategies, and researchers’ responsibility in constructing new
knowledge.

5 Concluding remarks

Concerning the limitations in developing deep conceptual understanding and
higher-order thinking skills through project-based learning (PjBL) observed by
teachers and reported in the educational literature, we have aimed to demon-
strate that fundamental philosophical issues are at stake regarding the common-
ly used vocabularies (1) to think about education in scientific research, and (2)
to talk about scientific research. As to the first point, the used vocabulary often
reflects a traditional empiricist epistemology, including Aristotelian empiricism
that neglects the crucial role of various instruments (technological, conceptual,
mathematical) to ‘create,’ ‘see,’ ‘describe,’ and understand ‘theoretical objects’
(Matthews, 1993). When assuming that students will learn ‘naturally’ in PjBL
approaches, ‘the unnatural nature of science’ (Wolpert, 1992) is overlooked.
Regarding the second point, the vocabulary used to talk about science often
reflects traditional empiricist epistemological views, which are too limited to
understand actual scientific research practices. When teachers use this tradition-
al philosophical vocabulary, it will convey an inadequate understanding of
science to students.

Finally, with our programmatic contribution to this topical collection, we
emphasize the importance of interdisciplinary collaborations between philoso-
phers of science, educational researchers, and teachers. Philosophy of science in
educational practices can help address the educational challenges outlined in
this article by providing conceptual frameworks for understanding the character
of scientific knowledge and research practices, including epistemologies that
may form the basis for scaffolding (e.g., the B&K method, Boon, 2020b) to
support students in their learning. In addition, the educational sciences provide
advanced concepts and theories of how students develop an understanding of
science.

19 Epistemological responsibility is a concept that focuses on epistemic agents and underlines that the
epistemological tasks of experts and professionals —to gather, assess and integrate heterogeneous types of
information and fit them into a model— involve a considerable amount of choice, deliberation, and
justification, for which they should be held accountable (cf. Code, 1984, 1987). In our philosophical
contributions to PjBL education, we aim to make students aware that, when systematically working along
the lines of the so-called B&K method (Boon, 2020b), they bear epistemological responsibility for every
choice and decision in the construction of a model. In this article, we will not elaborate on this notion but see
Van Baalen and Boon (2015, 2017), Douglas (2000).
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