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Abstract
When beliefs are quantified as credences, they are related to each other in terms of
closeness and accuracy. The “accuracy first” approach in formal epistemology wants
to establish a normative account for credences (probabilism, Bayesian conditioning,
principle of indifference, and so on) based entirely on the alethic properties of the
credence: how close it is to the truth. To pull off this project, there is a need for a
scoring rule. There is widespread agreement about some constraints on this scoring
rule (for example propriety), but not whether a unique scoring rule stands above the
rest. The Brier score equips credences with a structure similar to metric space and
induces a “geometry of reason.” It enjoys great popularity in the current debate. I
point out many of its weaknesses in this article. An alternative approach is to reject
the geometry of reason and accept information theory in its stead. Information theory
comes fully equipped with an axiomatic approach which covers probabilism, stan-
dard conditioning, and Jeffrey conditioning. It is not based on an underlying topology
of a metric space, but uses a non-commutative divergence instead of a symmetric dis-
tance measure. I show that information theory, despite initial promise, also fails to
accommodate basic epistemic intuitions; and speculate on its remediation.
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1 Introduction

There is a problem with the canonical quantitative representation of partial beliefs
in formal epistemology. This representation takes its cues primarily from probabil-
ity theory where real numbers are assigned to events following the axioms for a
probability measure. Formal epistemology would profit by moving from its current
orientation toward probability theory to differential geometry, where a partial belief
is represented by an element of a differential manifold. The well-established math-
ematical theory of differential geometry provides a coordinate-free framework that
avoids and explains some of the problems with a “coordinated” approach that I reveal
in this paper.

Specifying the alternative framework for quantitative partial belief representation
in differential geometry is a research project that I am pursuing elsewhere. The focus
of this paper is to demonstrate the shortcomings of the coordinated approach cur-
rently in use in the research of formal epistemologists. These shortcomings become
more apparent with certain symmetry assumptions to which formal epistemologists
also frequently appeal. The symmetry assumptions are often associated with scoring
rules for partial beliefs that exclusively reward and penalize on epistemic grounds.
These scoring rules will be of particular interest to me, as they have been to much of
the most recent research activity in this field.

I am restricting myself to finite algebras of propositions. Let some mutually exclu-
sive and collectively exhaustive outcomes (or possible worlds) be ξ1, . . ., ξn. Let the
agent’s “report” over these n outcomes be c = (c1, . . ., cn)

ᵀ. These are the coor-
dinates of what I call the coordinated approach. In the coordinate-free approach of
differential geometry, they are replaced by an element of a differential manifold
which can be locally mapped to an open subset of n-dimensional Euclidean space.

The agent’s report may represent a partial belief or an attempt at prediction. The
transpose ᵀ symbol merely turns the list of numbers into a column vector. Another
restriction for this paper is that the ci are non-negative real numbers so that the vector
c is located in the non-negative orthant D0 of an n-dimensional vector space.

The agent receives a penalty for reporting c according to a loss function. An epis-
temic agent wants to minimize the penalty without caring for anything outside of
what the loss function is able to capture. Her penalty is

S(ξi, c) (1)

once it is established that ξi is the realized outcome. The codomain of S is R ∪ {∞}.
S(c) is the vector

S(c) = (S(ξ1, c), . . ., S(ξn, c))
ᵀ . (2)

To discourage any dishonesty on the agent’s part, a common requirement is that
the scoring rule be proper. The strict propriety of a scoring rule ensures that an agent
reports the same distribution according to which she thinks a random process selects
the outcome modeling the event in question.
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Let 〈., .〉 be the inner product of two vectors (or the matrix product if dual spaces
are used),

〈c, ĉ〉 =
n∑

i=1

ci ĉi . (3)

Definition 1.1 A scoring rule S is strictly proper if and only if

〈c, S(c)〉 < 〈c, S(ĉ)〉 for all ĉ ∈ D0 \ {c}. (4)

Strict propriety narrows down the set of acceptable scoring rules. John McCarthy
shows that it requires the existence of a concave entropy function, for which the
scoring rule is a derivative of sorts (see McCarthy, 1956). These scoring rules are
associated with a particular type of divergence called Bregman divergence (see
Bregman, 1967).

Are there further restrictions on rationally acceptable scoring rules? McCarthy’s
theorem leaves open the possibility for symmetric and asymmetric scoring rules. A
symmetric scoring rule is associated with a Bregman divergence which assigns as
much divergence from a credence c to another credence c̄ as vice versa—the diver-
gence function is then more narrowly called a distance function. Reinhard Selten
and Richard Pettigrew have recently defended symmetric scoring rules as superior to
asymmetric ones (for example in Selten, 1998; Pettigrew, 2016, 80).

A defence of symmetry reveals a misapprehension about partial beliefs and their
relationships to each other. The misapprehension is that there is a geometry of par-
tial beliefs which is accessible to intuition by analogy to n-dimensonal Euclidean
space. It is tempting to view a credence c = (c1, c2, c3)

ᵀ, for example, as a vec-
tor in 3-dimensional space and then evaluate its distance to other credences in terms
of its metric distance to them. I will call this view, following Hannes Leitgeb and
Richard Pettigrew (see Leitgeb & Pettigrew, 2010, 210), the geometry of reason. Its
associated scoring rule is the Brier score. All symmetric scoring rules can with trivial
modifications be reduced to the Brier score.

In the tradition of a Schopenhauerian critique directed at Kant’s symmetries (see
the appendix to volume I of The World as Will and Representation), Thomas Mor-
mann explicitly warns against the assumption that the metrics for a geometry of
logic is Euclidean by default: “All too often, we rely on geometric intuitions that
are determined by Euclidean prejudices. The geometry of logic, however, does not
fit the standard Euclidean metrical framework . . . there is no reason to assume that
the conceptual spaces we use for representing our theories and their relations have a
Euclidean structure. On the contrary, this would appear to be an improbable coinci-
dence” (see Mormann (2005), 433–435; also Miller (1984); Jorge Luis Borges echoes
Schopenhauer’s complaint that in Kant’s critique “everything is sacrificed to a rage
for symmetry,” see Borges (1962), 55).

Information theory, like the geometry of reason, has an associated scoring rule:
the Log score. The Log score is asymmetric, but there are other asymmetric strictly
proper scoring rules. Pettigrew has an independent argument why it is a good idea
to have a unique scoring rule—this would count against the Log score and against
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information theory. The Log score, however, is unique in fulfilling a locality require-
ment that arguably commands as much plausibility as symmetry. Yet the tenor of my
paper is that Pettigrew’s independent argument for uniqueness is suspect (in defence
of Pettigrew, many of the claims in his book Accuracy and the Laws of Credence
do not depend on it) and that neither the Brier score’s symmetry nor the Log score’s
locality is sufficient to make them uniquely superior to other scoring rules.

There are serious problems with the geometry of reason, to the point where I would
reject it as a plausible formal account of partial beliefs. However, I will go further
and show how counterintuitive implications of information theory are if we insist
on quantitative partial belief representation in terms of coordinates. The problem is
not with the Brier score, but with the coordinated approach. If it is not jettisoned in
favour of a coordinate-free alternative, I find myself in the Absurdistan outlined in the
paper, even with the Log score of information theory. Fortunately, McCarthy’s theo-
rem and the entropy function following from it provides enough structure to render a
differential geometry approach hopeful in terms of inferring rationality requirements
(probabilism, conditioning, etc.).

2 Features of scoring rules

2.1 List of features and preliminaries

Consider the following list of features for a scoring rule SR.

propriety The SR encourages an agent to report the distribution which is her best
guess at a model that generates a random event.

geometry The divergence function associated with the SR is a metric. Conse-
quently, credence functions can be “visualized” with a distance defined between
them.

information The entropy function associated with the SR fulfills Claude Shan-
non’s axioms for an entropy function.

symmetry The divergence function associated with the SR is symmetric.
locality How a distribution scores when an event takes place depends only on the

credence assigned by the distribution to this event.
littoral compression The divergence function associated with the SR has a ten-

dency to measure distributions near the high-entropy centre as being closer
together than distributions near the low-entropy extremes, all else being equal.
This requirement depends on coordinated quantitative belief representation, and I
will seek to lead it ad absurdum.

ratio conservation When a credence is updated, rational agents are required by
certain epistemic norms (for example, standard conditioning) to conserve ratios
of prior probabilities for posterior probabilities as long as the events in question
are not affected by the evidence on which the agent performs the update. A scor-
ing rule may conform to ratio conservation by recommending updated credences
which conserve ratios.
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cardinality independence When a credence is updated, rational agents are
required to update independently of the cardinality of outcome sets. I can illus-
trate this most easily with probabilities: if you initially consider a die fair, where
each of the sides is rolled with probability 1/6, it should not make a difference
to your update if you add an event “rolling a seven” to your outcome space and
assign probability zero to it. In the paper I show that with weak assumptions
CARDINALITY DEPENDENCE is equivalent to RATIO CONSERVATION.

univocal dominance The SR is uniquely superior to all other SRs in order to
address the Bronfman objection.

Requiring that credence functions are finite, or non-negative, or positive in all ele-
ments, or regular in other ways is artificial in order to aid discussion. Examinations of
what happens when these conditions are weakened are always welcome. Probability
functions are the strict subset of credence functions for which there exists a measure
to which the probability function corresponds with the measure of the outcome space
� being 1.

Let A be an algebra with cardinality k = 2m over the events in the finite sample
space�, whose cardinality ism. A credence function overA is a vector in the positive
orthant of Rk . An orthant generalizes a quadrant in R

2 to R
k . I will write D0 if the

orthant includes vectors which have elements that equal zero;D if all elements of the
vector are greater than zero. The zero vector itself is not an element of D0.

I will restrict my attention to logically coherent credence functions in n-
dimensional space, where n is the number of mutually disjoint and collectively
exhaustive events. Possible worlds are not credence functions, but they can be embed-
ded by defining the vector elements ξk ∈ {0, 1}, depending on which of the n events
is true, k = 1, . . ., n. This is artificial, especially the choice of the number 1, and any
account of epistemic norms must prove itself to be robust if this number is changed
to something else that makes sense (see Howson, 2008, 20; for a response see (Joyce,
2015); and (Pettigrew, 2016), part I, chapter 6). A coordinate-free approach no longer
depends on such arbitrary choices, as it can filter them out using quotient spaces.

2.2 Scoring rules, entropy, divergence

Bruno de Finetti shows that the probability functions form the convex hull of possi-
ble worlds so embedded (see de Finetti, 2017, subsection 3.4). For any vector c in
the vector space of credence functions, there is a vector p in the set of probability
functions which is closer to each possible world than c, where closeness is evaluated
in terms of a suitable measure of closeness, for example a continuous strictly proper
scoring rule (Predd et al. (2009), call continuous strictly proper scoring rules “proper
scoring rules” and use the corresponding Definition 2 to prove de Finetti’s result in
Theorem 1 on page 4788). If c is not a probability function, then the vector p is
strictly closer to each possible world than c. If c is a probability function, then one
trivially chooses p = c.

Probabilism is not where the geometry of reason and information theory disagree,
so for the moment I will only look at probability functions P ⊂ D0. I have defined
scoring rules in Eq. 1 and the associated strict propriety in Definition 1.1. McCarthy
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characterizes strictly proper scoring rules in a theorem whose proof he omits (see
McCarthy 1956, 654). Thankfully, Arlo Hendrickson and Robert Buehler provide the
proof, see Theorem 2.1.

Definition 2.1 Let M be a convex subset of D, H be a function H : M → R, and
q, q̂ ∈ M such that

H(p) ≤ 〈p − q, q̂〉 + H(q) for all p ∈ M . (5)

Then q̂ is a supergradient of H at q relative to M .

The supergradient is the gradient wherever the function is differentiable.

Definition 2.2 A function f : V ⊂ R
k → R is homogeneous of degree k if and only

if

f (αx) = αkf (x) for all α > 0. (6)

Theorem 2.1 (Euler’s Homogeneous Function Theorem) Let f : R
n → R be

homogeneous of degree k with continuous first-order partial derivatives. Then

k · H =
n∑

i=1

xi

∂f

∂xi

. (7)

Proof The proof is widely available online (see also Pemberton & Rau, 2016, 284).

Let ∇H be the gradient of the function H if it exists, i.e.

∇H(x) =
(

∂H

∂x1
(x), . . .,

∂H

∂xn

(x)

)ᵀ
(8)

and

� = {ξ1, . . ., ξn}. (9)

Theorem 2.2 (McCarthy’s Theorem) A scoring rule S : � × P → R ∪ {−∞, ∞}
is strictly proper if and only if there exists a function H : D0 → R which is (a)
homogeneous of the first degree, (b) concave, and (c) such that S is a subgradient of
H relative to D0 at p for all p ∈ P .

Proof The proof is in Hendrickson and Buehler (1971), page 1918, and uses Euler’s
Homogeneous Function Theorem. Note that whether a function is concave or convex
is without deeper significance. An epistemic loss function gives us a concave entropy
function while an epistemic reward function gives us a convex entropy function.What
matters is the convexity of sets (rather than functions); a convex function has a convex
epigraph while a concave function has a convex hypograph.
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Definition 2.3 The entropy H associated with S is defined as per McCarthy’s
theorem; the divergence associated with S is defined to be

DS(c‖ĉ) = H(ĉ) − H(c) + 〈c − ĉ, S(ĉ)〉. (10)

Corollary 2.1 As a corollary to Euler’s theorem, it is true for a differentiable entropy
function H of a strictly proper scoring rule S that

H(x) =
n∑

i=1

xiS(ξi, x) (11)

Corollary 2.1 is useful in determining the entropy function based on a given
scoring rule.

It is important to take the partial derivative of H as a function defined on D0,
not just as a function defined on P . As Hendrickson and Buehler point out, this is
the error in Marschak, 1959, 97, where the Log score appears to be a counterexam-
ple to McCarthy’s theorem. None of this is new, but it gives us leverage for what
follows. Not only is McCarthy’s theorem a powerful characterization theorem for
strictly proper scoring rules, it also associates an entropy function H and a diver-
gence D with each scoring rule. With McCarthy’s result in hand, scoring rules now
come as triplets of scoring rules, entropy functions, and divergences. I hope to show
in future research that this provides enough structure for a coordinate-free representa-
tion theorem (with the admittedly strong assumption of differentiability for credence
functions).

Here are two examples, the Log score and the Brier score. All summation indices
go from 1 to n. If x ∈ P , then

∑
k xk = 1. The loss function or scoring rule for the

Log score is

(LS) S(ξi, x) =
(
ln

∑

k

xk

)
− ln xi . (12)

For the Brier score, it is

(BS) S(ξi, x) = 1 − 2xi∑
k xk

+
∑

j

(
xj∑
k xk

)2

. (13)

The corresponding entropy functions are

(LS) H(x) = −
∑

i

xi ln
xi∑
k xk

(14)

(BS) H(x) =
∑

i

xi

⎛

⎝1 − 2xi∑
k xk

+
∑

j

(
xj∑
k xk

)2
⎞

⎠ (15)

The reader can verify that the gradient of H equals S,

∇H(x) = S(x) (16)

for both the Log score and the Brier score. This is where we need the entropy to be
defined onD0 ⊃ P in order to avoid Marschak’s error from above. Note that the Log
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score violates LOCALITY on D \ P , so that arguments using the unique characteris-
tic of the Log score to fulfill LOCALITY presupposes an independent argument for
probabilism (see Landes, 2015).

The divergence associated with the Log score is

DLS(p‖q) =
∑

i

pi ln
pi∑
i pk

−
∑

i

pi ln
qi∑
k qk

. (17)

The divergence associated with the Brier score is

DBS(p‖q) =
∑

i

pi

⎡

⎣
∑

j

(
qj∑
k qk

− δij

)2

−
∑

j

(
pj∑
k pk

− δij

)2
⎤

⎦ . (18)

where δij is the Kronecker delta. For probability distributions p, q (17) is the
Kullback-Leibler divergence and Eq. 18 is the Squared Euclidean Distance.

A strictly proper scoring rule S1 is a “close relative” of scoring rule S2 if the two
are positive linear transformations of each other, so

S1(x) = m · S2(x) + b (19)

for some m ∈ R
+ and b ∈ R

n. Scoring rules differ from their close relatives only in
the sense that they trade in a different currency and provide a different initial penalty
or reward. They do not differ from them in terms of optimization (their extrema are
equivalent).

Only the Brier score (and its close relatives) fulfill SYMMETRY. Only the Log
score (and its close relatives) fulfill LOCALITY. Once these results are established, I
have the tools to address Pettigrew’s argument for UNIVOCAL DOMINANCE. First a
few words about RATIO CONSERVATION and CARDINALITY INDEPENDENCE, which
the Brier score violates and the Log score fulfills.

3 Ratio conservation

Here is an example that discriminates between the scoring rules in interesting ways.

Example 3.1 (Holmes) Sherlock Holmes attributes the following probabilities to
the propositions Ei that ki is the culprit in a crime: P(E1) = 1/3, P (E2) =
1/2, P (E3) = 1/6, where k1 is Mr. R., k2 is Ms. S., and k3 is Ms. T. Then Holmes
finds some evidence which convinces him that P ′(F ∗) = 1/2, where F ∗ is the propo-
sition that the culprit is male and P is relatively prior to P ′. What should be Holmes’
updated probability that Ms. S. is the culprit?

Consider the following three points in three-dimensional space:

a =
(
1

3
,
1

2
,
1

6

)
b =

(
1

2
,
3

8
,
1

8

)
c =

(
1

2
,
5

12
,
1

12

)
. (20)

All three are elements of the simplex S
2: their coordinates add up to 1. Thus they

represent probability distributions A, B, C over a partition of the event space into
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three mutually exclusive events. Now call DKL(B, A) the Kullback-Leibler diver-
gence of B from A defined as follows, where ai are the Cartesian coordinates of a

(the base of the logarithm is not important, in order to facilitate easy differentiation I
will use the natural logarithm):

DKL(B, A) =
3∑

i=1

bi log
bi

ai

. (21)

Note that the Kullback-Leibler divergence, irrespective of dimension, is always
positive as a consequence of Gibbs’ inequality (see Mackay, 2003, sections 2.6 and
2.7).

The Euclidean distance is defined as follows:

‖B − A‖ =
√√√√

n∑

i=1

(bi − ai)
2. (22)

What is remarkable about the three points in Eq. 20 is that

‖C − A‖ ≈ 0.204 < ‖B − A‖ ≈ 0.212 (23)

and
DKL(B, A) ≈ 0.0589 < DKL(C, A) ≈ 0.069. (24)

The Kullback-Leibler divergence and Euclidean distance give different re-
commendations with respect to proximity. In terms of the global inaccuracy measure
presented in Leitgeb and Pettigrew (see Leitgeb & Pettigrew, 2010, 206) and E = W

(all possible worlds are epistemically accessible),

GExpA(C) ≈ 0.653 < GExpA(B) ≈ 0.656. (25)

Global inaccuracy reflects the Euclidean proximity relation, not the re-
commendation of information theory. If A corresponds to my prior and my evidence
is such that I must change the first coordinate to 1/2 (as in Example 3.1 about Sher-
lock Holmes) and nothing stronger, then information theory via the Kullback-Leibler
divergence recommends the posterior corresponding to B; the geometry of reason
recommends the posterior corresponding to C.

One way to understand evidence is that it excludes a set of credences. Evidence
which results in standard conditioning, for example, excludes all credences which
assign a value less than 1 to the evidence E. Richard Jeffrey has remarked that more
realistically evidence is not certain, so instead of P ′(E) = 1 my evidence may be
that P ′(E) �= P(E). In this case, Jeffrey has proposed what we now call Jeffrey
conditioning, for which there are dynamic coherence arguments (see Armendt (1980)
and Goldstein (1983); and Skyrms, 1986), met with critical resistance in the literature
(see Levi (1987), Christensen (1999), Talbott (1991), and Maher (1992); and Howson
and Urbach, 2006). Jeffrey conditioning conserves ratios of probabilities that are
unaffected by the evidence. In the Holmes example, b retains a 3:1 ratio between
P ′(E2) and P ′(E3), while c does not; see Eq. 20.

Let me make more precise what I mean by recommendation. A scoring rule rec-
ommends an updated credence if the updated credence fulfills the following two
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conditions: (i) it respects the evidence; and (ii) of all credences that respect the evi-
dence, the updated credence is closest to the prior credence in terms of the scoring
rule under consideration. In Imre Csiszár’s terms, the updated credence is the projec-
tion of the prior credence onto the convex (or, less generally, affine) set of credences
allowed by the intervening evidence. If the evidence is a convex set of permissible
credences, then the recommendation is unique. This is why convexity is sometimes
required for evidence; both standard conditioning type evidence and Jeffrey type
evidence trivially fulfill this requirement as they are affine. Under this description
of recommendation and belief update, the Log score fulfills RATIO CONSERVATION

while the Brier score violates it.
I will make two claims here whose proof I omit for brevity (once the formal

apparatus is estabished, these proofs are not difficult). (1) The Log Score does not
uniquely fulfill RATIO CONSERVATION. There are many other Bregman divergences
that fulfill it. (2) RATIO CONSERVATION is equivalent to CARDINALITY INDEPEN-
DENCE plus permutation invariance. In the Holmes example, E1 is the event that Mr.
R is the culprit; E2 is the event that Ms. S is the culprit; E3 is the event that Ms. T is
the culprit. If Holmes concludes by some evidence that P ′(E1) = 1/2, he needs to
update P ′(E2) and P ′(E3) accordingly, for example by Jeffrey conditioning.

Now let us say that Holmes breaks down the outcome space differently. E1 and E2
remain as before, but E3 is broken down into E3a and E3b by a conjunction with an
unrelated event. For example, E3a may be the event that Ms. T is the culprit and the
course of the pound rose or remained equal relative to the price of gold in the last 24
hours. E3b may be the event that Ms. T is the culprit and the course of the pound sank
relative to the price of gold in the last 24 hours. Holmes’ update upon evidence should
be invariant to such an artificial inflation of the outcome space. Leszek Wroński calls
this expectation CARDINALITY INDEPENDENCE (see Wroński, 2016). It is easy to
show that RATIO CONSERVATION implies CARDINALITY INDEPENDENCE.

To show the converse we need another requirement: updates do not operate differ-
ently on permutations. If (a, b, c) is updated to (a′, b′, c′), then (b, a, c) is updated to
(b′, a′, c′). Permutation invariance and CARDINALITY INDEPENDENCE imply RATIO

CONSERVATION by a simple continuity argument.
The Brier score famously violates CARDINALITY INDEPENDENCE (see Levin-

stein, 2012) and therefore violates RATIO CONSERVATION. The Log score fulfills
RATIO CONSERVATION (and therefore also CARDINALITY INDEPENDENCE), but the
Log score is not a unique Bregman divergence to do so.

4 Symmetry

A scoring rule S is symmetric when it is associated with a divergence D such that

DS(p‖q) = DS(q‖p) for all p and q. (26)

Selten calls this feature neutrality, Pettigrew calls it symmetry. Pettigrew writes,

we reason to Symmetry as follows: We have a strong intuition that the inac-
curacy of an agent’s credence function at a world is the distance between that

79   Page 10 of 24 European Journal for Philosophy of Science (2021) 11: 79



credence function and the ideal credence function at that world. But we have
no strong intuition that this distance must be the distance from the ideal cre-
dence function to the agent’s credence function rather than the distance to the
ideal credence function from the agent’s credence function; nor have we a
strong intuition that it is the latter rather than the former. But if there were
non-symmetric divergences that gave rise to measures of inaccuracy, we would
expect that we would have intuitions about this latter question, since, for at
least some accounts of the ideal credence function at a world and for some
agents, this would make a difference to the inaccuracies to which such a diver-
gence gives rise. Thus, there cannot be such divergences. Symmetry follows.
Pettigrew (2016, 67f)

Selten writes about neutrality,

one looks at the hypothetical case that one and only one of two theories p and
q is right, but it is not known which one. The expected score loss of the wrong
theory is a measure of how far it is from the truth. It is only fair to require that
this measure is “neutral” in the sense that it treats both theories equally. If p is
wrong and q is right, then p should be considered to be as far from the truth
as q in the opposite case that q is wrong and p is right. A scoring rule should
not be prejudiced in favor of one of both theories in the contest between p and
q. The severity of the deviation between them should not be judged differently
depending on which of them is true or false. A scoring rule which is not neu-
tral is discriminating on the basis of the location of the theories in the space
of all probability distributions over the alternatives. Theories in some parts of
this space are treated more favorably than those in some other parts without
any justification. Therefore, the neutrality axiom is a natural requirement to be
imposed on a reasonable scoring rule.

Both Pettigrew and Selten go on to show that the Brier score and its close rela-
tives are the only strictly proper scoring rules fulfilling SYMMETRY, a result already
found in Savage (1971, 788). Against Pettigrew, I maintain that it makes a difference,
especially when viewed from the perspective of updating, whether one moves from a
distribution p to a distribution q or vice versa. Against Selten, I maintain that scoring
rules should be partial (and not neutral) in the contest between two theories, when
one of them makes much stronger claims than the other. It is the Brier score, after
all, which penalizes stronger theories sometimes at the expense of rewarding the less
accurate prediction (for an example, see the end of Section 5.1).

An anonymous referee helpfully pointed out an ambiguity with respect to my use
of the word “strength.” In the context of this paper, I call a belief strong if its entropy
is low, independent of its evidentiary support. Because the entropy function of a
proper scoring rule is concave, weakness has a global maximum; and, more gener-
ally, entropy induces a structure on beliefs which makes a coordinate-free approach
feasible.
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5 Locality

5.1 Rewarding uncertainty about non-realized outcomes

The Brier score, the Spherical score (another strictly proper scoring rule), and many
other scoring rules depend on all components of the vector p representing a proba-
bilistic credence function. A scoring rule fulfilling the LOCALITY requirement only
depends on the probability assigned to the event that is the realized outcome (for
a characterization of local scoring rules that are local in a less restrictive sense see
Dawid et al. 2012). Leonard J. Savage has shown that the only scoring rules fulfilling
LOCALITY are the Log score and its not relevantly different close relatives.

Example 5.1 (Tokens) Before Casey draws one token from a bag with n kinds of
tokens in it (colour 1, colour 2, . . . , colour n), Tatum reports the forecast (p1, . . ., pn)

of associated credences. Tatum’s forecast agrees with the axioms of probability.

Let p1 be fixed and colour 1 be the realized outcome. If the Brier score is used,
Tatum’s penalty T depends on p2, . . ., pn−1 and is

T (p2, . . ., pn−1) = 1 − 2p1 +
n−1∑

i=1

p2
i +

(
1 −

n−1∑

i=1

pi

)2

. (27)

T reaches its minimum where pi = 1−p1
n−1 for i = 2, . . ., n−1. The higher the entropy

of Tatum’s non-realized probabilities, the less stinging Tatum’s penalty. The Brier
score thus penalizes Tatum (1) for not correctly identifying colour 1 as the realized
outcome, but also (2) for reporting variation in the non-realized probabilities. Even
though this is the Brier score, it has a ring of information theory to it. The Log score
depends only on the realized probability. I.J. Good appears to have favoured such a
scoring rule (see Good, 1952, 112).

Because I feel the intuitive appeal of information theory, I consider LOCALITY

to be only weakly plausible. There is a sense in which you may want to reward
a forecaster not only for assigning a high probability to the realized outcome, but
also for uncertainty about the outcomes that were not realized. Of course, doing so
sometimes results in a greater loss for Tatum than for Casey even if Tatum assigned
a higher probability to the realized outcome. As an example, let Tatum’s forecast
be (0.12, 0.86, 0.02) and Casey’s be (0.10, 0.54, 0.36). Even though Tatum assigned
12% to colour 1 while Casey assigned 10%, and Casey drew a token of colour 1,
Tatum is penalized more severely at 1.5144 compared to Casey at 1.2312 using the
Brier score. The greater penalty for Tatum may strike one as counterintuitive, but it
is a natural consequence of a scoring rule violating LOCALITY.

5.2 Bronfman objection

Here is how LOCALITY may still work in favour of information theory against the
geometry of reason. I owe the following characterization of Bronfman’s objection to
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Pettigrew (see chapter 5 in Pettigrew (2016); for the Pater Peperium case see Paul
(2016); for the original article see Bronfman (2009)).

Example 5.2 (Pater Peperium) I must choose between three sandwich options:
Marmite, cheese, and Pater Peperium (or Gentleman’s Relish).

I have eaten cheese sandwiches before and feel indifferent about them. I have
never had a Marmite or Pater Peperium sandwich, but know that people either love
Marmite and hate Pater Peperium or vice versa. There appears to be nothing irrational
about choosing the cheese sandwich even though either way (whether I am of the
love-marmite-hate-pater-peperium or hate-marmite-love-pater-peperium type) there
is a better sandwich to choose.

Joyce has shown that for any strictly proper scoring rule, a non-probabilistic
credence function is accuracy dominated by a probabilistic credence function. The
Bronfman objection is that you can show that there is always another strictly proper
scoring rule (Bronfman shows that only having two candidate quadratic loss scor-
ing rules suffices to make this point) by which moving from the accuracy dominated
credence function to the probabilistic credence function results in a loss at some pos-
sible world. Unless we settle on a unique scoring rule to do the accounting, Joyce’s
non-pragmatic vindication of probabilism is undermined.

Pettigrew uses Bronfman’s objection to propose UNIVOCAL DOMINANCE. It is
an appealing feature of a scoring rule to have some claim to uniqueness in order to
address Bronfman’s objection. The Brier score has this claim: it is (up to linear trans-
formation, which does not make a relevant difference) the only strictly proper scoring
rule which fulfills SYMMETRY. Unfortunately for Pettigrew, the Log score also has a
claim to uniqueness. It is the only strictly proper scoring rule which fulfills LOCAL-
ITY. We could now haggle over which uniqueness claim is stronger. In some ways,
this paper is meant to undermine the intuitive appeal of SYMMETRY altogether. I will
not, however, push UNIVOCAL DOMINANCE and LOCALITY as joint justification for
the Log score, as Pettigrew pushes UNIVOCAL DOMINANCE and SYMMETRY as joint
justification for the Brier score.

Let a uniqueness claim have dependent and independent reasons: choosing from
a set of epistemic procedures, procedure X is unique for these reasons. The depen-
dent reasons justify the uniqueness on account of the features that X exhibits. The
independent reasons make no reference to these features, but provide a reason to
have a unique successful candidate for winning the contest. I do not see how these
independent reasons add to the epistemic justification for the uniqueness claim.

When Räuber Hotzenplotz puts a loaded pistol on your chest and asks you which
of your three children is your favourite child and you name one of them, then there
may be features about this child that identify him or her as your favourite. Even
the fact that you named this child may be one of those dependent reasons, but the
independent reason that Hotzenplotz presses you for the identification does not epis-
temically count towards making it more plausible that this child is your favourite
child or that indeed you have a favourite child.
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6 Updating

6.1 Information theory and the geometry of reason

For information theory, as opposed to the geometry of reason, the underlying topol-
ogy for credence functions is not a metric space (see Figs. 1 and 2 for illustration).
The term information geometry is due to Csiszár, who considers the Kullback-Leibler
divergence a non-commutative (asymmetric) analogue of squared Euclidean distance
and derives several results that are intuitive information geometric counterparts of
standard results in Euclidean geometry (see chapter 3 of Csiszár and Shields, 2004).

Evidence appears in the form of a constraint on acceptable probability dis-
tributions and the closest acceptable probability to the original (relatively prior)

Fig. 1 The simplex S
2 in three-dimensional space R3 with contour lines corresponding to the geometry

of reason around point A in Eq. 20. Points on the same contour line are equidistant from A with respect
to the Euclidean metric. The contour lines of the geometry of reason are insensitive to the boundaries of
the simplex, while the contour lines of information theory reflect them (see Fig. 2). Note that this diagram
and all the following diagrams are frontal views of the simplex
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Fig. 2 The simplex S
2 with contour lines corresponding to information theory around point A in Eq. 20.

Points on the same contour line are equidistant from A with respect to the Kullback-Leibler divergence.
Information theory respects epistemic intuitions we have about asymmetry: proximity to extreme beliefs
with very high or very low probability influences the topology that is at the basis of updating. However,
my overall argument is that representing information theory within coordinate geometry as in this diagram
is the central error, not the preference of the Brier score over the Log score

probability distribution is chosen as its successor. As long as I insist on the coor-
dinated approach, here is a list of reasonable expectations I may have toward this
concept of quantitative difference d(p, q) (we call it a distance function for the
geometry of reason and a divergence for information theory).

• TRIANGULARITY The concept obeys the triangle inequality. If there is an
intermediate probability distribution, it will not make the difference smaller:
d(p, r) ≤ d(p, q) + d(q, r). Buying a pair of shoes is not going to be more
expensive than buying the two shoes individually.

• LITTORAL COMPRESSION d(p, q) has a tendency to measure distributions near
the centre as being closer together than distributions near the extremes. This
requirement is difficult to formalize without antecedent assumptions about dis-
tance or divergence, thus begging the question. One hope to make this more
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precise is the theory of convex analysis (see (Rockafellar, 1997)), which naturally
nudges us from plain to differential geometry.

• TRANSITIVITY OF ASYMMETRY An ordered pair (p, q) of simplex points asso-
ciated with probability distributions is asymmetrically negative, positive, or
balanced, so either d(p, q) − d(q, p) < 0 or d(p, q) − d(q, p) > 0 or
d(p, q) − d(q, p) = 0. If (p, q) and (q, r) are asymmetrically positive, (p, r)

ought not to be asymmetrically negative. Think of a bicycle route map with dif-
ferent locations at varying altitudes. If it takes 20 minutes to get from A to B

but only 15 minutes to get from B to A then (A, B) is asymmetrically positive.
If (A, B) and (B, C) are asymmetrically positive, then (A, C) ought not to be
asymmetrically negative.

The Kullback-Leibler divergence of information theory fails all the expectations
of this list except LITTORAL COMPRESSION. The Euclidean distance of the geome-
try of reason fulfills them except LITTORAL COMPRESSION. The shoe example and
the bicycle example, as compelling as they are in their original context, may lack
application to the kinematics of credences. I am, of course, not wedded to them, as
they are deeply reflective of the coordinated approach, which I reject. They are not
irrelevant in the sense that it takes effort to move from one belief state to another, as
it takes effort to buy a shoe or ride a bicycle. I hope that to some readers they are
helpful as illustrations of the absurdity while the coordinated approach is in play.

6.2 Expectations for information theory

In information theory, the information loss differs depending on whether one uses
probability distribution P to encode a message distributed according to probability
distribution Q, or whether one uses probability distribution Q to encode a message
distributed according to probability distribution P . This asymmetry may very well
carry over into the epistemic realm. Updating from one probability distribution, for
example, which has P(X) = x > 0 to P ′(X) = 0 is common. Going in the opposite
direction, however, from P(X) = 0 to P ′(X) = x′ > 0 is controversial and unusual.

Associated with the Log score via McCarthy’s theorem (Theorem 2.2) is the
Kullback-Leibler divergence, which is the most promising concept of difference for
probability distributions in information theory and the one which gives us Bayesian
standard conditioning as well as Jeffrey conditioning (see Lukits, 2013). It is non-
commutative and may provide the kind of asymmetry required to reflect epistemic
asymmetry. However, it violates TRIANGULARITY and TRANSITIVITY OF ASYM-
METRY. The task of this section is to show how serious these violations are. They
dissipate once we no longer think of information theory operating on probability
coordinates.

6.2.1 Triangularity

Let B be on the zero-sum line between A and C if and only if

d(A, C) = d(A, B) + d(B, C), (28)
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where d is the difference measure we are using, so d(A, B) = ‖B − A‖ for the
geometry of reason and d(A, B) = DKL(B, A) for information geometry. For the
geometry of reason (and Euclidean geometry), the zero-sum line between two prob-
ability distributions is just what we intuitively think of as a straight line: in Cartesian
coordinates, B is on the zero-sum line strictly between A and C if and only if for
some ϑ ∈ (0, 1), bi = ϑai + (1 − ϑ)ci and i = 1, . . . , n.

What the zero-sum line looks like for information theory is illustrated in Fig. 3.
The reason for the oddity is that the Kullback-Leibler divergence does not obey TRI-
ANGULARITY. Call B a zero-sum point between A and C if Eq. 28 holds true. For
the geometry of reason, the zero-sum points are simply the points on the straight line
between A and C. For information geometry, the zero-sum points are the boundary
points of the set where you can take a shortcut by making a detour, i.e. all points for
which d(A, B) + d(B, C) < d(A, C).

Informationally speaking, if you go from A to C, you can just as well go from A

to B and then from B to C. This does not mean that we can conceive of information
geometry the way we would conceive of non-Euclidean geometry, where it is also
possible to travel faster on what from a Euclidean perspective looks like a detour.
For in information geometry, you can travel faster on what from the perspective of
information theory (!) looks like a detour, i.e. the triangle inequality does not hold.

Before we get carried away with these analogies between divergences and metrics,
however, it is important to note that it is not appropriate to impose expectations that
are conventional for metrics on divergences. Bregman divergences, for example, in
some sense violate the triangle equality by design. If dH is a Bregman divergence
with the corresponding concave entropy function H , then for a convex set C ∈ R

n

and all x ∈ C and y ∈ R
n the following reverse triangle inequality is true:

dH (x, y) ≥ dH (x, y′) + dH (y′, y), (29)

where y′ is the projection of y onto C such that dH (y′, y) = min{dH (z, y), z ∈ C}.
The squared Euclidean distance is an interesting case in point for this property. In a
generalization of the Pythagorean theorem, c2 > a2 + b2 holds for obtuse triangles
(see 2.2.5 in Grünwald & Dawid, 2004). When C is affine (such as a plane in R

3),
Eq. 29 turns from an inequality to an equation (replacing “≥” by “=”) for all Breg-
man divergences. For the squared Euclidean distance, Eq. 29 is then the conventional
Pythagorean theorem. To subject the difference concept between probability distri-
butions to a TRIANGULARITY requirement may be a temptation to resist and only
reveal another instance of the Euclidean prejudice identified by Mormann.

The three points A, B, C in Eq. 20 violate TRIANGULARITY for DKL because

0.067806 = DKL(A, B) + DKL(B, C) < DKL(A, C) = 0.071530. (30)

Information theory, however, does not only violate TRIANGULARITY. It violates it in
a particularly egregious way.
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Fig. 3 The zero-sum line between A and C is the boundary line between the green area, where the triangle
inequality holds, and the red area, where the triangle inequality is violated. The posterior probability
distribution B recommended by Jeffrey conditioning always lies on the zero-sum line between the prior A

and the Leitgeb Pettigrew posterior C (explained in Leitgeb & Pettigrew, 2010). E is the point in the red
area where the triangle inequality is most efficiently violated. Even though it can be calculated using the
Lambert W function, ek = ck

W
(

ck
ak

exp(1+λ)
) , with λ chosen to fulfill

∑
ek = 1, it is not clear to me whether

E is the midpoint between A and C or not

Proposition 6.1 Let x and z be distinct points on S
n−1 with coordinates xi and zi

(1 ≤ i ≤ n). Then, for any ϑ ∈ (0, 1) and an intermediate point y with coordinates
yi = ϑxi + (1 − ϑ)zi , the following inequality holds true:

DKL(z, x) > DKL (y, x) + DKL (z, y) . (31)

Proof It is straightforward to see that Eq. 31 is equivalent to

n∑

i=1

(zi − xi) log
ϑxi + (1 − ϑ)zi

xi

> 0. (32)
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Expand the right hand side to

n∑

i=1

(
zi + ϑ

1 − ϑ
xi − ϑ

1 − ϑ
xi − xi

)
log

1
1−ϑ

(ϑxi + (1 − ϑ)zi)

1
1−ϑ

xi

> 0. (33)

Equation 33 is clearly equivalent to Eq. 32. It is also equivalent to

n∑

i=1

(
zi + ϑ

1 − ϑ
xi

)
log

zi + ϑ
1−ϑ

xi

1
1−ϑ

xi

+
n∑

i=1

1

1 − ϑ
xi log

1
1−ϑ

xi

zi + ϑ
1−ϑ

xi

> 0, (34)

which is true by Gibbs’ inequality.

Like Bregman divergences in general, the Kullback-Leibler divergence in partic-
ular violates TRIANGULARITY by design. Giving Proposition 6.1 a misguided and
paradoxical reading from the intuitions of geometry, the more often you stop on the
way, the faster you reach your destination.

6.2.2 Transitivity of asymmetry

Extreme probabilities are special and create asymmetries in updating: moving in
direction from certainty to uncertainty is asymmetrical to moving in direction from
uncertainty to certainty. Geometry of reason’s metric topology, however, allows for
no asymmetries.

Example 6.1 (Extreme Asymmetry) Consider two cases where for case 1 the prior
probabilities are Y1 = (0.4, 0.3, 0.3) and the posterior probabilities are Y ′

1 =
(0, 0.5, 0.5); for case 2 the prior and posterior probabilities are reversed, so Y2 =
(0, 0.5, 0.5) and Y ′

2 = (0.4, 0.3, 0.3).

Case 1 is a straightforward application of standard conditioning. Case 2 is more
complicated: what does it take to raise a prior probability of zero to a positive num-
ber? In terms of information theory, the information required is infinite. Case 2 is
also not compatible with standard conditioning (at least not with what Alan Hájek
calls the ratio analysis of conditional probability, see Hájek, 2003). The geometry of
reason may want to solve this problem by signing on to a version of regularity.

Now turn to information theory. Given the asymmetric similarity measure of
probability distributions that information theory requires (the Kullback-Leibler diver-
gence), a prior probability distribution P may be closer to a posterior probability
distribution Q than Q is to P if their roles (prior-posterior) are reversed. That is
just what we would expect. The problem is that there is another posterior probability
distribution R where the situation is just the opposite: prior P is further away from
posterior R than prior R is from posterior P . And whether a probability distribution
different from P is of the Q-type or of the R-type escapes any epistemic intuition.

The simplex S
2 represents all the probability distributions for trichotomy, reflect-

ing a coordinated approach. Every point p in S
2 representing a probability distri-

bution P induces a partition on S
2 into points that are symmetric to p, positively
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skew-symmetric to p, and negatively skew-symmetric to p given the topology of
information theory.

In other words, if


P (P ′) = DKL(P ′, P ) − DKL(P, P ′), (35)

then, holding P fixed, S2 is partitioned into three regions,


−1(R>0)

−1(R<0)


−1({0}). (36)

One could have a simple epistemic intuition such as “it takes less to update from
a more uncertain probability distribution to a more certain probability distribution
than the reverse direction,” where the degree of certainty in a probability distribution
is measured by its entropy. This simple intuition accords with what we said about
extreme probabilities and it holds true for the asymmetric distance measure defined
by the Kullback-Leibler divergence in the two-dimensional case where � has only
two elements.

In higher-dimensional cases, however, the tripartite partition (36) is non-trivial—
some probability distributions are of the Q-type, some are of the R-type, and it is
difficult to think of an epistemic distinction between them that does not already
presuppose information theory (see Fig. 4 for illustration). A more coordinate-free
approach using differential geometry may be helpful.

On any account of well-behaved and ill-behaved asymmetries, the Kullback-
Leibler divergence is ill-behaved. Of the four axioms as listed by Ralph Kopperman
for a distance measure d (see Kopperman, 1988, 89), the Kullback-Leibler divergence
violates both symmetry and triangularity, making it a ‘semi-quasimetric’:

(m1) d(x, x) = 0 (self-similarity)
(m2) d(x, z) ≤ d(x, y) + d(y, z) (triangularity)
(m3) d(x, y) = d(y, x) (symmetry)
(m4) d(x, y) = 0 implies x = y (separation)

An ordered pair (p, q) of simplex points associated with probability distributions
is asymmetrically negative, positive, or balanced, so either d(p, q) − d(q, p) < 0 or
d(p, q) − d(q, p) > 0 or d(p, q) − d(q, p) = 0. If (p, q) and (q, r) are asymmet-
rically positive, (p, r) ought not to be asymmetrically negative. Think of a bicycle
route map with different locations at varying altitudes. If it takes 20 minutes to get
from A to B but only 15 minutes to get from B to A then (A, B) is asymmetrically
positive. If (A, B) and (B, C) are asymmetrically positive, then (A, C) ought not to
be asymmetrically negative. I call this requirement TRANSITIVITY OF ASYMMETRY.
The Kullback-Leibler divergence violates it.

Consider

P1 =
(
1

2
,
1

4
,
1

4

)
P2 =

(
1

3
,
1

3
,
1

3

)
P3 =

(
2

5
,
2

5
,
1

5

)
. (37)
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Fig. 4 The partition (36) based on different values for P . From top left to bottom right, P =
(0.4, 0.4, 0.2);P = (0.242, 0.604, 0.154);P = (1/3, 1/3, 1/3); P = (0.741, 0.087, 0.172). Note that for
the geometry of reason, the diagrams are trivial. The challenge for information theory is to explain the
non-triviality of these diagrams epistemically without begging the question

(P1, P2) is asymmetrically positive, and so is (P2, P3). The reasonable expectation
is that (P1, P3) is asymmetrically positive by transitivity, but it is asymmetrically
negative.

How counterintuitive this is (epistemically and otherwise) is demonstrated by the
fact that in MDS (the multi-dimensional scaling of distance relationships) almost all
asymmetric distance relationships under consideration are asymmetrically transitive
in this sense, for examples see international trade in Chino (1978); journal citation in
Coombs (1964); car switch in Harshman et al. (1982); telephone calls in Harshman
and Lundy (1984); interaction or input-output flow in migration, economic activity,
and social mobility in Coxon (1982); flight time between two cities in Gentleman
et al. (2006, 191); mutual intelligibility between Swedish and Danish in Vanommen
et al. (2013, 193); Tobler’s wind model in Tobler (1975); and the cyclist lovingly
hand-sketched in Kopperman (1988, 91).
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7 Conclusion

I have shown that the account provided by defenders of the geometry of reason, such
as Leitgeb, Pettigrew, or Selten, is indefensible. While it is true that the scoring rule
associated with the geometry of reason, the Brier score, is unique in fulfilling a sym-
metry requirement, I have shown both conceptually and by example that asymmetry
is preferable because it allows for greater sensitivity to extreme probabilities. The
Log score associated with information theory fulfills the requirement to be sensitive
to extremity and therefore asymmetric. However, the Log score is in general an ill-
behaved measure of divergence (for example, it not only violates triangularity but
does so in egregious ways as demonstrated in the paper).

Both the geometry of reason and information theory are well-established and
highly integrated theories, with many interesting results and various ways in which
they have intuitive appeal. The geometry of reason has in its favour that it makes
use of our geometric intuition as well as the substantial mathematical apparatus that
comes along with it. In a table in Section 2.1 I have summarized, however, that
the geometry of reason fails several plausible requirements (INFORMATION, LOCAL-
ITY, LITTORAL COMPRESSION), and uniquely fulfills only implausible requirements
(GEOMETRY, SYMMETRY).

A requirement that Pettigrew lists in favour of the geometry of reason, UNIVOCAL

DOMINANCE, is fulfilled via SYMMETRY, but information theory also fulfills it via
LOCALITY, and the requirement itself is suspect (see Section 5.2). Information theory
also gives us the entropy function we have come to expect on the basis of Shannon’s
analysis of entropy in Shannon (1948). It fulfills Shannon’s axioms, while the entropy
function associated with the geometry of reason fails them. The work, however, is not
complete. Information theory saddles us with a divergence function, the Kullback-
Leibler divergence, which in the coordinated framework is excessively ill-behaved.

More promising is the use of differential geometry in the formal theory of partial
beliefs. This paper primarily shows that entrenching partial beliefs as parametrized
by probabilities pi, i = 1, . . ., n is a dead-end road. The geometry of reason is ded-
icated to this entrenchment on principle. Information theory can hopefully escape it.
There are many other parameters that uniquely identify probability distributions, for
example (

ln
p1

pn

, . . ., ln
pn−1

pn

)ᵀ
. (38)

Once a categorical distribution (corresponding to finite outcome spaces) is
parametrized this way, it joins the legion of other distributions in the exponential
family (normal, exponential, gamma, chi-squared, beta, Dirichlet, Bernoulli, Pois-
son, Wishart, inverse Wishart, geometric) and partakes in substantial results for
these distributions. The geometry of reason prevents us from pursuing these fruitful
abstractions by tying us to our geometric intuitions. What the abstractions make pos-
sible, perhaps by generalizing information theory, is a question for which I eagerly
await answers.
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