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Abstract Philosophical discussions on causal inference in medicine are stuck in
dyadic camps, each defending one kind of evidence or method rather than another
as best support for causal hypotheses. Whereas Evidence Based Medicine advocates
the use of Randomised Controlled Trials and systematic reviews of RCTs as gold
standard, philosophers of science emphasise the importance of mechanisms and their
distinctive informational contribution to causal inference and assessment. Some have
suggested the adoption of a pluralistic approach to causal inference, and an inductive
rather than hypothetico-deductive inferential paradigm. However, these proposals
deliver no clear guidelines about how such plurality of evidence sources should
jointly justify hypotheses of causal associations. We here develop such guidelines by
first giving a philosophical analysis of the underpinnings of Hill’s (1965) viewpoints
on causality. We then put forward an evidence-amalgamation framework adopting a
Bayesian net approach to model causal inference in pharmacology for the assessment
of harms. Our framework accommodates a number of intuitions already expressed in
the literature concerning the EBM vs. pluralist debate on causal inference, evidence
hierarchies, causal holism, relevance (external validity), and reliability.
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1 Introduction: causal inference in pharmacology

Pharmacology blends science and technology in a very peculiar fashion. It works
across levels of reality by directly intervening at the biochemical level only: whereas
the direct domain of action of drug molecules is limited to protein receptors, the
desired end-effects are clinically observable results. However, because the proteins
with which the drug molecules interact are embedded in various, possibly interacting,
biological pathways (metabolic, genetic, signal transduction), most end-effects are
unpredictable.

Knowledge of these various interactions and the biological laws governing them,
as well of the contingent initial conditions holding in any specific context is far from
exhaustive and does not allow reliable prediction or causal inference. Hence, until
recently, drug approval has mainly relied on a black-box methodology, grounded on
hypothesis rejection. This paradigm, which has been mainly developed with the aim
to minimise false positives in efficacy assessment (see Howick 2011; Teira 2011, for
an historical-philosophical overview), puts several constraints on the kind of evidence
which is allowed to inform causal inference, and severely hampers the integration of
heterogenous, possibly inconclusive pieces of evidence. Indeed, by giving a strong
precedence to specific methods for inferring causes (such as Randomised Controlled
Trials), the standard approach implicitly emphasises some indicators of causality,
such as “difference making” in contrast to others, and has difficulties in incorporat-
ing evidence of different sources (e.g. spontaneous reports, case series, comparative
studies of various kinds) and levels (e.g., molecular data, clinical evidence, epidemi-
ological studies) which cannot be accommodated under this heading. Whereas this
paradigm is reasonable for the purpose of avoiding fraud, by eliminating as much as
possible any source of confounding and bias, it is not adequate for the purpose of
minimising harms of health interventions (see Osimani and Mignini 2015).

The methodological landscape is rapidly changing though: Bayesian methods are
gaining ground in statistical analysis of trials, because of their ability to optimise the
use of available evidence by incorporating historical (heterogenous) knowledge in the
prior, allowing diverse types of evidence to be integrated in the probability function,
and by providing a probabilistic measure of the hypothesis under investigation, hence
allowing decisions under uncertainty. Such statistical techniques are gaining ground
especially in safety trials and trials for fast track or so called “orphan” drugs.

Systems pharmacology takes a “holistic” approach to study the effects of drugs
in the organism by focusing on interrelations, rather than the components, of the
mechanisms leading to intended and unintended outcomes. Computational model-
ing of perturbated cellular mechanisms for instance, aims to provide insights into
the variability and complexity of pharmacological effects in the organ system (see
for instance Britton et al. 2013). Also, data-intensive and knowledge discovery tech-
niques put all available and drug-outcome relevant data together, in order to possibly
predict the end-effect of a given drug, by reconstructing the possible routes of action
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from the molecular to the phenotypic level (see Abernethy and Bai 2013; Tilman
and Eberhardt 2014; Xie et al. 2009). There is still considerable uncertainty as to the
inferential and predictive value of these approaches, especially when they are taken
on their own. However, their specific epistemic contribution could be made more
valuable in combination with other sources of knowledge.

The main focus of the present paper is in fact to provide a framework for the
amalgamation of diverse kinds of evidence for causal inference, which is formally
and epistemologically grounded. For this, we will adopt Bovens’ and Hartmann’s
(Bovens and Hartmann 2003) proposal to use Bayesian confirmation theory in order
to account for (and mathematically explain) some phenomena related to scientific
inference; such as the confirmatory power of the coherence of the body of evi-
dence, the epistemic interaction of consistency of measurements and reliability of
information sources, as well as the modular contribution of different “lines of evi-
dence” related to diverse observable consequences of the investigated hypothesis. We
will adapt this framework to causal inference and consequently specify a concrete
structure for that purpose. We will then illustrate its epistemic and heuristic virtues
as an instrument for evidence amalgamation, in the context of causal inference of
drug-induced harm.

Section 2 explains in more detail why standards for efficacy and safety assess-
ments should not be the same. Section 3 focuses on the role of causal inference in
such assessments and elaborates on Bradford Hill viewpoints on causality in order
to provide a list of philosophically grounded causal indicators. Section 4 presents
Bayesian epistemology as a valid alternative to current standards of evidence; in par-
ticular it relies on Bovens’ and Hartmann’s mathematical representation of scientific
inference and adapts it to the specific problem of inferring causality in pharma-
cology. Section 5 presents the details of our model and illustrates how it functions
by presenting two model calculations. Section 6 spells out the main virtues of our
inferential model with respect to the standard view and other proposals for synthe-
sising evidence; furthermore it sets the stage for further developments and practical
implementation.

2 Efficacy and safety assessments in pharmacology

2.1 Why standards ought not be the same

The European Parliament and the European Council have recently changed the reg-
ulation of pharmacovigilance practice (Directive 2010/84/EU; regulation (EU) No
1235/2010, entered into force in July 2012), putting a special emphasis on joint
efforts for what can be considered an information-based (rather than power-based)
approach to pharmaceutical risk assessment. The related guidelines encourage the
integration of information coming from different sources of safety signals (spon-
taneous case reports, literature, data mining, pharmaco-epidemiological studies,
post-marketing trials, drug utilisation studies, non-clinical studies, late-breaking
information; see also Herxheimer 2012). Yet, the methodological bases for imple-
menting such policy are still shaky in that the standards for causal assessment of
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adverse drug reactions (ADRs) is still parasitic on the (statistical) methods devel-
oped to test drug efficacy (see also Senn ; Price et al. 2014; Osimani and Mignini
2015). In Osimani and Mignini (2015), a series of reasons have been provided for
adopting asymmetric standards for safety and efficacy assessments. These mainly
deal with the following facts: 1) because of pragmatic as well as epistemic reasons,
in the case of risk assessment there is higher concern for false negatives (failing to
detect possible causes of observed effects), rather than for false positives (failing to
distinguish between spurious and genuine causes). This is mainly due to the fact that
the drug is developed and tested with reference to the intended effect, whereas the
detection of side-effects – apart from most common ones, which can be observed
also in medium-sized samples – is mainly left to the post-marketing phase; 2) also,
evidence accumulating in time may strongly point to the hypothesis of causal associa-
tion between drug and observed harm, without nevertheless being conclusive. Hence,
instruments of probabilistic causal assessment are needed which do not demand a
clear-cut rejection or acceptance of investigated hypotheses; 3) heterogeneous pieces
of evidence might jointly support a given hypothesis without being individually able
to allow any significant inference; hence instruments for evidence amalgamation are
needed for this purpose.

2.2 The decision problem

Drug licensing bodies, such as the Food and Drug Agency in the USA or the EMA in
Europe, as well as national agencies such as the Bundesinstitut für Arzneimittel und
Medizinprodukte in Germany, or the Medicines and Healthcare products Regulatory
Agency in the UK, regularly face the problem of whether to approve a drug for treat-
ment or not and the problem of whether or not to let a drug further circulate in the
market when its safety profile is updated through the discovery of additional risks.
Indeed any given drug is always approved “with reservation” (Osimani 2007).1 The
actions taken by the drug licensing body may have wide influence on public health
and public finance as well as economic success of the drug’s manufacturer and its
competitors. Intuitively, the normatively right action to take is to leave the drug in the
market, provided that – on the basis of the available evidence – the expected utility
of not withdrawing it exceeds the utility of withdrawing it.

The precautionary principle has been introduced in the pharmaceutical domain in
order to account for the uncertainty arising in cases where suspicion arises about a
new harm, possibly associated with the drug, but evidence cannot conclusively point
to a causal connection between them. In fact, before its introduction in the legal

1In reality, the decision problem is not as black and white as presented here. There are further actions
available to a drug licensing agency such as: restricting access to the drug to a subset of patients and
adding further information to the package insert, such as black-box warnings. For ease of exposition, we
shall here disregard further possible actions and only consider the black and white decision problem on
whether or not to approve a drug or leave it in the market after its safety profile has changed.
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system (and through various international agreements related to environmental law,
see Osimani 2013) no preventive measure was possible without a scientific proof of
the causal connection between suspected source of damage and expected harm. This
is because liability and safety regulations are grounded on a clear causal connection
between the agent deemed responsible for the hazard and the hazard itself. The pre-
cautionary principle relaxes this requirement in view of the good at stakes (health
and environment) and of the radical uncertainty related to the possible unintended
outcomes of human interventions on nature. In such cases, a well-founded suspicion
may suffice to take action (withdraw the drug or restrict its usage), and the princi-
ple of proportionality applies. This means that the probability associated with the
hypothesis of causal association may be as low as the expected harm is high (with
respect to the expected benefit, Osimani et al. 2011).

Hence, the decision, e.g., withdraw the drug or not, will depend on some threshold
which reflects the nature of the medication, the pharmaceutical environment (i.e.,
the availability of alternative treatments for the same condition), policy and ethical
dimensions, as well as the perceived acceptability of the risk.

In order to avoid commitment (for the moment) to any of the many notions of cau-
sation offered by the philosophical-methodological literature2 we use the formula:
D©H in order to express the proposition: “D causes H”, sometimes abbreviated
by © when no ambiguities arise. Hence, by adopting the classical cost-effectiveness
analysis formula, we can infer the probability threshold for causality p∗, at which the
expected utility of withdrawing equals the expected utility of keeping the drug in the
market.

Let w stand for the act of withdrawing the drug D from the market while ¬w

stands for not withdrawing D. The utility of (not) withdrawing given that © or ¬©
holds is denoted by the two-place utility function U . At the probability threshold
p∗, the expected utility for withdrawing the drug equals the expected utility for not
withdrawing it. p∗ can hence be obtained by solving

p∗ · U(w, ©) + (1 − p∗) · U(w,¬©) = p∗ · U(¬w, ©) + (1 − p∗) · U(¬w,¬©),

for p∗. Therefore, we can find p∗ to be determined by the utilities

p∗ = U(¬w,¬©) − U(w,¬©)

U(w, ©) − U(¬w, ©) + U(¬w,¬©) − U(w,¬©)
.

If the degree of belief in © is strictly greater than p∗, then the normatively correct
decision is to withdraw the drug from the market. If the degree of belief is strictly
less than p∗, then the normatively correct decision is to keep the drug in the market.

2We deliberately use the circled © as our relational predicate symbol here to not invoke any specific tech-
nical, theory-informed reading of this claim, yet. We precisely do think, though, that such an explication is
in order – even more so since it is often neglected and rarely undertaken in the methodological literature.
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Fig. 1 p∗ partitions degrees of
belief in © into two intervals

Hence, p∗ partitions the continuum of degrees of belief between the two alternative
hypotheses (© and ¬©) into two intervals, see Fig. 1.

There is a fact of the matter: either © is true or the opposite holds. So, in order to
make the best decision it is necessary and sufficient to adopt degrees of belief which
fall in the interval between p∗ and the truth value of © – where a truth value of 1
stands for ‘true’ and a truth value of 0 stands for ‘false’. Therefore, p∗ allows for a
certain margin of error; however, the chances to fall into the right interval get higher
and higher the more evidence one takes into account: the more one “samples” from
reality, the closer one’s beliefs get to the truth (Edwards et al. 1963).3

A straightforward consequence of this state of affairs is that there is a need of
instruments which allow a probabilistic assessment of the suspected causal link
between drug and side-effect, by taking into account all available evidence at the
time of decision. In particular, four desiderata are essential for a framework of causal
assessment of drug induced harm:

1. It must allow for probabilistic hypothesis confirmation.
2. It must be able to incorporate heterogeneous kinds of data.
3. It must be able to integrate diverse types of inferential patterns, in order to

optmise the epistemic import of available evidence.
4. The framework should be particularly focused on causal assessment in pharma-

cology and therefore consider the specific issues which arise in this context.

In this paper, we focus exclusively on how to develop a framework of this kind.
The problems of i) how to determine the expected utilities of these harms and ii) how
to determine the expected utility of benefits are outside the scope of this paper.

3 A framework for the assessment of harms in pharmacology, part 1:
relata

In the following, we present our approach to causal inference for drug harms based
on a formal Bayesian model of scientific inference. Our approach 1) identifies pos-
sible indicators of causality (observable consequences of the causal hypothesis) on
the basis of the methodological and philosophical literature on causality, evidence,
and causal inference; 2) embeds them in a topological framework of probabilistic

3This is the standard justification of inductive inference (Carnap 1947; Howson and Urbach 2006);
we do not enter into the related philosophical debate here. However, nothing hinges on the particular
philosophical position about truth.
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dependencies and independencies grounded in assumptions regarding their reciprocal
epistemic interconnections; 3) weakly orders some of these probabilistic dependen-
cies as a function of their inferential strength with respect to the confirmation of
causal hypotheses. Furthermore, the developed model is used to illustrate possible
epistemic dynamics related to the interactions of its various components.

3.1 Causal indicators

In a much quoted paper devoted to causal assessment of environmental hazards
(Hill 1965), the epidemiologist Sir Austin Bradford Hill identifies nine “viewpoints”
which help detecting possible causes of observed risks. Hill does not consider these
“viewpoints” (neither individually nor jointly) to provide sufficient and necessary
conditions for causality, but they should “help us to make up our minds on the fun-
damental question – is there any other way of explaining the set of facts before us, is
there any other answer equally, or more, likely than cause and effect?”, see Hill (1965,
p. 299). The nine “viewpoints” are the following: 1) strength of the association; 2)
consistency; 3) specificity; 4) temporality; 5) biological gradient; 6) plausibility; 7)
coherence; 8) experiment; 9) analogy.

1. Strength of the association refers to the observed relationship between a can-
didate cause and the putative risk: how much the former contributes to the
latter, measured for instance by the ratio of relevant outcomes between exposed
and unexposed group, or by regression coefficients. Particularly, Hill empha-
sises that although this kind of information may be causally opaque because of
possible confounders, still causation may be conceded whenever such possible
confounders cannot be reasonably identified (on grounds that one can use this as
a heuristic basis for excluding them).

2. Consistency refers both to the convergence of the observed results in different
study settings and across different methods, and to the stability of the association
across different background conditions and circumstances. The former kind of
consistency may be also referred to as methodological robustness, in that it is
meant to provide a warrant that the observed results have not been produced by
the studies themselves, and thereby exclude the possibility that they are a study
artifact. The latter instead refers to the association holding in different contexts/
kinds of populations/background conditions, and is also known as “ontological
robustness” (Wimsatt 1981, 2012).

3. Specificity refers to ideally one-to-one relationships between specific sources of
hazards and specific kinds of harms. Hill makes for instance the example of
different kinds of cancer sites (lung or nose vs. scrotum cancer) which specific
populations (nickel refiners vs. chimney sweepers) are more likely to contract,
depending on the kinds of chemicals they are exposed to.

4. Temporality. Excluding theoretical cases of backward causation, causes come
before their effects. Hence, one would be inclined to infer causality when both a
statistical association is present and the putative cause is observed to come prior
to the effect. However, observational studies cannot guarantee perfect informa-
tion on temporal order, since generally both the exposure to risk factors and the
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development of disease extend through time; therefore attention should be paid
to possible confounding factors and reverse causation.

5. Biological gradient refers to what is also called dose-response curve: an
observed systematic relationship between the exposure and the strength of the
observed effect: “For instance, the fact that the death rate from cancer of the
lung rises linearly with the number of cigarettes smoked daily, adds a very great
deal to the simpler evidence that cigarette smokers have a higher death rate than
non-smokers”, see Hill (1965, p. 298).

6. Biological plausibility refers to the fact that knowledge of molecular mechanisms
should also be considered, in addition to statistical knowledge, when assessing
causal associations. On the other hand, causal association should not be dis-
missed on the grounds that the hypothesised mechanisms are implausible, since
implausibility is relative to the state of the art, and this might be overturned by
strong evidence to the contrary: “What is biologically plausible depends upon
the biological knowledge of the day”, see Hill (1965, p. 298).

7. Coherence relates to how well the different pieces of evidence fit together. For
instance, when evidence from animal studies and epidemiological studies point
to the same hypothesis. Coherence also relates to how well the hypothesis fits
with background knowledge: “the cause and effect interpretation of our data
should not seriously conflict with the generally known facts of the natural history
and biology of the disease”, see Hill (1965, p. 298). However, lack of coherence
among the different kinds of studies, cannot totally nullify their evidential value.

8. Experimental evidence, if available, allows the scientist to isolate the factor
under investigation from other possible confounders, and thereby provides the
strongest support for causal hypotheses according to Hill and the epidemiologi-
cal canon in general.

9. Reasoning by analogy is an additional source of potentially relevant information
for the causal claim at hand. Hill only briefly mentions analogy as providing
further support for the hypothesis under investigation.

Hill concedes that he is not providing a theoretical justification for his list of cat-
egories, but interestingly, his points of view on causality reflect many of the criteria
discussed in the philosophical literature for several decades now. We shall go on to
systematically gather philosophical support for Hill’s list in the next section.

3.2 Philosophical underpinnings of various indicators of causality

In the following, we discuss the rationales which epistemologically underpin Hill’s
viewpoints on causality by appealing to the philosophical literature, and derive our
list of indicators of causality for our formal framework. While there may be further
indicators of causality (in pharmacology), we think that those presented below are
the most pertinent ones discussed in the philosophical literature.4 Figure 2 presents a

4Ioannidis (2016) examines the empirical evidence in support of Bradford Hill guidelines and de-
emphasise their importance. Indeed the influence of biases of various kinds may distort the genuine
informative value of such indicators. In our framework, this aspect is explicitly taken into account by
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Fig. 2 Mapping Hill’s nine viewpoints onto our framework, with indicators of causality and dimensions
of scientific research (italicised) on the right side

mapping from Hill’s list onto our framework which will be discussed in detail below.
Not every viewpoint is mapped onto an indicator of causality in our sense – e.g., we
locate analogy among the set of inferential patterns. The remainder of Section 3.2 is
aligned with Hill’s list, cf. Fig. 2.

3.2.1 Strength of association

Observed strength of association may mean different things. In biological systems,
causes bring about putative effects, if specific combinations of background condi-
tions hold and possibly hindering factors are absent. In contrast to causes which hold
on a broad spectrum of background conditions, causes whose backgrounds condi-
tions are rarely met – or whose hindering factors are common – will produce small
effects in the treatment arm. Hence the effect-size reflects this kind of phenomenon,
which philosophers have referred to as “stability” or “invariance”, or “insensitivity”
or “non-contingency” (Pearl 2000; Woodward 2003). This means that the effect size
may reflect the relative non-contingency of the causal effect (independence from
“supporting factors”: Cartwright and Stegenga 2011; Stegenga 2015), rather than its
causative force.

Woodward (2003, 2010) introduces stability as a feature of counterfactual depen-
dence between putative cause and effect: the causal relationship remains intact under
changes in the environment, and the severity of the changes “tests” the stability of
the relationship – the more stable, the less sensitive to the specification of back-

providing separate lines of support for the confirmatory value of a given piece of evidence and its
reliability.
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ground parameters. Stability may indeed be considered as an indicator of causality in
that it manifests the non-contingent relationship between the observed effect and the
putative cause: in a certain sense it is an attenuated version of the necessity condi-
tion inherent to the pre-Humean conception of causality. Woodward as well as Pearl
(Pearl 2000; Woodward 2003) consider stability as an essential quality of causal rela-
tions: the more unstable a relation is observed to be, the higher the likelihood that it
is not genuinely causal at all in the end.

Strength of the association is also a function of how much the putative effect
changes upon changes of the putative cause. This is measured for instance by the
(regression) coefficient. In this respect, strength refers to the functional relationship
itself, independently of its degree of universality. We will refer to a strong association
in this sense as having a “high rate of growth”.

Related to the rate of growth is also the “dose-response relationship”. This states
whether a systematic relation between changes in one variable and changes in the
other holds in the first place. The existence of a dose-response model is an important
indicator of causality especially because the detection of a clear dose-response curve
(e.g., a logarithmic relation between treatment or exposure and observed effect values
with small error terms) is best explained by positing a truly ontological influence
structure along Reichenbach’s principle: The variables are either directly causally
related or correlated due to the presence of a common cause.5

Dose-response relationship and (high) rate of growth are epistemically related not
only because the latter conceptually subsumes the former, but also because the higher
the rate of growth, the more likely it is that both will be detected in observational or
experimental studies. This is because, if the rate of growth is high, then a relationship
between putative cause x and effect y (x and y are continuous variables) is more
likely to be detected even in small samples/less favourable background conditions.
In sum, the presence of a dose-response relationship dy/dx �= 0 (for most x in the
domain) suggests that there is a systematic relationship between the putative cause
and the effect; the rate of growth says how strong this relationship is, e.g, how much
dy/dx departs from 0. Figure 3 contrasts two exemplary rates of growth (high in
graph 1a and low in graph 1b) with concrete dose-response curves (graphs 2a, 2b, and
2c). The dose-response relationship can be linear or – as illustrated in the example –
nonlinear (in which case it can be monotonic or non-monotonic).6

5Drawing causal inferences from functional or statistical relations alone is a hard task and in many cases
not feasible. If a functional description (like a structural equation) or a statistical connection (like a
high measure of covariance) is available though (and has proven stable), it can be used for intervention
and prediction – two hallmarks of causal knowledge. Although David Freedman criticises the Spirtes-
Glymour-Scheines approach (Spirtes et al. 2000) towards automatically inferring causal claims from raw
data, he points precisely to the practical use of formal dose-response relations when he writes that “[t]hree
possible uses for regression equations are (i) to summarise data, or (ii) to predict values of the dependent
variable, or (iii) to predict the results of interventions” (Freedman 1997, p. 62).
6This has implications for both causal inference as well as intervention and prediction: the more complex
the functional relationship, the more difficult it is to detect it and to accurately represent it; and therefore
the higher the risk of false prediction and inadequate intervention (Steel 2008). However, the framework
presented here focuses on detecting causes rather than on using causal knowledge for prediction and
intervention.
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Fig. 3 Examples of different rates of growth (visualised as pointers) and different dose-response relation-
ships (visualised as dose-response curves), relating a population’s treatment or exposure to the observed
effect

The strength of association may also be measured by “probabilistic dependence”.
In comparison to rate of growth and the dose-response gradient, this may be a less
informative indicator, in that it need not provide any information as to the functional
form of the relationship between cause and effect, but merely denotes the presence
of an asymmetry in the conditional distribution of the two variables.

In our system we distinguish between “rate of growth”, “dose-response relation-
ship” and “probabilistic dependence” as different indicators of causality correspond-
ing to Hill’s “strength of association”.

We also introduce “difference making” as a perfect indicator of causality: this is
to be inferred either through experiment or through “intervention” as intended in the
causal graphs literature (Pearl 2000; Woodward 2003) (see Section 5.2).

The main distinction between the three former indicators and the latter one is that
difference making represents an asymmetric relationship (it is about what makes a
difference to what), whereas the various forms of strength of associations are all sym-
metric in principle, and therefore cannot provide straightforward information about
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the direction of the relationship. This also follows from the very same reason why
dose-response relationship, rate of growth and probabilistic dependency are only
imperfect indicators of causality, whereas difference making is a perfect one (more
on this below in Section 3.2.6, Page 19, and Section 5.2).

3.2.2 Consistency

Hill’s second viewpoint “consistency”, also refers to stability in that it centers on
the question: “Has [the association] been repeatedly observed by different persons,
in different places, circumstances and times?” (emphasis added). However, by refer-
ring to repeated observations, consistency also relates to replication of studies with
identical methods, or in (systematically) varied study settings.

Indeed, as for any other empirical science, clinical trials and epidemiological stud-
ies cannot test a given hypothesis but in highly contingent study settings, together
with its theoretical/methodological assumptions, and ceteris paribus clauses. Hence,
systematic variation of study design and setting serves to provide evidence that the
result is not an artifact of the particular circumstances in which a given study has been
carried out, or of the particular method, or theoretical model adopted, and related
assumptions (see also Kuorikoski et al. 2010). Hence the role of consistency should
be distinguished along the following lines (see also Table 1):

1. Replication of (ideally) identical studies (same “background conditions” – same
inclusion and exclusion criteria, mode of administration/exposure, etc. – and
same design, e.g., cohort study, RCT, etc.): this is a means to increase accuracy
of measurement.

2. Replication of the observation through different methods, but analogous back-
ground conditions: this should test the results against the suspicion of being
created by the specific study design/setting (“study artifacts”) and guarantee
“methodological robustness”.

3. Replication of the observation through similar methods, but in different back-
ground conditions: this should test the stability of the causal link itself in
different populations/circumstances and show the extent to which it is “ontolog-
ically robust” (Wimsatt 2012; Open Science Collaboration 2015; Meehl 1990;
Woodward 2006).

Table 1 Different types of epistemic gain from different types of study replication

Replicationofstudies testing the same causal link . . . increases confidence in . . .

in ideally identical conditions (same method,
same background conditions)

accuracy of measurement

with different methods under same background
conditions

methodological robustness

with the same method under different background
conditions

stability of the causal link across different
populations
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Meehl (1990) represents the logical structure of theory testing as follows:

(T , At , Cp, Ai, Cn) → (O1 ⊃ O2) .

Where T represents the theory to be tested, At its ancillary assumption, Cp denotes
the ceteris paribus clauses, Ai the methodological assumption of the specific study
design used, and Cn the specific and absolutely contingent conditions of a given indi-
vidual experiment. The arrow denotes entailment and the horseshoe ⊃ between O1
and O2 material entailment. So, the left-hand conjunction is falsified, modus tollens,
if you observe (O1, ¬O2), instead, observing (O1, O2) provides inductive support to
it.

Study replication of the first kind (1) serves the purpose of verifying whether
the results, positive or negative, are due to the contingent settings of the individual
study (Cn); systematic variation of experimental/observational settings (2) is meant to
identify the influence of the methodological settings (Ai). Replication (3) allows one
to test the possible violation of ceteris paribus clauses (Cp); theory-related ancillary
assumptions (At ), and any testable consequence of the theory itself (T ). Hence, the
confirmatory role of replication consists in enhancing the probability of the theory T
by decreasing the probability that the evidence provided by the study for it is instead
due to At , Cp, Ai , or Cn.

In the specific context of causal inference by means of clinical or epidemiolgi-
cal studies, the role of replication and systematic study variation can analogously
be related to the various components of scientific inference. So, T may represent
the hypothesis of the causal connection itself; At the ancillary assumptions, CP , the
“everything else being equal” clause in relation to the investigated drug, that is, the
possible interacting factors such as age, sex, co-morbidity etc., Ai represents the
methodological assumptions, that is those aspects of the study design which make a
difference to the result and its interpretation with respect to other kinds of designs
(e.g., a cohort study with respect to a case-control study); and Cn represents the
contingent circumstances and conditions of any given study.

Consequently, from a confirmatory point of view, consistency across studies may
mean very different things depending on whether such studies share the same design,
the same kind of population or both.

In our framework, consideration of the confirmatory value of consistency is incor-
porated in the general structure of the network, where multiple reports for the same
indicator may be related by the same reliability or relevance nodes if they share the
same methodology or background conditions respectively.

3.2.3 Specificity: quantitative and qualitative versions

Specificity also refers to diverse phenomena. The traditional concept of specificity
(following Hill) approximates the classic conception of a cause as a necessary and
sufficient condition for its effect to occur, in contrast to the possibility of it being
produced by other candidate causes. In particular, specificity is interesting when con-
sidered as an (ideally) bijective function holding between sets of cause classes and
sets of effect classes; for instance when various kinds of a class of toxic agents are
related to various kinds of cancers through biunivocal relationships.
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Specificity as a property of causality has been discussed by Lewis (2000), Waters
(2007), and Woodward (2010) as the sort of functional relationship which system-
atically holds between the values of a variable and the values of another variable,
such that changing the value of the former in specific ways also changes the values
of the latter in specific ways, ideally in a bijective fashion. Lewis uses for this kind
of causal relationship the term “influence” and describes it as follows: “C will influ-
ence E to the extent that by varying the state of C [...] we can vary the state of E

in a fine-grained way” (Lewis 2000, p. 305).7 In itself, an ideal bi-conditional asso-
ciation with no residual instantiations of Cs not accompanied by Es, or vice versa,
would not guarantee causation: specificity is not an exclusive property of causation
(also conventional codes are specific in this sense, see Osimani 2014a; Kment 2010,
p. 83). However, it is very unlikely that such bi-conditional relationships can occur
by chance alone, therefore, specificity may be considered as an indicator of a causal
association being present, in that it manifests an underlying robust relationship,
which explains the systematic correspondence between the two relata.

Another, related notion of specificity refers to the “geometrical complementarity”
on which many biological phenomena are based; such as the key-hole relationship
between antigens and antibodies, or between target receptors and drug molecules (see
Weber 2006). This kind of specificity is relevant to causal assessment and prediction
in pharmacology for methods (such as so called “systems pharmacology”), that try
to infer the possible effects of drugs by identifying the sets of possible families of
receptors – and related proteins – which a certain drug molecule could bind to on
grounds of its “affinity” with them. Indeed, affinity is a function of stereometric
properties (structural and biological similarity); see for instance Xie et al. (2009).
This kind of specificity pertains to mechanistic reasoning, hence it will be considered
insofar as it is used to glean causal evidence from knowledge about mechanisms (see
below, biological plausibility: evidence of mechanisms, Section 3.2.6).

Specificity and stability are independent concepts: a causal relationship may be
at the same time highly specific and unstable (e.g. multifactorial genetic diseases),
or it may be highly stable but show a low degree of specificity (e.g. intestinal
inflammation caused by various kinds of antibiotics).

Neither stability nor specificity will be used in our framework to distinguish differ-
ent types of causes, but rather as signs of the presence of a causal connection. In our
framework, specificity is encoded as difference-making since those very studies aim-
ing at detecting causal efficacy of a drug under investigation also yield information
about the variance of the effect under different tests.8

7Woodward (2010) uses specificity to distinguish between different kinds of causes, thereby leaving room
for ontological pluralism, and also allows for specificity (as well as stability) to come in degrees.
8Since specificity-as-bijection (referring to a property of the investigated nexus between cause and effect)
supports the causal hypothesis D©H by excluding alternative explanations of the observed effect (and
ideally also alternative effects of the tested drug), we propose to model these alternatives on the same
categorical level as our main hypothesis, with the same methodological arsenal for testing and confirming
(or rejecting) them. It is the confirmation of D′©H ′ together with the rejection of D′©H and D©H ′ that
makes our actual hypothesis a specific relation, thereby lending additional confirmatory support to it.
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Fig. 4 Confounding by indication in the case of the association between antibiotics and asthma (cf.
Heintze 2013, p. 1205, Figure 4). Where the upper structure contains a direct causal link, the second struc-
ture includes a third and earlier factor, respiratory infection, triggering both the prescription of drugs and
what turns into wheezing or asthma at a later time

3.2.4 Temporal order, distance, and duration

In his question “which is the cart and which the horse?”, Hill addresses the aspect
of temporal precedence, seen as one of the most important markers of causality. The
importance of this criterion is mirrored by the fact that many theorists of causal-
ity consider it a necessary prerequisite, to postulate alignment of the causal and
the temporal direction, or even explicitly incorporate it in their formal framework.9

For instance, Suppes (1970) goes beyond Reichenbach’s common cause principle in
explicitly building on the direction of time in his probabilistic definition of causality:
an event genuinely causes a subsequent second event if it is identified as a “prima
facie cause” – i.e., it precedes the effect and raises its probability – and guaranteed
not to be an instance of “spurious causation”. Hence, although temporal precedence is
a necessary condition for causality, it is not sufficient for it because of the possibility
of confounding.

The methodological literature speaks about “reverse causation” in cases where
precedence of time, together with statistical association, might give the false impres-
sion that the preceding phenomenon causes the succeeding one, whereas the contrary
holds. In epidemiology, this is mainly due to issues related to duration and manifes-
tation in time of causal phenomena.10

For example, the recent debate around the causal association between paracetamol
and asthma centers around the possibility that cohort studies showing a statistical
association between the drug and the disease, may not warrant a causal conclusion,
notwithstanding the temporal precedence of paracetamol consumption with respect
to disease inception, because subjects affected by asthma in its subclinical phase
(i.e., when it has not been diagnosed yet) have a higher than average tendency to
develop colds, fever or rhynitis, and therefore to take more paracetamol than the
unaffected population (Heintze and Petersen 2013; Weatherall et al. 2014). Figure 4,

9Precedence in time is considered so essential to causes that Russel bases his denial of their existence on
the temporal symmetry of laws in physics, (Russell 1912).
10From a more general perspective this precisely touches upon the difficulty of defining or describing an
event, as discussed, e.g., by David Lewis in “Counterfactual Dependence and Time’s Arrow” (1979) and
“Events” (1986).
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replicated from Heintze and Petersen (2013), shows the potential common cause
structure explaining the association between the use of antibiotics or paracetamol and
later wheezing or bronchial asthma.

In our framework, temporality will be expressed straightforwardly by a temporal-
ity variable to sum up the above distinctive criteria.

3.2.5 Biological gradients and dose-response models

Related to specificity as influence is also the dose-response relationship, where a
clear pattern of quantitative dependency manifests. Quite in line with Lewis’ idea of
fine-grained relevance as a characteristic feature of causation, Hill sees it as a strong
indicator of a causal relation if an investigation reveals a biological gradient, in that
a clear dose-response curve admits a simple explanation.

In analogy to the strength of association indicator, also the biological gradients
splits up into the three dimensions “rate of growth”, “dose-response relationship”,
and “probabilistic dependence”.

3.2.6 Inferential patterns

Plausibility of the Biological Mechanism

The role of evidence about possible/plausible/actual mechanisms (Machamer et al.
2000; Darden 2006; Craver 2007) linking the putative cause to its phenotypic effect is
strongly debated in philosophy, especially in relation to evidence standards. Philoso-
phers closer to the Evidence Based Medicine approach, even in recognising some
value to knowledge about mechanisms, still doubt that they can complement statis-
tical black-box evidence because of the limited and fragmentary knowledge of the
“causal web” in which they are embedded (see for instance Howick 2011). Other
philosophers instead generally recognise that knowledge about mechanisms plays a
plurality of roles both in combination with statistical information and in a stand-alone
fashion:

1. Following the philosophical analysis of causal explanation, the most tradi-
tional epistemic role assigned to knowledge about mechanisms is to provide the
ontological rationale for observed regularities (Salmon 1984).

2. Knowledge about mechanisms can also constitute a sort of double check for
causality (Salmon 1997; Russo and Williamson 2007; Clarke et al. 2014).

3. Mechanisms have a methodological relevance in that they are supposed to pro-
vide the basis for extrapolation (Cartwright 2007b; Luján et al. 2016), and are
important for supporting the reliability of model assumptions as well as for inter-
preting experiment results (for instance a two-way curvilinear causal interaction
cannot be detected or may be misinterpreted by linear regression models).

4. Finally, mechanisms are held to have an epistemological/theoretical relevance, in
that they can provide the hypothesis which puts together disparate data (through
abductive inference). In this sense they provide the basis for the accumulation of
knowledge and scientific progress (see also Craver 2007).
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In the epidemiological literature, especially in narrative reviews, it is typical to
combine evidence about mechanisms with statistical evidence at the population level,
as an argumentative move in favour of causal hypotheses which are only suggested
by statistical associations. For instance, going back to our debate about the possi-
ble causal association between paracetamol and asthma, a series of reviews (Shaheen
et al. 2000, 2008; Katayoun 2005; Henderson and Shaheen 2013; Allmers et al.
2009; McBride 2011; Heintze 2013; Martinez-Gimeno and Garcı́a-Marcos 2013)
present both population-level studies as well as evidence of molecular and cellular
mechanisms from bio-essay or animal studies showing plausible biological pathways
leading from consumption of paracetamol to the development of hyper-responsive
reactions and asthma, see Osimani (2014b). This latter evidence is meant to provide
support for the “physical” connection, if the observed statistical association was due
to a causal association.11 In our framework this dimension will be mapped onto the
indicator for mechanisms.

The plausibility part of the “plausibility of mechanisms” indicator refers to the
general fit of the hypothesised mechanisms to available background knowledge and
this leads us directly to the subsequent “viewpoint” on causality (as Hill would call
it), namely: “coherence of evidence”. Neither coherence of evidence nor the subse-
quent viewpoints listed by Hill (“experiment” and “analogy”) are strictly speaking
indicators of the presence of causal relationships themselves. Rather, they refer to
the inferential/methodological process itself, and they appeal to particular meth-
ods (experimental), or kinds of reasoning (“analogy”), or theoretical/epistemological
virtues (“coherence”) which may be adopted to “optimise causal inference”.

Coherent evidence

Coherence is a property of the body of evidence, rather than of the phenomenon under
investigation (here, the causal link between drug and side effect). Hence, coherence
may involve the concept of consistency seen above and therefore denote 1) a property
of a set of measurements, related to the same investigated parameter, both in the
sense that they all indicate a positive (or a negative) effect, and in the sense that the
strength of the effect size does not exceed statistical variability across studies – this
sort of coherence is generally referred to as consistency of results, and is established
through replication; 2) a property of a set of various pieces of evidence related to the

11The role of evidence about mechanisms of chemical substances in risk assessment has been recently
analysed by Luján et al. (2016). Two issues are particularly relevant for the present purposes: 1) the ques-
tioned applicability of animal data in humans; 2) the lack of guarantee that similarity of modes of action
may warrant extrapolation of phenotypic effects from one chemical to another. Both issues relate to the
problem of extrapolation: the former regard whether a given chemical will produce the same effect in the
study and in the target population; the latter refers to whether similar chemicals produce similar effects
(on a given population). In our framework the problem of extrapolation is addressed with the following in
mind: I. As explained in Section 2.3, in the case of risk assessment the main concern relates to false neg-
atives; hence any signal should be accounted for as a possible sign unveiling latent risks – “If it happened
there, it can also happen here”; II. Warrant for extrapolation is also taken to come in degrees and therefore
is incorporated in a probabilistic approach. This lets the degree of confidence in such warrant guide the
decision at hand in combination with other relevant dimensions (as illustrated in Section 2.2).
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same testable consequence of the hypothesis, investigated through diverse kinds of
methods: methodological robustness or “triangulation” (see Wimsatt 1981; Wimsatt
et al. 2012); 3) a property of a set of pieces of evidence related to diverse testable
consequences of the investigated hypothesis. This latter sense is the less investigated
and accounted for in the methodological literature.

In the epidemiological literature, consistency and coherence are not explicitly
distinguished and evaluation of the latter is left to informal/implicit judgment in
narrative reviews. Instead, the philosophical literature has investigated coherence in
several respects: 1) general epistemology offers “coherentism” as a response to skep-
ticism in alternative to “foundationalism”: according to this view beliefs are justified
by their fitting together in a system, and standing in a relation of mutual support
(BonJour 2010), like the stones of an arc (simul stabunt, simul cadent); 2) formal
epistemology has investigated the confirmatory value of coherence of beliefs, also by
developing various measures of coherence, in the attempt both to formalise its con-
tent and to track its truth-conduciveness; see for example Crupi and Tentori (2014),
Fitelson (2003), Bovens and Hartmann (2003), Dietrich and Moretti (2005), and
Moretti (2007).

As a theoretical virtue, coherence is particularly relevant in a context, such as risk
assessment, where evidence may come from different sources and relate to diverse
levels/dimensions of the suspected causal association between drug and side-effects.

We adopt and adapt such accounts of coherence in order to develop a system
of evidence amalgamation which naturally incorporates coherence as confirmatory,
by virtue of the way the system lets heterogeneous pieces of evidence interact and
thereby jointly contribute to the (dis-)confirmation of the investigated hypothesis.

Support by experiment

The scientific method strongly relies on systematic observation and experiment. In
particular, carefully controlled experiments are considered a privileged way to inquire
nature, in that they ideally allow the scientist to isolate the phenomenon under inves-
tigation from interfering and disturbance factors. More specifically, the systematic
variation of experimental conditions recalls Mills method of eliminative induction
(Mill 1884), in that it allows to see the behaviour of the studied phenomenon in com-
binatorial rearrangement of different circumstances, encoding both methodological
and theoretical assumptions (different “possible worlds”).

However, traditional experiments in physics are very different from experiments
in biology, pharmacology, and medicine (but also sociology and psychology). In
physics, the experiment is meant to test a theory by comparing the observed value and
the value predicted by the theory: statistical significance speaks directly for the the-
ory in that it reflects a small discordance between the two values. In the latter sciences
instead, the tendency has prevailed to test the null hypothesis, that is, the catch-all
complement of the claim that the experiment is supposed to provide evidence for (see
also Meehl 1990).

This has raised various criticisms both addressed against the methodology of
hypothesis testing itself (see for instance Howson and Urbach 2006) as well as con-
cerning the epistemic value of randomised controlled trials in medicine (Cartwright
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2007a; Papineau 1993; Worrall 2007b, 2010; Teira 2011; La Caze et al. 2012). In
the latter case, the charge involves the alleged epistemic virtues of randomisation:12

the exclusive reliance on RCTs for the justification of causal claims is considered to
be wrongheaded for various reasons; both related to the kind of information which
they provide, and to the kind of information which they are not able to incorporate or
account for.

Indeed, whereas classical experiments in physics allow the scientist to observe the
behaviour of the investigated phenomenon in an array of different “possible worlds”
(in different scenarios or under different initial or boundary conditions), and com-
pare systematic differences among such situations, randomisation is blind to such
specific settings. Its outcome is rather to neutralise their effects on the final result, by
creating two populations, one for the treatment and one for the control group, where
the same ”worlds” should be represented in the same proportion. This should guar-
antee that the different results possibly observed at the end of the trial are due to the
treatment and only to it.

Hence randomisation, as a means to isolate the putative cause from other possible
confounding factors, loses much information with regard to the specification of pos-
sibly relevant mediating and interacting causes. However, it provides a much higher
guarantee with respect to confounding than observational studies do. Ceteris paribus,
RCTs fare better in distinguishing spurious from genuine causes.

Since Rubin (1974), the standard conceptualisation of causal claims resulting from
RCTs (and comparative studies) is counterfactual: the “causal effect” is the differ-
ence between what would have happened to the subject, had it been exposed to the
treatment and what would have happened to it, had it been exposed to the control.
Since the subject cannot undergo the same experimental conditions at the same time,
the causal effect is calculated as the average difference of the effects observed in the
group of exposed and the group of unexposed subjects.13

Causality has indeed been analysed in terms of counterfactuals in several respects.
Lewis (1973, 1986, 2000) proposes a possible-worlds semantics for the truth condi-
tions of individual causal claims in terms of counterfactual dependence; Woodward
(2003) identifies necessary and sufficient conditions for causality in terms of invari-
ance under intervention, where his notion of intervention captures the counterfactual

12Randomisation has putatively two main roles: 1) in the long run, it should allow the investigator to
approach the true mean difference between treatment and control group; however it is unclear what this
true underlying population probability denotes when we are dealing not with population of molecules for
instance, but with population of patients undergoing medical interventions, where heterogeneity among
individuals can at most allow for an aggregate average measure. Furthermore, it is obviously unethical
and unfeasible to re-sample the same subjects of an experiment again and again, and even if this were
possible, the subjects who were administered the drug in the first round would undergo physiological
change; consequently, the successive trial population would no longer be the “same” (Worrall 2007a); 2)
randomisation (together with intervention and blinding) should guarantee the internal validity of the study
by severing any common cause, or common effect, between the investigated treatment and its putative
effects (i.e., avoidance of confounders and (self-) selection bias). This kind of objective is supposed to
justify the primary role assigned to randomised evidence by so called evidence hierarchies, see Section 6
below.
13This is also known as the “potential outcome approach” to causal inference.
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gist of causal graphs and structural equation modelling. Finally, Pearl (2000) is
focused on counterfactuals related to potential effects of interventions, and relies
on causal knowledge to predict the effect of such interventions (e.g., policy inter-
ventions). Hence, counterfactuals have different roles in analysing causal claims,
defining causality or using causal knowledge for predicting the effect of interven-
tions. However, they share the intuition that a cause must make some difference to
whether the effects occur or not (holding other variables fixed).

In our framework we identify RCTs as particularly reliable sources of evidence for
the difference-making effect attributed to causes by the philosophical literature; and
we understand difference-making as ideal controlled variance along the concept of
intervention in manipulationist theories of causation. For example, Woodward (2003)
carefully characterises intervention variables for the purpose of testing the hypothe-
sised causal connection between two events X and Y . Figure 5 illustrates the idea:
If the unknown underlying causal connections form a fork (first graph in Fig. 5), the
introduction of a suitably chosen intervention variable I will lift X from the influ-
ence of X and Y ’s common cause and refute the hypothesis that X is a cause of Y

(second graph in Fig. 5). Nevertheless, if I is not chosen well it might indeed lift X

from its parents’ influence but introduce a new dependency between X and Y , lead-
ing to the false conclusion that X causally influences Y (third graph in Fig. 5). In
contrast to Woodward, Pearl (2000) expresses interventions as local surgeries in the
causal model, subjecting X to ideal (external) control by directly setting its value
(qua do(x)), thereby abstracting from the possibility of finding a suitable interven-
tion variable. X is then called a cause of Y if Y ’s value can be varied by varying
X (possibly upon controlling for additional variables in the given situation). We see
our concept of difference-making as closely related to Pearl’s definition of what it
means to be a cause, and accordingly, difference-making will be a perfect indicator
of causation (also see below, Section 5.2).

Support by analogy

Hill briefly mentions reasoning by analogy as additionally contributing to the assess-
ment of the causal claim: if a specific drug is on trial, available evidence of a similar

Fig. 5 Interventions can be used to test the underlying causal structure and learn more about the relation
between event X and Y . Woodward’s interventions require an additional, suitably defined intervention
variable I (overriding causal influence on X, marked by dotted edges), whereas Pearl’s interventions are
expressed as local surgeries in the causal graph
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second drug’s effects might be used for inference about the former. This touches
upon central and notorious epistemological questions: What does it mean to be suf-
ficiently similar in the case under consideration? In what way does the difference
between the first and the second drug influence changes in expected outcome val-
ues? How specific are a drug’s properties? If they are highly specific – to what extent
can this drug be used in an analogical argument, if at all? Although similarity seems
to be a concept difficult to spell out in formal terms,14 the applicability and fruitful-
ness of parallel reasoning is of great interest (see Bartha 2010 and Hesse 1959), and
analogical arguments are employed across disciplines.

Physicists, e.g., transfer abstract structures of analogue reasoning to analogue sim-
ulations with which physical systems (presumedly similar in all relevant aspects) are
tested under syntactic isomorphism (see, e.g., Unruh 2008; Dardashti et al. 2016;
Hesse 1952 for discussions of analogue arguments in physics). Scientific discovery
is oftentimes propelled by analogy, as, e.g., in the nineteenth century, when secured
knowledge about acoustics was employed in the discovery of spectral lines. Guided
by the image of a harmonic oscillator, physicists were able to focus their attention
to groups of spectral lines with specific frequency patterns from the beginning (see
Bartha’s in-depth overview of analogical arguments in Bartha 2013). When coupled
with a suitable theory of confirmation, analogy can finally be used to support a sci-
entific hypothesis where only evidence from an analogue system is obtained (see,
e.g., Hesse 1964 or Poellinger and Beebe 2017). This is of special interest for our
purposes in this paper.

In pharmacology and epidemiology, explanation and prediction by analogy rest
both on sufficiently well-described background conditions and knowledge about the
relevant biological mechanisms at work. Describing all relevant differences between
two drugs might be the first step towards justifying assessment by analogy – the sec-
ond step might then be inference in a unified model where all the relevant differences
are integrated as parameters. Formal models relating different pieces of evidence
can precisely be of help for this task. Once relevant influences are distinguished
from irrelevant ones and the contribution of differences in the relevant factors are
determined, analogy will justifiedly help in identifying causation.

Reasoning by analogy is also at the basis of inductive inferences from study to tar-
get population. Indeed, because of the context sensitivity of many causal associations
in the biological realm, these can hold only in specific populations, and therefore
evidence about causal effects related to one population may not license similar con-
clusions about another population, unless the two population are analogous.

Our framework can be operationalised for the assessment of support by analogy
in two ways:

14David Lewis’ bases his formal account of causation implicitly on the concept of comparative similarity
and concedes the following: “We do make judgments of comparative overall similarity – of people, for
instance – by balancing off many respects of similarity and difference. Often our mutual expectations about
the weighting factors are definite and accurate enough to permit communication. [. . . ] But the vagueness
of over-all similarity will not be entirely resolved. Nor should it be. The vagueness of similarity does infect
causation, and no correct analysis can deny it.” (cf. Lewis 1973, pp. 559–560)
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1. The investigated causal hypothesis D©H (with all of its sub-structure) may
be related to a second causal hypothesis D′©H ′ which has already been con-
firmed in specific previous studies. Now, if scientists have sufficient reason to
propose an analogy relation between D and D′ (e.g., a high degree of chemical
or functional similarity), knowledge about this second causal hypothesis sup-
ports the first hypothesis D©H via analogy (“horizontally” on the same level of
investigation).

2. Since in general no piece of evidence comes from an experiment or a study
conducted on the target population, the question of applicability of the study’s
findings must be phrased in terms of the similarity between study and target
populations: If study and target populations are sufficiently similar, researchers
are licensed to reason about causal links in the target population by analogy with
their test cases. The degree to which this kind of transfer is licensed is encoded
in our framework as an attribute of available reports (see Section 3.3 below for
a discussion of the relevance of evidence and how it “vertically” influences the
assessment of the causal hypothesis).

Relativising the justification of analogue reasoning to a (comparative or numerical)
distance measure (i.e., the similarity between drugs or populations) might of course
be criticised due to the perspectival nature of similarity and relevance. Nevertheless,
once this measure is agreed to be of sufficient strength, our framework can be used
to express the confirmatory dynamics of support by analogy.

3.3 Relevance and reliability

In the literature on (the philosophy or even science of) evidence, we find the idea
that studying the concept of “dimensions” of items of evidence can help address
the notoriously tricky notion of “weight of evidence” (Weed 2005). Schum put for-
ward a substance-blind classification of inferential power of evidence employing the
dimensions: “credibility” and “relevance”, see Schum (2011). To score an item of
evidence on these dimensions one needs to answer the following questions “Can one
believe the reported evidence?” and “How does an item of evidence bear upon the
proposition of interest?”.

In the same line, Roush argues that good evidence for the user has to be “credible”
and “relevant” (see Roush 2005, Chapter 5).

In Cartwright (2008) and Cartwright and Stegenga (2011), Cartwright and Ste-
genga shift the focus to the user of evidence (policy or decision maker). With this
move they make room for a more pragmatic notion of relevance which refers not
only to the confirmatory force of the evidence with respect to the hypothesis under
investigation, but also to whether the evidence acquired in the study may license the
same conclusion in domains/populations which may differ from the study sample
(external validity, extrapolation). We clearly demarcate these distinct notions of rele-
vance by adopting a “relevance dimension”, which refers to external validity issues,
as a notion separate from the standard Bayesian relevance (as paradigmatically mea-
sured by probabilistic dependence). Also we distinguish these from the reliability
dimension.
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Relevance Ideally, pharmacological studies would license the same inferences for
the studied population and the target population of future drug users. In reality, stud-
ies are not conducted on the entire population of future drug users but on a much
smaller number of patients, see Chan and Altman (2005, p. 1180), Button et al.
(2013) for this problem in neuro science, Doll and Peto (1980) in cancer research and
a philosophical discussion of this problem in Worrall (2007a, p. 992). Additionally,
studied populations, in particular in RCTs, often fail to be representative for the tar-
get population due to strict patient inclusion criteria, see Revicki and Frank (1999)
and Upshur (1995, p. 483). Therefore, there is a need to reason by analogy from the
studied population to the population of interest (see Section 3.2.6).15 The relevance
pertaining to an item of evidence measures how well the observed results in a study
population can be transferred to the target population of future drug users.

Reliability The “credibility” dimension of evidence relates to the source which
originates it and the way it has been collected. Bovens & Hartmann, see (Bovens and
Hartmann 2003, Chapter 4), elaborate on “reliability” as an instrument for Bayesian
hypothesis confirmation where it is construed as i) a function of an instrument’s
accuracy or ii) the credibility of testimony.

The sums at stake in drug licensing decision problems are enormous (revenues
of successful drugs can reach billions of dollars within a few years) it is hence not
surprising that vested interests may influence the flow of information. A point in
case for vested interests to playing an inglorious role is the story of “Vioxx”, see
Carné and Cruz (2005), Horton (2004), Jüni et al. (2004), Krumholz et al. (2007), and
Holman and Bruner (2015). The abstract worry that financial conflicts of interests
lead to a “bias in the synthesis and interpretation of scientific evidence” seems to be
not merely abstract, see Bes-Rastrollo et al. (2013) and Dunn et al. (2014). A low
reliability of an item of evidence may be due to a number of methodological flaws
(confounding, biased studies, more broadly: poor design of a study, sub-optimal data
recording) as well as not fully objective sources.

In our framework we shall use variables for every piece of evidence. To every such
variable two further variables pertain, a variable for the relevance and a variable for
the reliability.

4 Modeling scientific inference in Bayesian epistemology

4.1 The Bayesian paradigm

Bayesian epistemology is a current paradigm in the philosophy of science, see
for example Howson and Urbach (2006) and Weisberg (2015). It has two virtues
which are key for us. Firstly, it complies with Carnap’s principle of total evidence

15One particular inference by analogy is that from animal studies/models to a human target population.
In LaFollette and Shanks (1995), it has been argued that animal studies are only good for hypothesis
discovery. We side with Baetu (2016) in thinking that animal studies are one important piece to the puzzle
to predicting drug reactions.
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Fig. 6 Hypothesis testing in the Bayesian framework of Bovens & Hartmann for one single testable
consequence. All necessary parameters of the prior probability are displayed in terms of lower-case letters

(Carnap 1947) which demands that all available evidence is taken into account when
determining probabilities. This is achieved by updating prior probabilities by the
evidence propositions yielding posterior probabilities.

Secondly, it allows for a nuanced assessment of hypotheses after incorporating
all available evidence into the posterior. The degree to which the evidence boosts
(or lowers) the probability of a hypothesis is the (dis-)confirmation the evidence
provides to the hypothesis.16 In Bayesian epistemology, the role of evidence in
(dis-)confirming a hypothesis is thus grounded on a sound methodological bases.

A theoretical framework which allows us to distinguish the different epistemic
levels of the problem at hand, as well as their interaction is presented in Bovens
and Hartmann 2003, Chapter 4). This framework is a model for epistemic dynamics
underpinning scientific inference and it provides a mathematical explanation for it by
labeling nodes with epistemic categories. In Section 5, we will adapt their work for
our purposes of causal inference in pharmacology.

4.2 Scientific hypothesis confirmation according to Bovens & Hartmann

The Bayesian network model of Bovens & Hartmann, presented in (Bovens and
Hartmann 2003), (see (Darwiche 2009; Neapolitan 2003) for introductions to
Bayesian networks) consists of the hypothesis, (some of) its observable conse-
quences, reports on whether theses consequences were born out in experiments and
the reliability of instruments used in these experiments. The graph structure of the

16The reader is referred to the very recent (Crupi and Tentori 2014) which discusses two leading Bayesian
confirmation measures in detail.
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Bayesian network represents conditional independencies between the variables. Con-
ditional probabilities attach to every variable which specify the probability of a
variable given its parents.

The following binary propositional variables are used: A variable HYP where
the intended meaning for Hyp is that “the hypothesis is true”, similarly for vari-
ables Coni (“consequence i holds”), Repi (“consequence i is reported”)17 and Reli
(“report i is reliable”), cf. (Bovens and Hartmann 2003, p. 89). According to the
Bayesian paradigm, a prior probability function P , defined over the algebra gen-
erated by these variables, is selected. Naturally, P is constrained to respect the
conditional independencies encoded by the graph G. Updating the prior P , by condi-
tionalising, then allows Bovens & Hartmann to calculate posterior probabilities given
experimental results.

The set of meaningful conditional probabilistic independencies in prior P can be
read off by means of the graphical d-separation criterion (Pearl 2000). The graph
G in Fig. 6 depicts the situation for one single consequence. The general case
for more consequences is more involved and depicted in Fig. 7. These conditional
independencies – denoted by – are 18

(1)

(2)

(3)

(4)

The choice of prior is further constrained by

P(Coni | Hyp) = pi > qi = P(Coni | ¬Hyp) (5)

P(Repi | Coni, ¬Reli) = P(Repi | ¬Coni, ¬Reli) = ai (6)

P(Repi | Coni, Reli) = 1 (7)

P(Repi | ¬Coni, Reli) = 0. (8)

Bovens & Hartmann take Eq. 5 to be their definition of what it means to be
an observable consequence of a given hypothesis, see Bovens and Hartmann
(2003, p. 90).

Equation 6 refers to the convention that when an instrument is unreliable, then the
probability of receiving a report does not depend on whether the consequence holds.
When the instrument is fully reliable, then the probability of receiving a report that
the consequence has been observed equals one, if the consequence holds; see Eq. 7.
Vice versa, a fully reliable instrument produces a positive report with probability
zero, if the consequence does not hold, see Eq. 8.

They then determine the (posterior) probability of the hypothesis being true, given
a report and its reliability (Bovens and Hartmann 2003, p. 92, Equation 4.5). This

17¬Repi means that “not consequence i is reported” rather than “consequence i is not reported”.
18Where RELi and CONi denote the parent variables of REPi .
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Fig. 7 Evaluating a hypothesis with multiple testable consequences according to Bovens & Hartmann. A
reliability node with multiple children is used for instruments which were used in multiple experiments

probability can be computed directly from the conditional probabilities specified at
the nodes in the Bayesian network. The comparison of prior and posterior probability
is at the heart of Bayesian confirmation theory.

The rationale for arranging the theoretical layer (HYP , CON) and the empiri-
cal/methodological layer (REP , REL) in the proposed way is summarised in the
following:

1. Testable consequences of the hypothesis are inserted as intermediate nodes
between the HYP -node and the report nodes: HYP ⊥⊥ REPi | CONi for
all i. According to Bovens & Hartmann, this formally captures the fact that
the hypothesis cannot be tested directly, only observable consequences of the
hypothesis are testable (cf. Bovens and Hartmann 2003, p. 89).

2. All consequence nodes (together with their respective descendants) are con-
ditionally independent given HYP : REPi ⊥⊥ REPj | HYP for all i, j with
i �= j . This models the situation where a range of consequences can be assessed
by multiple independent tests (see the left portion of Fig. 7 and cf. Bovens and
Hartmann 2003, p. 98). If, however, the dependence of studies or tests is to be
marked in the structure, one REL node might also have more than one REP

node as a child, thereby creating dependency between reports (see the right
portion of Fig. 7).

3. All Rel nodes are unconditionally independent of their non-descendants. That
means: RELi ⊥⊥ nonDesc(RELi) for all i; i.e., in the case of all reports being
independent we have RELi ⊥⊥ HYP for all i (with i indicating a report for
the i-th consequence). This independence formalises the assumption that from
learning something about the reliability of a report we cannot infer anything
about the truth (or falsity) of the hypothesis (cf. Bovens and Hartmann 2003,
p. 58).



Euro Jnl Phil Sci (2018) 8:3–49 29

4.3 Virtues of the Bovens & Hartmann approach

Probabilistic networks have found wide-spread use in applications in a great number
of domains including medicine (e.g., differential diagnosis). These networks imple-
ment knowledge from a very specific domain and nodes generally represent concrete
phenomena or entities of interest.

Bovens & Hartmann draw on this formal apparatus to abstractly model scientific
inference and to formally relate higher level epistemic categories. While the mathe-
matics do not change, the graph provides an illustration of the epistemic dimensions
at stake and thereby provides greater insight into some methodological issues by
offering, as it were, a mathematical explanation of their dynamics. Indeed, this sort of
representation allows us to single out in the mathematical formulae the specific role
played by each epistemic dimension in the inferential dynamics; e.g., the role of reli-
ability with respect to the propagation of confirmation in connection with replication
of studies and with heterogenous sources of evidence (see Section 3.2.2).

5 A framework for the assessment of harms in pharmacology, part 2:
structure

5.1 Graphical representation – variables and intended interpretations

For the purpose of developing our Bayes net model of pharmacological inference, our
main interest is determining rational degrees of belief in the causal hypothesis “Drug
D causes harm H in population U”. For ease and clarity of exposition, we here use
a binary propositional variable. We hence introduce a variable © with the intended
meaning of © = T RUE is that: “Drug D causes harm H in U”.

As outlined in Section 3, we take it that rational belief in the causal hypoth-
esis is based on causal indicators: difference-making, probabilistic dependence,
dose-response relationship, mechanisms etc. We use binary propositional indicator
variables INDi (i ∈ {1, 2, 3, 4, ...}) with IND1 = �, IND2 = PD, IND3 =
DR, IND4 = RoG, IND5 = M, IND6 = T (difference-making, probabilistic
dependence, dose-response relationship, rate of growth, mechanisms and temporality,
respectively) and possibly further variables for causal indication INDk . Indi means
that the i-th consequence of the causal hypothesis holds.

For every item of evidence r and every causal indicator i the item of evidence
informs us about, we use a report variable REP i

r .19 Reports may come from various

kinds of studies such as case reports,20 case series, case-control studies and cohort

19Superscripts are suppressed in the notation, whenever no confusion arises.
20Case reports may contribute in two main different ways to harm assessment: 1) the first one(s) contribute
to hypothesis generation: they function as alarm signals by identifying identify a previously unknown
side effect; 2) following these hypothesis generation events, the subsequent case reports contribute to
“strengthen” the signals, i.e., they have a confirmatory role, analogously to compared studies and other
statistical evidence as illustrated in this paper. Other kinds of studies may also function as generators of
hypotheses of course, but this role is mainly covered by case reports.
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studies; or from experiments at various levels: in vitro, in vivo and clinical studies.
Relevant evidence may also come from knowledge discovery techniques as well as
computational modeling. The meaning of Repi

r is that the item of evidence is con-
sistent with the causal indicator for a population for which the studied population is
representative.

We use two further variables for relevance and reliability for report variables
in order to account for these two dimensions of the evidence and their role in
(dis)confirming the investigated hypothesis (cf. Section 3.3).

5.2 Probabilistic independencies

By borrowing the quite general reconstruction of scientific inference from Bovens &
Hartmann we import their direct and indirect probabilistic dependencies and condi-
tional independencies (see our summary of the relevant independencies from Bovens
and Hartmann (2003) in Section 4.2e). Beyond that, our choice of causal indicators
and subsequently their formalisation as variables (i.e., nodes in the graph) requires
us to make the theoretical, implicatory dependencies transparent by expressing them
as links in the network. The following list motivates our modeling choices for the
formalisation of the conceptually related indicators RoG, PD, DR, and �:

Fig. 8 Graph structure of the Bayesian network for two reports and epistemic categories
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Fig. 9 Graph of the Bayesian network with one report for every causal indicator variable. The dots
indicate that there might be further indicators of causality not considered here

1. We model the implication relations between the four indicators as edges on the
second level of our network: the detection of a high rate of growth implies a dose-
response relationship which in turn means that the variables under consideration
are probabilistically dependent.

Note that the edges on the second level are not a superfluous addition: If
probabilistic dependence is measured but the causal hypothesis is known to be
false (i.e., © is fixed to FALSE), the variables PD, DR, and RoG remain
dependent since they overlap conceptually. Inserting direct edges on the second
level precisely expresses this overlap. The categorical independence between
the hypothesis level and the indicator level becomes apparent in this structure:
PD, DR, and RoG are not dependent via the © node, but directly linked to one
another on the indicator level.

2. No direct edge links RoG and PD since an observed high rate of growth implies
an observed dose-response which implies an observed probabilistic dependence
in turn and mediates the inference from RoG to PD (in other words, DR screens
off PD from RoG).

3. Our choice to not insert an edge between DR, RoG, PD and � reflects
our intention to clearly demarcate the conceptual/methodological dividing line
between observational/static and interventional/dynamic support for the causal
hypothesis: © screens off � from the observational/static indicators.21 And
formally: . This principled distinction is already laid
out in Hume’s famous twofold definition of causation which can be seen as a

21By ‘observational/static’ we refer to inference from observation alone, whereas by ‘interven-
tional/dynamic’ we refer to inference from data collected in interaction with the investigated system or
population. For example, this contrast becomes evident in the difference between standard probabilistic
conditioning (which amounts to shifting the focus in a probabilistic model) and conditioning with Pearl’s
do-operator (which amounts to transforming the probabilistic model).



32 Euro Jnl Phil Sci (2018) 8:3–49

Fig. 10 Example of a Bayesian net for two studies which both inform us about two indicators. The study
generating reports for difference making and probabilistic dependence may be an RCT, while the study
generating the two reports on the right may be a case control study. For both studies, we use one reliability
and one relevance variable each

point of reference both for regularity/supervenience as well as for counterfac-
tual/manipulationist theories of causation (cf. Hume 1748, Sec. VII). Finally, all
indicators listed above are imperfect ones, except for difference-making. Nev-
ertheless, we are not collapsing � and © into a single node: Following the
philosophical literature on causality, we consider that when a difference-making
relationship between two events or variables holds, then this is a sufficient –
although not necessary – condition for causality. This can be characterized in
logical terms as an entailment relationship: � ⊃ ©. Hence, in our system, the
probability of a causal relationship, given a genuine difference making relation-
ship is 1: P(© | �) = 1. The inverse entailment, © ⊃ �, does not hold however.
Although � – representing the possibility of ideal controlled variance – implies
© in a definitional way, knowledge of © does not necessitate the existence
difference-making – e.g., in cases of “holistic causation”.22

22The latter case makes the conceptual divide even more obvious: If one knows the hypothesis to be true,
learning that there is no difference-making would not change one’s belief in a positive dose-response.
In this case the causal relation under investigation would then be explained as holistic causation. We are
thankful to an anonymous reviewer for pointing this case out to us.
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Note also that we are purposely choosing to direct the edge between © and M

towards M: We understand the existence of a mechanism as a testable consequence
of the causal hypothesis, i.e., as a constitutive element of © rather than a pre-requisite
(or even somehow causally prior) – in accordance with all other indicator nodes.23

The Figs. 8–10 graphically represent aspects of the graph of our Bayesian net-
work. Figure 8 displays epistemic dimensions at stake, Fig. 9 shows the causal
indicators, their reciprocal relations, and the studies which inform us about single
indicators. Figure 10 depicts a case in which studies are informative about more than
one indicator.

5.3 Adopting a prior

Success of Bayesian reasoning hinges on the choice of a suitable prior. Incorporating
domain knowledge plays a major role in the choice of a prior. Domain knowledge
may be elicited from experts.24

While the prior has to satisfy the conditional independences discussed above and
incorporate prior domain knowledge, there are further properties in the problem
specification that a sensible prior has to satisfy; which we shall now discuss.

P(©) ≤ P(©|Ind) for all indicator variables (9)

P(©) > P (©|¬Ind) for all indicator variables (10)

P(©|Indi&Indk) ≥ P(©|Indi) for all i �= k (11)

P(©|Indi&¬Indk) ≤ P(©|Indi) for all i �= k (12)

P(©|�), P (©|DR) > P(©|PD) (13)

P(©|¬PD) ≤ P(©|¬DR), P (©|¬RoG) (14)

P(Indi |Repi&Rlvi&Reli) > P (Indi) for all i (15)

P(¬Rep|¬(Rel&Rlv)&Ind) > P (¬Rep|Ind). (16)

In Eq. 16 all report, reliability and relevance variables pertain to the same indicator
variable.

Equation 9 means that the conditioning on one causal indicator boosts the belief
in the causal hypothesis being true, while Eq. 10 means that conditioning on the
negation of an indicator lowers the belief in the causal hypothesis. Similarly, the
same holds in the presence of another instantiated indicator, see Eqs. 11 and 12.
Equations 13 and 14 express that probabilistic dependence is a weaker causal indi-
cator than difference-making or high rate of growth. Consequently, conditioning on

23We are thankful to an anonymous reviewer for hinting at sources of potential disagreement about the
role of mechanistic knowledge and thus helping us elucidate our point here. For a discussion of different
network structures and their use for hypothesis confirmation see, e.g., Wheeler and Scheines (2013).
24Elicitations of parts of priors from experts in a medical context has recently been reviewed in Johnson
et al. (2010). Determination of prior distributions combining expert opinion with historical data is reported
in Hampson et al. (2014, Section 4).
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difference-making, dose-response relationship, or high rate of growth gives a greater
boost to the belief in the causal hypothesis than probabilistic dependence. Vice
versa, conditioning on the negation of probabilistic dependence reduces belief in the
causal hypothesis more strongly than conditioning on the negation of a dose-response
relationship or high rate of growth.

One reliable study, which is reliable and relevant for the target population, and
finds that, say, there is probabilistic dependence between the drug an adverse drug
reactions, significantly boosts the belief that there is probabilistic dependence in the
target population; (15).

Equation 16 formalises the following thought: Belief in the inconsistency of
a report and the respective indicator is boosted if the study is either irrelevant,
unreliable, or both (¬(Rel&Rlv) serves to explain the inconsistency).

5.4 Two model calculations

We now illustrate how to use our model by giving two example calculations. First,
we show how to decide between withdrawing the drug or not. Secondly, we show
how the posterior weight of an item of evidence that conflicts with a large consistent
body of evidence decreases.

5.4.1 The threshold p∗

With the prior in place, we can now investigate conditions under which we will
recommend to withdraw the drug D by calculating the threshold p∗.

We find for a pair of distinct indicator variables INDj , INDk �= � which are not
linked by an arrow

P(©|Indj &¬Indk) = P(©&Indj &¬Indk)

P (Indj &¬Indk)

= P(©&Indj &¬Indk)

P (Indj &¬Indk&©) + P(Indj &¬Indk&¬©)

= P(©&Indj &¬Indk)

P (Indj &¬Indk&©) + P(Indj &¬Indk&¬©)
.

Letting a, b ∈ [0, 1]
a := P(©&Indj &¬Indk) = P(Indj |©) · P(¬Indk|©) · P(©)

b := P(¬©&Indj &¬Indk) = P(Indj |¬©) · P(¬Indk|¬©) · P(¬©)

we obtain

P(©|Indj &¬Indk) = a

a + b
.

For fixed a, a
a+b

is a strictly decreasing function in b; if a = 0, then a
a+b

= 0 (as long
as b �= 0 in which case the fraction is ill-defined), if a = 1, then a

a+b
varies between

1 and 0.5. For fixed b > 0, a
a+b

increases strictly with increasing a. If b = 0, then
a

a+b
= 1 (assuming a �= 0), if b = 1, then a

a+b
varies between 0 and 0.5.
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For the threshold p∗ given by the decision problem (p∗ = P(©|Indj &¬Indk)),
we can compute the threshold value a∗ for for fixed b (and vice versa) as follows
(assuming we never divide by zero):

a∗ = b · p∗

1 − p∗ b∗ = a · 1 − p∗

p∗ .

Fig. 11 Plot of probability P(©|Indj &¬Indk) in dependence of a and b. Contour lines are displayed in
the a − b-plane
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Fig. 12 Posterior probability of ¬� in dependence of c, d

For fixed b, if a > a∗, then our belief in the causal hypothesis, D©H , is too great
to recommend the drug for use. For fixed a, if b > b∗, then our belief in the causal
hypothesis, D©H , is low enough to recommend the drug for use.

The posterior probability P(©|Indj &¬Indk) and the contour lines are plotted

in Fig. 11. The contour lines a∗ = b · p∗
1−p∗ and b∗ = a · 1−p∗

p∗ are linear curves
which would intersect at the origin of the a −b-plane, if they were defined there. The
clustering of the contour lines near the origin indicates that small changes in a or b,
if a and b are small, can have a large effect on a

a+b
, on the probability of D©H and

hence easily change the recommended action.

5.4.2 Dynamics

Conflicting reports are a fact of life in pharmacological inference. We here show
that a report which conflicts with all other reports – which speak to the same causal
indicator – has high posterior probability that it is not reliable or not relevant or both,
given that the conflicting report comes from an independent source.

Let REPj for j ∈ {0, 1, . . . , N} all concern indicator INDk be such that report
zero says that the Study 0 is inconsistent with the causal indicator INDk while all
other reports say that the observations are consistent with the causal indicator INDk .
Denote the proposition which captures the evidence other than the evidence obtained
by Study 0 by

ρ :=
N∧

j=1

Repj &Relj &Rlvj .
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Denoting by � := Rel0&Rlv0 we now compute the posterior probability of
¬�, that is, the posterior probability that either Study 0 is unreliable, irrelevant
or both. In mathematical prose, the above-mentioned independence is expressed as
P(ρ&¬�&¬Rep0|Indk) = P(ρ|Indk) · P(¬�&¬Rep0|Indk).

Since P(ρ&¬Indk) is very close to zero we find

Pposterior (¬�) = P(¬�|¬Rep0&ρ)

= P(¬�&¬Rep0&ρ&Indk) + P(¬�&¬Rep0&ρ&¬Indk)

P (¬Rep0&ρ)

≥ P(¬�&¬Rep0&ρ&Indk)

P (¬Rep0&ρ)

= P(Indk)P (¬�&¬Rep0|Indk)P (ρ|Indk)

P (¬Rep0&ρ&Indk) + P(¬Rep0&ρ&¬Indk)

= P(Indk)P (¬�&¬Rep0|Indk)P (ρ|Indk)

P (Indk)P (¬Rep0|Indk)P (ρ|Indk) + P(¬Indk)P (¬Rep0|¬Indk)P (ρ|¬Indk)

≈ P(Indk)P (¬�&¬Rep0|Indk)P (ρ|Indk)

P (Indk)P (¬Rep0|Indk)P (ρ|Indk)

= P(¬�&¬Rep0|Indk)

P (¬Rep0|Indk)

= P(¬�&¬Rep0&Indk)

P (¬Rep0&Indk)

= P(¬�|¬Rep0&Indk).

The posterior probability of � being false is boosted the larger c = P

(¬�&¬Rep0&Indk) is compared to d = P(¬Rep0&Indk) as depicted in Fig. 12.
For a body of evidence consistent with, say, probabilistic dependence, and a report
which does not report a probabilistic dependence between drug and harms it is a
priori (highly) likely, that this report is either not reliable or not relevant or both.

6 Conclusions

6.1 Summary

The here proposed Bayesian network allows the amalgamation of various pieces of
evidence from heterogeneous sources and methods and providing an overall estimate
of the causal hypothesis. In particular, our approach

i) identifies possible indicators of causality on the basis of the methodological
and philosophical literature on causality, evidence, and causal inference;

ii) embeds them in a topological framework of probabilistic dependencies and
independencies grounded in assumptions regarding their reciprocal epistemic
interconnections;

iii) weakly orders some of these probabilistic dependencies as a function of their
inferential strength with respect to the confirmation of causal hypotheses.
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For this, we have adopted Bovens and Hartmann (2003) proposal to use Bayesian
confirmation theory in order to account for (and mathematically explain) some
phenomena related to scientific inference; such as the confirmatory power of the
coherence of the body of evidence, the epistemic interaction of consistency of mea-
surements and reliability of information sources, as well as the modular contribution
of different “lines of evidence” related to diverse observable consequences of the
investigated hypothesis. We have adapted this framework to situations of causal
inference and consequently specified a concrete structure for that purpose. We have
then illustrated its epistemic and heuristic virtues as an instrument for evidence
amalgamation, in the context of causal inference of drug-induced harm.

Our approach thereby satisfies the desiderata listed at the end of Section 2.2:
probabilistic hypothesis confirmation, incorporation of heterogeneous kinds of data,
facilitation of diverse types of inferential patterns (more on this on future work below)
with a particular focus on causal assessment in pharmacology.

6.2 Discussion

6.2.1 Limitations

Our model, as well as every other model, is a simplification of the phenomenon of
interest which entails a regrettable but unavoidable loss of information. One simpli-
fication was the use of binary propositional variables which stands in tension with
concepts such as probabilistic dependence and rate of growth which clearly come in
degrees. For the sake of simple exposition and tractable calculation, we made this
simplification. Nothing hinges on this, the machinery of Bayesian networks can be
applied to non-binary variables in the same manner. In general, the more information
available the stronger the need for variables with more values.

Furthermore, we have limited the model to indicators of causality in pharmacology
which derive from Hill’s guidelines. We freely admitted in Section 3.2 that there may
be further indicators. No suggestion is made here that all these further indicators can
be accounted for in the model; in the outlook below we talk about a relevant inference
which cannot be drawn within our model.

6.2.2 Virtues and context

Pragmatically, the here presented model has the virtue of being computationally
simple in the following sense. Defining prior probabilities on rich structures can be a
hard practical problem. A graphical representation of the conditional independencies
in terms of the graph of Bayesian network allows one to specify the full prior by
specifying all conditional probabilities at the variables. For a relatively sparse graph
such as ours (the number of parents of every variable is at most three), specifying
all conditional probabilities requires far less input than specifying the full prior by
assigning probabilities to all states.

With respect to other proposals for evidence evaluation and causal assessment, our
approach has the following virtues:
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1. Our method accommodates many – sometimes only apparently contrasting –
intuitions already expressed by philosophers of medicine regarding standard
approaches to evidence evaluation.

2. Our method allows for many inferential patterns to contribute to the overall
causal assessment of drug-induced harm (coherence, consistency, reasoning by
analogy, etc.) and explicitly (as well as formally) accommodates these patterns
in the belief propagation network.

We think that our framework can help with the first point for the following reasons:
1) by breaking down the evidential line between pieces of evidence and causality
into a two-stage process mediated by causal indicators, we help disentangle philo-
sophical issues related to the conceptualisation of causality from those related to
causal inference and diagnostics. We believe that some disputes among philosophers
and methodologists may be solved by keeping these levels as distinct; 2) our frame-
work aims to probabilistic causal assessment, hence bypasses problems generated
by accounts that aim to establish causal claims categorically; 3) we reserve separate
nodes for relevance and reliability issues, which also generate much discussion in the
methodological literature, and are at the root of concerns about the value of one kind
of evidence rather than the other.

Most of the debate revolves around the prominence of randomized clinical trials in
Evidence Based Medicine vs. the opposing view that other forms of evidence are also
necessary/important for the purpose of causal assessment, for various reasons. Speak-
ing in our terms, the implicit assumptions underpinning the EBM viewpoint is that
ideal RCTs (that is internally valid ones) are perfect indicators of difference making,
and difference making is a perfect indicator of causality. This can be represented in
logical terms as an entailment relationship: RCT ⊃ � ⊃ ©. Various objections have
been raised against these assumptions from the pluralists side, however the debate
conflates the two inclusion relationships into one: that is, what is discussed is whether
RCTs provide perfect information for causality (directly): RCT ⊃ ©.

We present here how our framework can accommodate intuitions coming from
both sides of the dispute, by considering five specific issues: the EBM vs. pluralist
approach to causal inference, evidence hierarchies, causal holism, relevance (external
validity), and reliability. These issues also show how our framework provides a higher
order perspective on these debates by effectively embedding these various epistemic
dimensions in a concrete topology.

6.2.3 Causal indicators: EBM vs. pluralists debate

By privileging the role of RCTs for the purpose of establishing causal claims, the
EBM paradigm implicitly takes difference making as a perfect indicator for causality
(� ⊃ ©)25, and the other indicators as very weak ones; hence it concentrates its
efforts on having as reliable as possible evidence for that kind of indicator.

25This directly derives from the potential outcome approach underpinning RCT methodology. See Holland
(1986), Rubin (2011), and Vandenbroucke et al. (2016) for a critical appraisal of this approach.
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The contending view is that different indicators may have complementary epis-
temic roles in supporting the hypothesis of causality. This is held for instance
by the “new mechanists” (henceforth the “Kentians”), led (among others) by Jon
Williamson. For instance, Clarke et al. (2014) claim that evidence about dif-
ference making helps in de-masking causes which might be canceled out by
back-up/compensatory mechanisms in the organ system, whereas evidence about
mechanisms is needed in order to design and interpret statistical studies. Hence, such
different kinds of evidence reciprocally support each other and jointly (dis-)confirm
the causal claim under investigation. This proposal stems from Russo and Williamson
(2007), where both statistical evidence at the phenotypic/population level and evi-
dence about (molecular-cellular) mechanisms is required to establish causal claims
(hence, they are jointly necessary and sufficient to establish causality).

Howick expresses the opposing view that: “There are many cases where patient-
relevant effects of medical therapies have been established by comparative clinical
studies alone.” (Howick 2011, p. 939).

In our terms we can take Howick to hold the view that P(© | �) is 1, and that ideal
RCTs provide strong evidence for �, P(� | RCT ) ≈ 1 hence offering strong enough
evidence to establish the causal claim, while for the Kentians P(© | �) is too small
to establish the causal claim. For them, also having mechanistic evidence is required
to establish the causal claim: P(© | �&M) ≈ 1.

Our framework allows for RCT ⊃ � ⊃ © to hold, but the entailment relationship
between RCTs and � is one between ideal RCTs and �. Hence in any concrete case
P(�|RCT) < 1, and this leaves room for other kinds of evidence to also contribute
to hypothesis confirmation. On the other side, our approach relaxes the Kentian the-
ory by dropping any necessity or sufficiency requirements for causal inference. This
approach is therefore much more flexible and responds both to the EBM intuition
underpinning the privileged role assigned to RCTs, as well as to the pluralist intuition
that various kinds of evidence are contributory to causal assessment.

6.2.4 Evidence hierarchies

In relation to evidence hierarchies – which is a strong point of contention among
philosophers of medicine and methodologists – our inequalities (13), (14), nicely
parallel the ranking proposed there.

Evidence hierarchies have been developed as a decision tool to help clinicians
pressed by time constraints, to integrate their clinical expertise with evidence coming
from basic and clinical research (Guyatt et al. 1992; Sackett et al. 1996; Straus and
McAlister 2000). In these rankings, randomised studies are ceteris paribus preferred
to non-randomised studies.26 However, also the strength of the effect magnitude

26The rationale for this ranking is provided by methodological-foundational considerations mainly devel-
oped within standard statistics and follow a kind of hypothetico-deductive approach to scientific inference
(see also our comments on Experiment above, Page 19).
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and dose-response gradient are considered essential features in evaluating evidence
(Howick 2011; Glasziou et al. 2007). Hence, our inequality constraints mirror the
categorical ordering recommended in such hierarchies.

What differentiates our framework from standard evidence rankings however is
that these have predominantly been formalised as lexicographic decision rules. This
means that higher-level studies trump lower-level ones: when two studies of different
levels deliver contradictory findings, then the one higher in the evidence hierarchy
is considered more reliable and one is allowed to discard the lower level one.27 Our
framework incapsulates the rationale for ranking evidence in Eqs. 13 and 14 but at
the same time allows one to take into account all evidence, and to act accordingly, as
soon as the probability of the causal hypothesis goes above the threshold established
by the other dimensions of the decision (utility of withdrawing/not withdrawing the
drug, conditional on the probability of it causing the suspected harm).28

6.2.5 Causal interaction and causal holism vs. modularity

Methodological pluralists such as Cartwright (Cartwright and Stegenga 2011;
Cartwright 2007a), and Stegenga (2014), among others, express concerns against the
privileged role of RCTs also on grounds that classical ‘linear’ approaches to causal
inference cannot do justice to the complexity of causal phenomena in the biological
and social sciences, characterized by nonlinear causation and causal interactions. In
the same line, also modular conceptualization of causes such as the ones implied in
the causal graph methodology developed by Pearl (2000) and Glymour (Spirtes et al.
2000) and colleagues (see also Woodward 2003), are under attack for failing to rec-
ognize that causes may be holistic and therefore may be not adequately captured by
a difference making account.

Strictly speaking this sort of criticism does not deny that � ⊃ ©, but only denies
the reverse: © ⊃ �. However, in the causal graph literature the defining features for
causality jointly entail that � ⇔ © . We contribute to the debate by not collapsing �

and © into a single node.
We consider that when a difference-making relationship between two events or

variables holds, then this is a sufficient – although not necessary – condition for
causality. This can be characterized in logical terms as an entailment relationship:
� ⊃ ©. Hence, in our system, the probability of a causal relationship, given a genuine
difference making relationship is 1: P(© | �) = 1. The inverse entailment though,
© ⊃ �, does not hold: although � – representing the possibility of ideal controlled

27A somewhat unwanted consequence of this “take the best” approach is that it has become commonplace
to assume an uncommitted attitude towards observed associations least they are “proved” by gold standard
evidence (see the still ongoing debate on the possible causal association between paracetamol and asthma;
(Shaheen et al. 2000; Eneli et al. 2005; Shaheen et al. 2008; Henderson and Shaheen 2013; Allmers et al.
2009; McBride 2011; Heintze and Petersen 2013; Martinez-Gimeno and Garcı́a-Marcos 2013)).
28This also complies with the precautionary principle in risk assessment and with how decisions should
be made in health settings (see Section 2.2).
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variance – implies © in a definitional way, knowledge of © does not necessitate the
existence difference-making – e.g., in cases of “holistic causation”.29

6.2.6 Relevance

The ‘Kentians’ also maintain that a sample which is small compared to the target pop-
ulation on its own is not sufficient to license causal claims about the target population
(problem of external validity). Hence, evidence that there exists some mechanism
responsible for the phenomenon in the observed sample which is also present in the
target population is required, cf. Russo and Williamson (2007), This is also a point
stressed by Cartwright (Cartwright and Stegenga 2011).30 We formally distinguish
the role of evidence of mechanisms for the purpose of causal assessment from its role
for the purpose of establishing external validity by associating the latter to our rele-
vance node RLV . This allows to explicitly distinguish the different kinds of inductive
risk involved in the inference: 1) an inductive leap from causal indicator (be it corre-
lation or mechanistic evidence) to causality, 2) another one from inferring causality
in a given population/model to establishing it in another population/model (see also
Poellinger 2017). More importantly, adding a relevance node to the evidence reports
allows for even highly reliable RCTs to provide little evidential support if they are
not considered to be relevant.

6.2.7 Reliability

A pragmatic defence of RCTs, which nevertheless acknowledges their methodolog-
ical limitations can be found in La Caze et al. (2012), La Caze (2009), and Teira
(2011). While La Caze provides reasons to privilege RCTs over non-randomised
studies in terms of reliability and computational tractability, Teira analyses the issue
within the perspective of strategic behaviour and regulatory constraints (see also
Teira and Reiss 2013). Teira acknowledges the methodological limitations attributed
to RCTs by philosophers of science, however, he goes on, randomisation ”is still
a warrant that the allocation was not done on purpose with a view to promoting
somebody’s interests”. Thus, he explains the success of RCTs in regulatory proto-
cols for market approval of pharmaceutical products on grounds that they guarantee
impartiality. Randomization serves the purpose to avoid that the uncertainty related
to causal inference be advantageously exploited by one party or the other. By intro-
ducing a reliability node REL, and thereby breaking up the different dimensions of
evidence (strength, relevance, reliability) we allow for them to be explicitly tracked

29This also responds to concerns expressed in Cartwright (2007b), Mumford S. and Anjum (2011), Anjum
and Mumford (2012), and Kerry et al. (2012).
30Both the Kentians and Cartwright construe the term “mechanism” in slightly different fashion than we
did here. For them, a mechanism need not be described on the (sub-)molecular level. This detail is not
relevant for our current discussion.
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in the body of evidence. This makes it possible to parcel out the strength of evidence
from the method with which it was obtained.31

6.2.8 Higher order perspective on the methodological debate

Furthermore, the Bayesian network and its nodes – representing epistemic categories
(relevance, reliability, various causal indicators, etc.) – provide us with a greater
insight into the philosophical dissent around EBM. For instance whereas Worral’s
criticism, see Worrall (2007a, 2010) against the privilege accorded to RCTs for causal
inference in EBM insists on questioning their high reliability, Cartwright’s view
(Cartwright and Stegenga 2011) is that they provide very limited information on the
effect of the intervention in other populations than the study population (“external
validity”). Hence, these criticisms address different nodes in the causal inference,
although they regard the same study type. With this, our framework provides a higher
order perspective on these debates by effectively embedding these various epistemic
dimensions in a concrete topology.32

This leads us directly to our second point: our approach allows for the integration
of various kinds of evidence through various types of inferential strategies, in accor-
dance with more general concerns expressed by pluralists. Stegenga, for instance,
explicitly mentions Hill’s viewpoint on causal inference and claims that: “a plural-
ity of reasoning strategies appealed to by the epidemiologist Sir Bradford Hill is a
superior strategy for assessing a large volume and diversity of evidence” (Stegenga
2011) (emphasis added). Indeed, the framework presented here also provides a fruit-
ful platform for integrating insights developed in the philosophy of science around
such topics as the role of replication in assessing the reliability of evidence (Open
Science Collaboration 2015; Meehl 1990; Lamal 1990; Hempel 1968; Platt 1964),
as well as the confirmatory role of explanatory power (McGrew 2003; Crupi et al.
2013; Cohen 2016; Lipton 2003) and coherence (Dietrich and Moretti 2005; Moretti
2007; Wheeler and Scheines 2013; Fitelson 2003; Bovens and Hartmann 2003).

6.3 Outlook

We are engaged in two avenues of further research: Firstly, we are interested in vali-
dating our framework through applications through three case studies and computer
simulations. Likely case studies are: i) the ongoing debate on the possible causal
association between Paracetamol and asthma; ii) integration of mechanistic and sta-
tistical evidence in the Torcetrapib case; iii) the role of causal interaction and safety
in the Terfenadine case.

31Osimani and Landes (Forthcoming) investigates the various concepts of reliability involved in such
considerations.
32Moreover, our approach addresses explicitly the issue of external validity by formally incorporating
reasoning by analogy (see Section 3.2.6).
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This paper focuses on inference within one model, rooting in one hypothesis, but
our framework allows for going beyond the network’s limits and for embedding it in
an even larger network to trace the hypothesis’ relation with other potentially con-
curring hypotheses. The mechanics of Bayesian epistemology are flexible enough to
permit such an augmentation for the purposes of tracing further inference patterns.
To give one prominent example: in the current debate, the No Alternative Argument
(NAA) is discussed as lending valid confirmatory support to a specific hypothesis
through the absence of a better candidate (also see the comments on safety assess-
ment by the FDA in Food Drug Administration (2009, p. 5). Our initial decision to
employ the Bayes net framework in the pharmacological context comes to fruition
once more when we insert networks like Fig. 9 in highly expressive NAA meta-
structures (as suggested, e.g., by Dawid, Hartmann, and Sprenger in Dawid et al.
2015) for justifying a working hypothesis when no available evidence adjudicates
conclusively. We leave this for another paper.
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M., & Rédei, M. (Eds.) EPSA Philosophical issues in science: Launch of the European Philosophy of
Science Association (pp. 289–301). doi:10.1007/978-90-481-3252-2 27.

Xie, L., Li, J., Xie, L., & Bourne, P. (2009). Drug discovery using chemical systems biology: identifi-
cation of the protein-ligand binding network to explain the side effects of CETP inhibitors. PLos
Computational Biology, 5(5), 1–12. doi:10.1371/journal.pcbi.1000387.

http://dx.doi.org/10.1353/pbm.2005.0098
http://dx.doi.org/10.1093/ije/dyv341
http://www.jstor.org/stable/20620058
http://www.jstor.org/stable/20620058
http://dx.doi.org/10.1111/cea.12410
http://www.jstor.org/stable/23334188
http://dx.doi.org/10.1111/j.1539-6924.2005.00699.x
http://dx.doi.org/10.1007/s10992-015-9363-9
http://dx.doi.org/10.1093/mind/fzt019
http://dx.doi.org/10.1007/978-94-007-2759-5_2
http://dx.doi.org/10.1080/13501780600733376
http://dx.doi.org/10.1007/s10539-010-9200-z
http://dx.doi.org/10.1111/j.1747-9991.2007.00106.x
http://dx.doi.org/10.1093/bjps/axm024
http://dx.doi.org/10.1007/978-90-481-3252-2_27
http://dx.doi.org/10.1371/journal.pcbi.1000387

	Epistemology of causal inference in pharmacology
	Abstract
	Introduction: causal inference in pharmacology
	Efficacy and safety assessments in pharmacology
	Why standards ought not be the same
	The decision problem

	A framework for the assessment of harms in pharmacology, part 1: relata
	Causal indicators
	Philosophical underpinnings of various indicators of causality
	Strength of association
	Consistency
	Specificity: quantitative and qualitative versions
	Temporal order, distance, and duration
	Biological gradients and dose-response models
	Inferential patterns


	Plausibility of the Biological Mechanism
	Coherent evidence
	Support by experiment
	Support by analogy
	Relevance and reliability

	Modeling scientific inference in Bayesian epistemology
	The Bayesian paradigm
	Scientific hypothesis confirmation according to Bovens & Hartmann
	Virtues of the Bovens & Hartmann approach

	A framework for the assessment of harms in pharmacology, part 2: structure
	Graphical representation – variables and intended interpretations
	Probabilistic independencies
	Adopting a prior
	Two model calculations
	The threshold p*
	Dynamics


	Conclusions
	Summary
	Discussion
	Limitations
	Virtues and context
	Causal indicators: EBM vs. pluralists debate
	Evidence hierarchies
	Causal interaction and causal holism vs. modularity
	Relevance
	Reliability
	Higher order perspective on the methodological debate

	Outlook

	Acknowledgments
	References


