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Abstract There is a great deal of justified concern about continuity through scientific
theory change. Our thesis is that, particularly in physics, such continuity can be
appropriately captured at the level of conceptual frameworks (the level above the
theories themselves) using conceptual space models. Indeed, we contend that the
conceptual spaces of three of our most important physical theories—Classical Mechan-
ics (CM), Special Relativity Theory (SRT), and Quantum Mechanics (QM)—have
already been so modelled as phase-spaces. Working with their phase-space formula-
tions, one can trace the conceptual changes and continuities in transitioning from CM to
QM, and from CM to SRT. By offering a revised severity-ordering of changes that
conceptual frameworks can undergo, we provide reasons to doubt the commonly held
view that CM is conceptually closer to SRT than QM.

Keywords Radical theory change . Conceptual space . Classical mechanics . Special
relativity theory . Quantummechanics

1 Introduction

On the basis of an analysis of the phase-space formulations of three physical theories
this paper argues for two theses: (1) Conceptual space models of conceptual
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frameworks bear a striking resemblance to the phase-spaces of physical theories and
that this resemblance is strong enough to warrant the thesis that phase spaces are
conceptual spaces. (2) By identifying the types of changes in the underlying conceptual
space that occur when one theory supplants another, the degree of conceptual continu-
ity between physical theories and their successors becomes apparent.

We introduce conceptual spaces as our modelling tool (Section 2), show how these
models apply to scientific conceptual frameworks (3), introduce differentially severe
changes to assess the comparative continuity through framework change (4), propose
viewing the phase-spaces of physical systems as conceptual spaces (5), and then exhibit
the phase/conceptual spaces of Classical Mechanics (CM) (5.1) and Quantum Mechan-
ics (QM) (5.2). Detouring to compare the algebras of observables of these two (5.3), we
finally present the phase/conceptual space of Special Relativity Theory (SRT) (5.4). On
this basis, we gauge the continuity that obtains between their conceptual frameworks
(6), then provide a discussion (7) and conclusions (8).

2 Conceptual spaces

Conceptual spaces (Gärdenfors 2000) model representations of cognitive systems, and
contrast with two other common ways of modelling such representations. One of these
alternatives is the symbolic approach (Pylyshyn 1986), which starts from the assump-
tion that cognition is essentially computation involving symbol manipulation. The other
alternative is associationism,1 where associations between different kinds of informa-
tion elements carry the main burden of representation. Conceptual spaces are not parts
of a symbolic system with a syntactic or logical structure. Rather, they are topological
(typically, but not necessarily, Finsler) manifolds that can be analyzed into their
constitutive quality-dimensions, and how these are structured.

Part of the structuring of the dimensions is their allotment into domains; to represent
a single concept, one often needs multiple dimensions. For instance, physical extension
requires three spatial dimensions integrated into a single domain while temporal
extension has historically, in physics, been considered a separable dimension that
forms its own domain. Another part of this structuring is the geometry these domains
are endowed with. For example, traditionally, physical space was taken to be Euclidean
while physical time was taken to be isomorphic to the positive real number line. With
the advent of relativity theory these same dimensions were all integrated into a single
space-time domain with a Minkowskian geometry.

Raubal (2004) provides a rigorous formalization of conceptual spaces as vector
spaces, defined as Cn ¼ c1; c2; c3; c4…cnð Þ : ci ϵCf g, where each ci is a quality
domain Dn ¼ d1; d2; d3; d4…dnð Þ : di ϵDf g and each di is a quality dimension. Since
vector spaces have metrics, there will be a well-defined measure of qualitative simi-
larity between points in the space provided all the dimensions have the same relative
unit of measurement. Raubal (ibid.) proposes that all vectors in a conceptual space be z-
transformed to ensure that they all have the same unit of measurement. The semantic
distance between two instances of a concept—two particulars, that is, which instantiate

1 Connectionism (Bechtel and Abrahamsen 2002) is a special case of associationism that models associations
using artificial neuron networks.
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the concept—is then the Euclidean distance between the z-transformed vectors of those
instances. Defined as vector spaces, conceptual spaces are amenable to various trans-
forms and mappings that formalise such notions as ‘change in the relative importance
of dimensions’ (by introducing weights on the components of the vector space), or
‘how one can alter one conceptual space to generate another’, and so on. In the rest of
this paper we will talk about these notions informally. However, it is to be understood
that our claims and assertions can be formalised.

Psychologists use various empirical tests to determine whether two dimensions are
treated as separable or integral (see, e.g., Maddox 1992). One such test concerns the
metric used to measure dimensions. A commonly applied rule is that if the Euclidean
metric (ds2 ¼ dx2 þ dy2) fits the data best, the dimensions are classified as integral,
while if the city-block metric (ds ¼ dxj j þ dyj j) fits the data better, then they are
classified as separable. In the context of scientific theories, we can express this by
saying that dimensions are integral if they are measured in the same way, while they are
separable if measured by distinct methods.

Another separability/integrality test is whether the perception of values on one
dimension interferes with perception of values on the other (Maddox 1992). In psychol-
ogy, this test typically generates the same results as the metric test, provided that
interfering dimensions are integral to a domain and non-interfering dimensions are
separable. As we show in greater detail below (Section 6.1), however, although position
and momentum remain two separable domains in the context of quantum mechanics
(QM), measurements of the former nonetheless interfere with measurements of the latter.

For instance, in classical mechanics (CM) the commutator between position and
momentum in the x-direction x; px½ � is set to zero, since the order in which one
measures position and momentum is taken to be irrelevant on experimental grounds.
Indeed, measurements of position and of momentum along any axis do not interfere
with each other in CM, making position and momentum non-interfering domains in
CM. But this commutator is non-zero, and such interference is present, in QM. Yet it is
prima facie implausible that momentum in a direction and position along that direction
should be treated as a single integral domain in QM. We will return to this conundrum
below.

As asserted above, conceptual spaces come with a metric, that is, a measure of
distance by which qualitative similarity can be gauged (see Fig. 1). Given a space with
particular quality dimensions and a structure, or a geometry, an object’s qualitative state
can be represented as a point or, where there is vagueness, as a region in that space
(Douven et al. 2011).2 Two objects, hence, are similar to the extent that they are close
together in the space.3

A further aspect of conceptual spaces to observe—providing a reason why a scientific
theory cannot be completely modelled as a conceptual space—is that conceptual
spaces normally lack dynamics. That is, while one can represent the qualitative

2 Given a temporal dimension, the qualitative evolution of an object can be represented by a trajectory through
the conceptual space.
3 Quality dimensions can be continuous or discrete, and discrete spaces can also have metrics allowing
measures of similarity. For instance, if three objects, A, B, and C, differ along two discrete dimensions such
that A differs from B only along one dimension, but A differs from C along both dimensions, then A is more
similar to B than A is to C, which is to say that the distance from A to B in the (Euclidean) plane of these
dimensions (taking the value 1) is less than the distance from A to C (taking the value

ffiffiffi
2

p
) in that plane.
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evolution of objects/systems using trajectories through the relevant conceptual space,
principle constraints on those trajectories are, as a matter of contingent fact, not normally
specified. Arguably, it is the addition of such principles to a conceptual space that generates
a genuine theory of the systems located in that space that could be used to predict/postdict
their future/past qualities from their initial qualitative states. For this, as well as other
reasons such as the possibility of distinct theories sharing the same conceptual framework,
conceptual spaces are not sufficiently fine grained to model theories themselves. As our
thesis is that conceptual spaces can be used to model the conceptual frameworks within
which theories are formulated, and not the theories themselves, this limitation does not
trouble us.

3 Modelling scientific conceptual frameworks

An empirical theory always presupposes, but, as we just saw, remains distinct from, a
specific conceptual framework that provides the magnitudes, or dimensions, on which
the formulation of the theory depends. While any conceptual framework can be
modelled as a conceptual space, the frameworks presupposed by scientific theories

Fig. 1 The Munsell colour space. The metric by which we gauge the qualitative similarity of two colours in
this space is the cylindrical metric: ds2 = dr2 + r2dψ2 + dz2, where dr, dψ and dz are, respectively, the radial
(chroma), angular (hue in radians) and axial (value) displacements
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are particularly amenable to such modelling (Gärdenfors and Zenker 2011, 2013;
Petersen and Zenker 2014; Zenker 2014; Zenker and Gärdenfors 2014, 2015).

Apart from the concepts familiar to us in sensory perception and covered in
psychological research—like colour, weight or length—physics introduces theoretical
magnitudes such as mass, force, and energy. In the SI units system, magnitudes such as
mass are taken to be basic, while others such as energy and force are derived. The basic
magnitudes have stipulative definitions of various kinds. The derived dimensions are
defined in terms of the basic dimensions. Whether basic or derived, any such magni-
tude can be modelled geometrically. Newtonian mass, for instance, can be represented
as a one-dimensional space isomorphic to the non-negative part of the real number line,
and Newtonian space as a three-dimensional Euclidian (vector) space. We give further
examples below.

As indicated, some magnitudes/qualities of an object require only a one-dimensional
space to represent them, while others require multi-dimensional spaces. Recall that
dimensions are said to be integral if, to fully describe an object with respect to a given
quality, a value must be assigned to each dimension (see Section 2). For instance, the
three spatial dimensions length, width and height are integral because an object cannot
have physical extension without values for all three dimensions being assigned.
Similarly, one has not specified the force acting on an object in CM, until one has
chosen a spatial frame and specified the component forces acting parallel to the three
axes of that frame. Dimensions that are not integral are said to be separable; for
example, the shape and hue dimensions, or the mass and charge dimensions in Classical
Electro-Dynamics.

The choice of domains, and their constitution, is not uniquely determined because
the organization of dimensions into domains depends on conventions regarding which
of a theory’s dimensions are taken as basic and which as derived. Outside of physics,
conceptual architecture is generally not laid out with sufficient precision to easily
resolve which subset of our various dimensions shall count as basic and which shall
be defined in relation to them. But in the sciences, and particularly in physics, this
division is made on conventional or pragmatic grounds, often in theory formulation-
specific ways. Where system constraints are non-holonomic,4 for instance, one may
prefer the Newtonian formulation of classical mechanics (with position, time, force and
mass as the basic domains), while the Lagrangian formulation (with position, mass and
time as basic domains) is generally easier to work with for systems with holonomic
constraints.5

As scientists develop new theories they invariably do so from within a conceptual
framework and these can be modelled as conceptual spaces. It follows that tracing

4 Holonomic system constraints can be expressed by a zero-valued function like f x1; x2; x3; …; xn; tð Þ ¼ 0. It
is characteristic of holonomic constraints, moreover, that they do not have velocities as arguments. For
instance, the constraint x2 þ y2 � L2 ¼ 0 on the position of a 2D pendulum of fixed length L is holonomic.
A constraint that cannot be expressed in the above form is a non-holonomic constraint.
5 Those inclined to grapple with scientific realism, of course, take the question ‘Which dimensions are basic,
which derivative?’ to be one of principle. When Isaac Newton introduced the force domain into mechanics, for
instance, many natural philosophers advocated—on grounds of ontological suspicion—a reformulation that
made force a defined domain. Similarly, those following Niels Bohr in claiming that all measurements are
ultimately spatio-temporal determinations, from which the values along other dimensions are inferred, view
space-time as the basic domain. Whether conventional or principled, the division itself is (with the possible
exception of such BBabylonian^ physicists as Richard Feynman) present, and important to observe.
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continuity between the conceptual spaces that are presupposed by two, or more,
theories is a tracing of the continuity in the conceptual frameworks of those theories.
As the next section exhibits, accepting this approach offers a detailed rebuttal of the
Brevolutionary^ account, famously proposed by Kuhn (1970),6 of scientific change as a
ruptured historically process.

We are not the only parties interested in ‘demonstrating continuity through theory
change’. In particular, structural realists share this wider aim—though their primary
interest is in demonstrating structural continuity. For the purposes of comparison,
structural realists come in two flavours: those who describe theory structure syntacti-
cally in a formal language (e.g., Schurz 2009; Maxwell 1970) and those who describe
this structure algebraically in order to ascertain the theory invariants (e.g., Suppes 2002;
Thébault 2014). Though either flavour faces its own issues, the latter is closest to our
approach. From our perspective, the Balgebraists^ describe, among other things, the
structure of the conceptual spaces we are interested in, and so offer part of what we seek
to provide when extending the remit of conceptual spaces to the sciences.

Indeed, there is significant overlap between Thébault’s (2014) ‘state space and
observables algebra’-framework for ontological structural realism with respect to
scientific theories, on one hand, and our ‘phase space is conceptual space’-approach
to the conceptual frameworks presupposed by those theories, on the other. The crucial
difference lies in the goals being pursued. Ontological structural realists seek to single
out those parts of our theories that can be safely reified despite the pessimistic meta-
induction and under-determination arguments. By contrast, our goal is to demonstrate
that there is conceptual continuity through Brevolutionary^ theory change despite
semantic holism.

4 Modelling continuity in conceptual change

Evaluating conceptual continuity through theory change, of course, presupposes a way
of describing framework change. Gärdenfors and Zenker (2011, 2013) have provided a
taxonomy of conceptual space changes, including a ranking by severity of these
changes, and a selection of historical examples (also see Petersen and Zenker 2014).
Here, we merely give a brief overview.

In order of increasing severity, or of diminishing conceptual continuity, Gärdenfors
and Zenker (2011, 2013) distinguished five types of change: addition and deletion of
special laws; change in a dimension’s importance; change of geometry; change in
separability; addition and deletion of dimensions. The first two of the five types address
intra-framework changes; the other three types describe inter-framework changes.
Recall that our concern is with conceptual frameworks rather than theories, and that
two or more distinct theories can share the same framework.

Firstly, in our model the special laws of a theory provide constraints on the
distribution of points over a conceptual space. Newton’s second axiom, for instance,
brings about a general restriction to points on the hyper-surface described by F=ma in
the conceptual space consisting of the domains time, mass, (physical) space, and force

6 We have previously argued that Kuhn’s account unduly assumes the primacy of the symbolic level of
representation (Zenker and Gärdenfors 2015).
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(Gärdenfors 2000). The law of gravitation, which is a special-law, here achieves a more
specific restriction to regions where F=GMm/r2 holds. Any further restriction to
singular points in this space comes about exclusively in virtue of assuming particular
antecedent and boundary conditions. We view the addition, or deletion, of axioms and
special laws as the mildest type of change because, unlike the other four types, it leaves
the conceptual framework intact. That is, such changes are inter-theoretical while being
intra-framework. For instance, a somewhat Bderanged^ Classical Mechanics with
F=GMm/r3 as its law of gravitation still makes for a theory of Classical Mechanics,
it just is not Newtonian Mechanics. Often this kind of change is nothing more than the
specification/definition of further derivative dimensions on the basic dimensions and
this, obviously, one can do without altering the basic dimensionality of the theory.

Secondly, the dimensions, or domains, that are presupposed by a scientific frame-
work may change in importance; in particular, dimensions can go from basic to
derivative and vice versa. For instance, until the work of Lagrange and Hamilton,
energy remained of little significance to Classical Mechanics (Gärdenfors and Zenker
2013). In contrast, energy became ever more important in the development of 19th
century fluid dynamics as more fine-grained versions thereof were developed (Petersen
and Zenker 2014). Although the importance of dimensions may differ between two
distinct versions of the same theory, the predictive content of that theory need not
change. For instance, a version of Newtonian mechanics featuring the law of preser-
vation of kinetic energy—which Huygens, calling it ‘vis viva’, established in around
1663 (Rothman 1972), well before Newton’s own efforts—is empirically equivalent to
the Hamiltonian formulation of CM, even though the role of energy in the respective
variants of that theory had changed drastically. For this reason, such changes must be
viewed as intra-framework.

Thirdly, each domain of a conceptual space is endowed with a geometry that
determines a measure of distance in the domain. This geometry may be replaced by
another without changing the rest of the conceptual framework.7 For instance, a circular
dimension with 24 equally-sized intervals called ‘hours’ models daily time. Before
mechanical clocks had been invented, the two points on this dimension that separate
twelve night-time hours from twelve daytime ones were locally coordinated to sunrise
and sunset. As, again locally, these points shift throughout the year, their distance
changes. So we had a variable temporal metric that has since given way to constant
clock intervals. The same, as it were, occurred in reverse with physical space when the
constant and invariant geometry of Euclid, that was assumed by Newton, Kant and
others, gave way to a relativistic geometry that varies with mass distribution. As such
examples indicate, a change in the geometry of the conceptual space of the basic
dimensions of a theory is plausibly an inter-framework change.

Fourthly, even though the dimensions of two frameworks may be the same, they
may differ with respect to the division of these dimensions into domains. For instance,
3D space and 1D time are separable domains in Classical Mechanics, but they form an
integral 4D space-time domain in relativity theory. In this article we initially include

7 This version of the criterion is a strengthening of the criterion proposed in Gärdenfors and Zenker (2011,
2013) where only changes of scales; e.g., the change from Celsius to Kelvin, were considered. This
strengthening corresponds to a more severe change of a theory, so we now put it after changes in the
importance of dimensions.
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changes in interference between dimensions in the fourth category of changes due to
the traditionally assumed association between dimension interference and their non-
separability. As we will see more clearly below, changes in the interference of dimen-
sions go along with changes in the structure of the conceptual space that are in a
relevant sense Bdeep^ or far-reaching. This will ultimately lead us to suggest that
change in the interference between dimensions should form its own category of
conceptual space change, one that is more severe than any changes in the separability
of dimensions.

Fifthly, the most radical type of change is the addition of a basic dimension/domain
to a scientific framework, or its deletion from it, for instance, the addition of the
dimension charge to yield electrodynamics, or the deletion of the dimension
representing the quantity referred to as caloric in early versions of thermo-dynamics,
which proved to be coextensive with energy. A further example is the addition of rest
mass energy in SRT as a component of the relativistic energy, to which we will return
below.

Categorizing changes of theories into these five (possibly six) types clearly provides
a finer grain than Kuhn’s distinction between normal and revolutionary change, and so
provides a richer toolbox for studying concept evolution in science. Against this
background, we now turn to a presentation of phase-space formulations for classical
mechanics, quantum mechanics, and relativity theory.

5 Phase-space as conceptual space

A physical phase-space is a space of physical states: the state of a physical system can
be represented as a single point in the appropriate phase-space, the points of the space
together covering all possible system states.8 The similarity with conceptual spaces
should be apparent. Indeed, our thesis is that phase-spaces are conceptual spaces.

As a matter of contingent historical fact, theories are not born in their phase-space
formulations; rather, there is some time lag between the original presentation of a
theory and the casting of that theory in a phase-space formulation. That much effort is
spent in developing these formulations irrespective of their practical utility9 and despite
the availability of alternatives stands as a strong testament to their important role in the
foundations of physics. In particular, it is a widely held view that important insights into
how physical theories are related can be gained from comparing their phase-space
formulations. This is entirely in line with our thesis that phase spaces are conceptual
spaces. It is perhaps for this reasons that Gleick (1987, 134) calls phase space Bone of
the most powerful inventions of modern science^.

Although the three major physical theories dealt with here differ significantly from
one another when viewed in their standard guises, a great deal of continuity between
them readily appears when viewing them in their phase-space formulations. We start

8 Phase-spaces have been predominantly used to represent the degrees of freedom of complex systems and to
model chaotic behavior. This use is related to their use in formulating physical theories in the tradition of
Boltzmann (that we are interested in here) but often obscures that original purpose. For a historical
introduction see Nolte (2010). For a brief introduction to classical and quantum phase-space see Tao (2007).
9 The phase space formulation of quantum mechanics is particularly difficult to work in relative to the other
formulations of that theory.
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with the phase-space of Classical Mechanics (5.1), move on to Quantum Mechanics
(5.2), then compare the algebras of observables in Classical Mechanics and Quantum
Mechanics (5.3), to finally reach Relativity Theory (5.4).

5.1 Classical Mechanics (CM)

In CM the state of a system at time t is given by the momenta and positions of its
constituent parts. Given these positions and momenta at t, the positions and momenta of
these constituent parts at all times other than t are determined by Hamilton’s equations
of motion:

(1)

These equations describe the motion of a system through phase-space as a function
of time: that is, is the trajectory of a system in phase-space. The function H
takes a phase-space trajectory as its argument and has a real number as its value. This
function is commonly referred to as the Hamiltonian of the system and its value at t is
interpreted as the energy of the system at t.

Geometrically, the configuration/physical space of a system can be defined as a
manifold M, such that for any position , the momentum of a system at that position
is in the cotangent space . Thus phase-space can be defined as the cotangent
bundle with attendant symplectic form .
In terms of the symplectic form—with as the phase-space trajectory of
the system, and ∇ω as the symplectic gradient—Hamilton’s equations of motion may be
combined into a single equation:

x tð Þ ¼ ∇ωH x tð Þð Þ ð2Þ

For a single body system, phase-space will have six dimensions; three of these will
be spatial dimensions and three will be momenta dimensions. The geometry of this
space is Euclidean, and so the Lie algebra of the phase-space transformation operations
(spatial translations, temporal translations, boosts, and rotations) is that of the Galilean
group. Add the dimension of time, and we have the seven basic dimensions of classical
phase-space. A single bodied system is fully described by a trajectory in that space,
with all other qualities of that system being defined in terms of these basic dimensions;
for example, force at time t is the time derivative of system momentum at t. In a n-body
system the phase-space dimensionality is 6n, but again these are evenly split into spatial
and momenta dimensions. That is, classical phase-space (indeed, any phase-space) can
be used to represent Bthe complicated motions of multiple particles in a single three
dimensional space as a single point moving in a multidimensional space^ (Nolte 2010);
see Fig. 2.10

10 There is a lesson for psychology, and other disciplines using conceptual spaces, here. In the literature on
conceptual spaces one does not see the multiplying of dimensions with the multiplying of objects being
located in the conceptual space, but if our thesis—that phase-spaces are just an example of a conceptual
space—is correct, then this aspect of conceptual spaces should be recognized more widely.
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There is an alternative description of the Hamiltonian equations in terms of observ-
ables, which are functions such that:

d
dt

A x tð Þð Þ ¼ A;Hf g x tð Þð Þ ð3Þ

Here, {A,H} :=ω(∇ωA,∇ωH) is the Poisson bracket. The term ‘observables’ is used
in a wide sense, to denote qualities of a physical system that can be ascertained by
means of experiment rather than in the restricted sense of qualities that are directly
observable by unaided human agents. This usage is in accord with modern physics. The
Poisson bracket in CM codifies a commutative Lie algebra—a Lie algebra where the
Lie Bracket is uniformly vanishing—on the space of observable functions. Thus for all
classical observable functions and

Finally, where there is uncertainty in the position/momentum of a system, the state
of the system can be represented by a density distribution over Euclid-
ean phase-space. This distribution may be time-dependent, with the attendant equation
of motion for such a system being given by the Liouville equation:

(4)

In a 2D phase-space, the Liouville equation can be written succinctly in terms of the
phase-space density and Hamiltonian functions using the Poisson bracket:

ρ ¼ − ρ;Hf g ð5Þ

Fig. 2 A phase-space plot of a system with focal instability. Here, the horizontal axis gives the position and
the vertical axis the momentum. As the system evolves, its state follows the trajectory line
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The expectation of a classical observable at t is given by the so-called
Bphase-space average^:

A ¼ ∬Aρ d3pd3q ð6Þ

5.2 Quantum Mechanics (QM)

Just as CM has a phase-space formulation, so does QM. One might think that because
no system can have a precise momentum and position due to the Heisenberg uncer-
tainty relation, this would preclude a phase-space formulation of QM. Recall, however,
that where there was uncertainty in the position/momentum of a system in CM, its state
could nonetheless be represented by a density distribution over Euclid-
ean phase-space. A similar representation is available for quantum states in a phase-
space T*M with a Hamiltonian Here, the (pure) state of the system is
represented by a complex valued wave function which can be thought of
as the quantum analogue of a classical density over configuration/physical space.

The analogy with CM can now be extended by introducing the Wigner distribution
which is a quasi-density distribution, determined by the wave function

ψ, over Euclidean phase-space, and otherwise similar to the classical ρ except that it
can take negative values (Fig. 3).

That the Wigner distribution of a system can take negative values might
appear problematic, but it can be shown that the regions in which this is so are
of the order of ℏ in volume. As the uncertainty relations preclude localization
of a system to regions of phase-space smaller than ℏ, the negative probability
for location in such regions can be interpreted as a sign of physical impossi-
bility. That is, negative probabilities are, for all practical purposes, treated as
zero-probabilities.

The QM equation of motion for a system represented by a Wigner distribution over
Euclidean phase-space is the quantum Liouville equation (compare with Eq. 4), which
can be written as:

(7)

Fig. 3 The Wigner function on a phase plane for the simple harmonic oscillator in a combined ground and 1st
excited state. Note the portion of the distribution that is negative
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In a 2D phase-space Eq. 7 can again be re-written in terms of the Moyal Bracket,
which is a deformation (extension) of the Poisson Bracket with deformation parameter
ℏ (compare with Eq. 5).

Wψ ¼ − Wψ;H
� �� � ¼ − Wψ;H

� �þ ℏK ð8Þ

Here, K is a sum of higher order derivatives, greater than third order, of the potential.
For systems—such as harmonic oscillators—where higher order derivatives of the
potential are zero, the quantum equation of motion for Wψ is precisely the same as
for the classical ρ. The quantum correction terms also vanish in the classical limit that
ℏ→0.

Classical observable functions are quantized to become self-adjoint
Hermitian operators Â : M→M in the standard formulation of QM. However, in the
phase-space formulation of QM, those operators are Wigner-transformed back into
functions on phase-space such that the expectation of the observable corresponding to
the operator Â, in the phase-space formulation where is the Wigner transform of
Â, is the phase-space average (compare with Eq. 6):

Â ¼∬aWψ d3pd3q ð9Þ

The Moyal bracket in QM codifies a non-commutative Lie algebra—a Lie algebra
where the Lie bracket is not uniformly vanishing—on the space of observable func-
tions. Thus there are pairs of quantum observable functions and

such that, A;B½ �M≠0.

5.3 Change in algebras of observables

As the preceding two subsections should have made clear, in the phase-space formulations
of both CM andQM the physics of a single body system is fully described by locating, as it
were, that system in a six dimensional Euclidean phase-space at each moment in time. All
that is required to give a complete description of a physical system in both theories, then,
are three spatial dimensions, three momenta dimensions and one temporal dimension.

Where QM differs fundamentally from CM is in the space of its functions representing
observables; in particular, while all observable functions commute in CM, this is not the
case in QM. That is, the change from CM to QM is a change in the space of functions
representing observables of the system, and not a change in the phase-space on which
those functions are defined. While there is a change in the functions themselves, and so a
change of type 1, this is not what leads to a non-abelian Lie algebra of the observable
functions in quantum mechanics. The non-commutativity comes rather from the Wigner
transform of the standard QM operators into functions on phase-space. In order for this
transform to uphold the commutation relations of standard quantum mechanics, the
standard product of the classical Lie bracket has to be replaced with what is called the
twisted product of the quantum Lie bracket, which is associative but non-commutative. In
effect, what this change in the Lie bracket product does is replace the standard product with
a pair of operators Bsandwiched^ between two standard products.
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The change in the product of the observable’s Lie algebra is difficult to place among
the conceptual space changes considered earlier. Its effect is to make the algebra non-
abelian and so it renders some dimensions interfering (see Section 6.1). For the present,
we will classify this as a change of type 4 (but see below). The change clearly is to the
structure of the conceptual space—that is, to the relations between the dimensions—
and therefore it is a profound inter-framework change.

5.4 Relativity theory

Both special and general relativity theory (SRT and GRT, respectively) differ from QM
in that their phase-space is not the classical Euclidean phase-space. For a single body
system, the mathematical entity of relativistic phase-space is rather eight-dimensional
(8n-dimensional for n-body systems), with time no longer a separable dimension. The
relativistic configuration space of such a system is space-time, which can be defined as
a manifold M4 such that, for any four-position , the four-

momentum of the system at that four-position is in the cotangent
space . So, again, phase-space can be defined as the cotangent bundle

only now there is a temporal dimension to

the configuration domain and an energy dimension to the momentum domain. Kinetic

energy E can be defined in terms of px; py; pz
n o

in CM, but in SRT E is a new basic

dimension known as relativistic energy. Relativistic energy is the sum of kinetic energy
and rest mass energy, the latter being an entirely novel dimension not present in either
CM or QM.

The states occupied by the system through time, then, are represented by a
world line through this phase-space (see Fig. 4). The geometry of the phase-
space is no longer Euclidean but Minkowskian in SRT, and pseudo-Riemannian
in GRT.

The pursuit of a phase-space formulation of GRT is currently cutting-edge theoret-
ical physics; indeed, it is central to one of the hopes for a grand unified theory
(Giovanni et al. 2011). For this reason, our focus in this section is on the phase-space
of SRT, which serves as a local approximation of general relativistic phase-space. This
space is subject to the Lorentz group of transformations; for example, for velocity
boosts in the x-direction (with a Cartesian coordinisation of configuration space) the
transform is as follows:

dx
0 ¼ dx−vdtffiffiffiffiffiffiffiffiffiffiffi

1−
v2

c2

r dp
0
x ¼

dpx þ
v
c2

dEffiffiffiffiffiffiffiffiffiffiffi
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c2

r

d y
0 ¼ dy d p

0
y ¼ d py

d z
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0
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dt
0 ¼
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c2
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Among the invariants under such transforms are the lengths of vectors in both the
configuration and momentum spaces as well as the relativistic action ds=dxdpx+
dydpy+dzdpz−dEdt. From the relativistic action, one can derive the relativistic La-
grangian, and so obtain an equation of motion for special relativistic systems that is
invariant under the Lorentz transformations. Furthermore, one can establish that the
path taken by any system through relativistic phase-space is that which minimizes the
relativistic action ds for that system.

To bring out the similarity of SRT with QM, one can consider cases where there is
uncertainty as to the phase-space location of an event. Where there is such uncertainty
this can be represented by a density distribution over Minkowskian
phase-space such that the probability that the event is in phase-space volume Ω is:

(10)

Again, observables G are represented by functions on the phase-space such
that the expectation of an observable is given by the Bphase-space average^:

g ¼ ∬gρ* d4pd4q ð11Þ

This holds in theory; however, it is generally easier in practice to work solely in
the configuration or momentum subspaces of SRT phase-space. Physicists,

Fig. 4 A relativistic system, represented by a world line through Minkowskian phase-space, where momen-
tum can be thought of as the dimension perpendicular to the plane of the page. Points in relativistic phase-
space are classified as events
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therefore, tend to implicitly integrate over all of the subspace they are not working
in. They can do this because these subspaces are non-interfering domains in CM,
SRT and GRT. As we shall see, however, they are interfering in QM.

6 Gauging continuity

We hold that the phase-spaces of CM, QM and SRT as conceptual spaces
represent the basic conceptual frameworks of these theories. Using the tax-
onomy of conceptual space changes (Section 4), we can now classify, and
rank, the changes required in order to generate one framework from another.

6.1 From classical mechanics to quantum mechanics

Notice that the transition from CM to QM involves no addition or deletion of basic
dimensions (no type 5 change), that there is no change in the relative importance of the
dimensions (no type 2 change), and that the phase-space geometry remains Euclidean
(no type 3 change). In their phase-space formulations both theories are, at their core,
geometrically 6D Euclidean cotangent bundles linearly ordered in time, with the same
set of derived dimensions.

There are two related changes of the underlying structure. The first is a
change in the observable functions, which is a change of the dependence of
derived dimensions on the fundamental dimensions and so a change of type 1.
The second change is that in CM, momentum and position, energy and time, etc.
are respectively non-interfering domains, while in QM they are interfering. For
instance, in CM, one can measure position and momentum simultaneously to an
arbitrary degree of accuracy, while in QM the uncertainty relation—ΔxΔpx≥ℏ2
—tells us that this is impossible. Indeed, Bohr’s complementarity thesis infers
the lack of non-interfering methods of measurement as the best explanation of
the impossibility of precise co-determination in measurement. Murdoch’s (1987)
summary of the thesis is worth citing in full:

All observation involves an interaction between two objects, the object of
observation and the instrument of observation. The interaction is a finite
exchange of energy and momentum between object and instrument. It is,
however, a presupposition of classical physics that ‘the phenomena may
be observed without disturbing them appreciably’. The measurement in-
teraction, according to classical physics, may in principle be made arbi-
trarily small, and it is in general either negligible, or determinable and
controllable. … In quantum mechanics, however, the measurement inter-
action is in general not negligible, since the energy exchanged is large
relative to the total energy of the object, and cannot be made arbitrarily
small, owing to the quantum of action. But most important of all, the
interaction involved in position measurements is indeterminable … in
virtue of the fact that the instrument must be rigidly connected to the
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macroscopic apparatus defining the spatial reference frame [and so] the
energy and momentum which the instrument gains or loses in the mea-
surement process disappear irretrievably within the surrounding apparatus.
Thus if on the one hand we observe an object, i.e. determine its spatio-
temporal location, we interfere with its dynamic state; if on the other hand
we determine its dynamic state [by performing a measurement using a
device that is loosely connected to a macroscopic device defining the
spatial reference frame], we are debarred from observing its position.
(Murdoch 1987, 85f).

Thus, from the logical incompatibility of measurements of kinematic and
dynamic observables—the former requiring rigidly attached instruments, the
latter requiring loosely attached instruments—and the impossibility of arbitrari-
ly small energy/momenta exchanges implied by the quantum of interaction-
postulate of QM, Bohr explains the impossibility of precise co-determination of
kinematic and dynamic observables through experiment, and hence the uncer-
tainty relations. That is, Bohr explains the uncertainty relations as a material
consequence of the absence of non-interfering measurement procedures for
kinematic and dynamic observables given the quantum of action, which is to
say that Bohr explains the uncertainty principles as a consequence of domain
interference.

The formal expression of this change in the transition from CM to QM is the
aforementioned change in the Lie algebra of observables; in particular, while all
observable functions commute in CM, this not the case in QM. This non-
commutation of observable functions is standardly interpreted as the mathematical
representation of the fact that the order of measurement matters: i.e., if one
measures the momentum of a system in the x-direction after having measured
its position on the x-dimension one is liable, though not certain, to obtain a
different result than if one had measured that momentum before measuring that
position. Moreover, if one measures x-momentum, x-position and then x-momen-
tum again, then the first momentum measurement is liable to differ from the
second. But if one just measures x-momentum twice in a row the second result
will certainly agree with the first.

The connection between the change in observable’s algebra and the uncer-
tainty relations, and so the interference of the corresponding dimensions, is
easily established in the matrix formulation of QM. In this BHilbert space^-
formulation, observables are represented by self-adjoint Hermitian operators
acting on vectors jψÞ in a Hilbert space representing the states of systems.

Thus, let Â and B̂ be self-adjoint Hermitian operators representing observables
A and B, and define ΔA and ΔB as the root mean square deviations of A and B
so that:

ΔAð Þ2 ¼ ψ Â− Â
D E� �2

����
����ψ

� 	
; where Â

D E
¼ ψ Â

��� ���ψD E
;

ΔBð Þ2 ¼ ψ B̂− B̂
D E� �2

����
����ψ

� 	
;where B̂

D E
¼ ψ B̂

��� ���ψD E ð14Þ
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Then one can prove the following inequality:

ΔAð Þ2 ΔBð Þ2≥ 1

4
i Â; B̂
h iD E2

¼ ψ Â; B̂
h i��� ���ψ��� ���2 ð15Þ

Substituting x̂ ¼ x for Â and p̂ ¼ −iℏ d
dx for B̂, one obtains the uncertainty relation:

Δxð Þ2 Δpxð Þ2≥ ℏ
2


 �2

ð16Þ

Hence, when going from CM to QM, there is equivalence between the novel
impossibility of precise co-determination of observables in measurement and changes
in the Lie algebra of observables. As the following quote shows, Bohr (1963, 61) was
well aware of this.

Indeed, it became evident that the formal representation of physical quantities by
non-commuting operators directly reflects the relation of mutual exclusion be-
tween the operations by which the respective physical quantities are defined and
measured.

In QM, then, we have a perfect demonstration of how structural changes in a
theory’s framework are intimately connected to measurement of the dimensions of that
theory. Indeed, we suggest that non-commutativity of observable functions is the
theoretical signature of interference between the corresponding dimensions of the
conceptual space spanned by those dimensions. Recalling Bohr’s complementarity
thesis, this interference has its physical basis, in QM, in the quantized interaction
between instruments and systems, and the incompatibility of dynamic and kinematic
measurement.

In summary, there is a change of type 1, a change in the dependence of dimensions
on phase-space trajectory, which in this case also accompanies a change of type 4, in
the interference between certain dimensions. The structural change Bbehind^ this type 4
change is the switch from the standard product of the observable’s algebra of CM to the
twisted product of the observable’s algebra of QM, and this is certainly an inter-
framework change. But there are no changes of types 2, 3 and 5 in going from CM
to QM. That is, no change occurred to the underlying geometry, or dimensionality, of
the basic dimensions, and the dimensions retain their original level of importance when
moving from CM to QM.

6.2 From classical mechanics to special relativity theory

Having described the two relevant changes to the conceptual space in the transition
from CM to QM, we now turn to the transition from CM to SRT. In contrast to the CM
to QM-transition, there is a change in both the geometry and the dimensionality of
phase-space when going from CM to SRT. As we saw earlier, the time dimension is
integrated into the configuration manifold and thereby ceases to be a separable dimen-
sion. Furthermore, the relativistic energy-dimension—which is a compound of the
kinetic energy dimension, itself a derived dimension in CM, and the rest mass energy,
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an entirely new dimension in SRT—is integrated into the momentum cotangent space.
Thereby, relativistic phase-space gains two extra dimensions over the classical and
quantum phase-spaces. Moreover, the geometry goes from being Euclidean to
Minkowskian; which is to say that the Lie algebra of the phase-space transformation
operations (spatial translations, temporal translations, boosts, and rotations) goes from
that of the Galilean Group to that of the Poincaré Group.

In terms of the changes in conceptual space identified earlier, the change in phase-
space geometry is a paradigmatic example of the third type of change, while energy
becoming one of the basic dimensions in the momentum space is clearly an example of
the third, fourth and fifth types of change. It is an example of the third kind of change
since kinetic energy goes from being a derived dimension to being a basic dimension, it
is change of type 4 since the relativistic energy is integrated into the four-momentum,
and it is a change of type 5 since the rest mass component of the relativistic energy is a
new dimension unheard of in CM. The integration of time into the position domain is
also an example of the fourth type of change. Finally, there are likewise changes of the
first type: for instance, the new relation between momentum and kinetic energy in SRT.
But these changes, of course, are parasitic on more far-reaching inter-framework
changes having occurred.

In contrast to QM, however, none of these changes result in a non-commutative Lie
algebra for the observable functions; the product of the Lie algebra of the observable
functions remains the standard product here. Indeed, the presence of interference
between kinematic and dynamic domains in QM is unique—lacking any precedence
in the history of physics. There are nonetheless changes in the separability of domains
in the transition from CM to SRT, with time becoming integral to configuration space,
and relativistic energy becoming integral to momentum space. Thus, there are changes
of all types in going from CM to SRT.

6.3 Degree of conceptual continuity between classical mechanics and its successors

The five kinds of changes that conceptual spaces can undergo (see Section 4) were
presented in ascending order of severity: the more severe the change, the less continuity
between the predecessor and successor conceptual spaces. This immediately allows us
to state that there is greater degree of conceptual continuity between the conceptual
spaces of CM and QM, than there is between the conceptual spaces of CM and SRT.

The CM-SRT transition, as we saw, involved the introduction of a new rest mass
energy dimension. This is a change of type 5, the most severe type of change, and no
such change occurs in the CM-QM transition. Moreover, we also saw that a greater
variety of change operations is required to go from CM to SRT, than is required to go
from CM to QM: only two types of change are required in the latter case, whereas all
five types of change are required in the former.

That being said, a great deal of continuity remains between the conceptual spaces of
CM and SRT/QM. In all three theories roughly the same dimensions are defined on a
state-space composed of a configuration-space/momentum-space cotangent bundle.
Just what those functional dependencies are, how they are structured, and what the
geometry and dimensionality of that phase-space is, differs from framework to frame-
work in clearly defined ways—allowing us to track how each conceptual space can be
altered to yield either of the others.
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This remains the case despite any potential disagreement regarding the severity
ordering of the types of changes identified. For instance, one may argue on the basis of
the above analysis that an alternative classification of the types of change in conceptual
spaces is superior to that proposed in Gärdenfors and Zenker (2011, 2013), given the
strengthened condition of change in geometry and the new distinction between sepa-
rability and non-interference. The attendant ranking in order of severity, then, might
more plausibly be:

1. Change in the special laws (intra-framework)
2. Change in dimension importance (intra-framework)
3. Change in the clustering of dimensions into domains (inter-framework)
4. Change in the interference of dimensions (inter-framework)
5. Change in basic dimension geometry (inter-framework)
6. Addition/deletion of basic dimensions (inter-framework)

But even on this severity ordering of the changes, there is greater
conceptual continuity between CM and QM than there is between CM and SRT. On
this classification the CM to QM transition would involve changes of the 1st and 4th
kind, whereas the CM to SRT transition would involve changes of the all kinds save the
4th. Of course, this result goes against common opinion as to the similarities between
CM, QM, and SRT. In this instance, however, we would advise revising common
opinion rather than conceding to it.

Are there further cases where we can definitively state that a theory has greater
conceptual continuity with one theory than it does with another? Indeed, there are many
such cases. For instance, notice that on either ranking of the severity of changes, the
conceptual space of classical electrodynamics (CED) displays less continuity with that
of CM than with that of quantum electrodynamics (QED). This is because the addition
of the charge dimension is an example of the most severe type of change, and while
QED and CED differ in many ways, they do not differ in their basic dimensionality
(ignoring intrinsic spin), whereas CED and CM do. So the relations between CM, CED
and QED is another case where the classification of changes in underlying conceptual
space provides an answer as to how conceptually similar theories are.

7 Discussion

In Section 1, we had raised two theses: (1) Conceptual space models of conceptual
frameworks bear a striking resemblance to the phase-spaces of physical theories and
that this resemblance is strong enough to warrant the thesis that phase spaces are
conceptual spaces. (2) By identifying the types of changes in the underlying conceptual
space that occur when one theory supplants another, the degree of conceptual continu-
ity between physical theories and their successors becomes apparent.

With respect to the first thesis, the three examples we have given of physical theories
in their phase space formulations have, hopefully, sufficed to convince the reader that
phase-space is conceptual space. This would explain the preoccupation of physicists
with these formulations of our theories as contiguous with the preoccupation of
psychologists, computer scientists and others with conceptual space models of
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conceptual systems in general. Since such models represent crucial aspects of how the
world is cognized, the desire to find phase-space formulations of physical theories can
be viewed as a desire to represent the physical world in manners attuned to human
cognitive faculties. Indeed, should humans be geometric thinkers, then a geometric
physics would naturally be far more accessible to us than one presented, for example, in
an axiomatised formal system.

But the rigor of the physics community in developing their phase-space formula-
tions, and the analysis of their algebraic structure that occurs in the discipline, may also
hold lessons for other disciplines that are interested in conceptual space models. In most
such disciplines the deeper structure of the conceptual spaces they develop is rarely
acknowledged, let alone explored, nor is the multiplying of dimensions as the number
of objects in one’s field of interest increases acknowledged.11 But if phase spaces are
conceptual spaces, then what holds true of the former may hold true of latter. So one
should explore what the physics of phase-spaces may have to teach us about conceptual
spaces in other disciplines.

With respect to the second thesis, we hope to see corresponding analyses of further
examples of theory changes to test the viability of conceptual spaces as a tool for
exhibiting conceptual continuity between theories and their successors, as well as
debate on which classification and ranking of conceptual space changes might be the
most plausible.12 That being said, we judge the claim ‘that SRT is conceptually less
similar to CM than is QM’ to be relatively immune to disagreements over the severity
ranking of changes. It is, at any rate, difficult to see how any change could be more
severe than the addition or deletion of a basic dimension from a conceptual system, or a
change in the geometry of those basic dimensions. And as we saw, while CM and QM
share the same basic dimensionality and geometry, CM and SRT do not.

That very claim, of course, might strike some readers as a reductio ad absurdum of
our position, for QM is often felt to be the most bizarre and unique of all physical
theories, an attitude that has been propagated by many notable physicists. Richard
Feynman (1965) even held that Bno one has ever understood Quantum Mechanics^ and
that, in this respect, QM differed fundamentally from SRTand GRT. Similar comments,
by him as well as others, have led to a kind of mysticism about QM and its interpre-
tation. But this now appears far less warranted. In its standard Hilbert space formula-
tion, no doubt, QM seems to be conceptually very different from the other physical
theories. With the development of its phase-space formulation in the 1970’s, however,
it should have been clear that the alien nature of QM had more to do with the vagaries
of how it is traditionally formulated, and taught, than with anything intrinsic to the
theory and its framework. So when considered carefully, our main conclusion—that the
conceptual framework of SRT is more dissimilar from that of CM than QM’s is—is
rather less shocking than the opposing view.

All the same, it is undeniable that a substantive conceptual difference separates QM
from other physical theories, which at the same time calls into question standard tests
determining whether two dimensions of a conceptual space are integral or separable. In

11 Besides our own, for instance, we know of no other work on non-Euclidean conceptual spaces, which is
obviously needed if one admits that the conceptual space of relativity theory is non-Euclidean.
12 One intriguing possibility that we cannot explore further here is to motivate a ranking—hopefully, but not
necessarily, our ranking—of the severity of conceptual space changes by entailment relations, in a manner
similar to how topological morphisms are ranked.
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both CM and SRT there is an implicit assumption that the values of distinct dimensions
can, in principle, invariably be determined with arbitrary precision. As is clear from
Bohr’s quote, in QM one has to give up this assumption of co-measurement precision.
This change is not a change to the underlying dimensionality or geometry in the
conceptual space of these theories, but is rather a change in the geometry of the space
of observable functions. Despite the change’s slightly peripheral nature, however, it is
almost certainly the root of why the transition from CM to QM is often seen as more
radical. In any case, it seems implausible to conclude from the interference between
domains in QM that those domains are integral, which is precisely the conclusion one
should draw on the basis of the psychology test for integrality.

Another example where physics challenges traditional tests for dimension separa-
bility is the metric test. Consider that Minkowskian space-time is a domain comprised
of four integral dimensions—and yet, its metric is explicitly non-Euclidean. 13 All of
this suggests that empirical results on the metric and interference tests for domain
separability used in psychology and cognitive science, as well as the conclusions drawn
from them, cannot be taken to unproblematically transfer to the physical sciences.

Particularly in Section 6, moreover, judgments regarding conceptual similarity and
continuity were seen to depend on assumptions that remain unaffected by, and so are
methodologically prior to, applying conceptual spaces. Such assumptions must there-
fore be established, or criticized, on independent grounds. The hermeneutic fact that the
scholarly discussion has so far not been able to Bfix^ such assumptions, and particularly
the related fact that a principled distinction between a theory’s conceptual framework
and itself is conspicuous by its absence, can go some way towards explaining the
varying intuitions among scholars as to whether CM is conceptually less similar to
SRT, than CM is to QM.

Phrased positively, with the above severity ordering of conceptual changes in hand,
‘whether a given historical transition constitutes a mild (Bconservative^) or a more
radical (Brevolutionary^) change’ becomes a question admitting of more nuanced
answers than traditionally supposed, for we have seen that changes to a conceptual
framework are differentially severe processes rather than all-or-nothing ruptures.

Importantly, inter-framework comparisons, such as those we have conducted herein,
depend upon the historically contingent phase-space formulations of our present
physics, on one hand, and on some plausible severity ordering of conceptual changes,
on the other. In this context, it is vital to recognize both that our physics might have
been supplied with different state-space formulations and that, so far, nothing beyond
an appeal to prima facie plausibility can support either our own, or someone else’s,
severity ordering of conceptual space transformations. In particular, a phase space
formulation of a theory can hardly be appealed to in accounts of that theory’s initial
development since, as previously noted, the phase-space formulation of a theory
typically considerably lags that theory’s initial development. Whatever insight might
be gained from such an account could at best make for a (highly questionable) episode
of counterfactual history.

13 Perhaps the metric test can be reformulated to account for such examples in the following manner:
Dimensions are treated as separable if the data supports the city-block metric as the best measure of Bdistance^
in the space formed by those dimensions and are otherwise treated as integral.
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That having been said, contemporary debates can stand to profit from placing
conceptual frameworks next to the theories that are embedded in them. For instance,
doing so may help address concerns—realist (e.g., Sankey 2009) or otherwise—
regarding incommensurability: Conceptual spaces and their transformations provide a
scaffold allowing the meaning of terms to be successfully coordinated across
frameworks.

As another example, our approach may bring additional clarity to Batterman’s
(2001, ch 7) discussion of the asymptotic relations (as parameter(s) ε are taken to zero)
between a theory T and its historical successor T*.14 In particular, his main conclu-
sion—that since CM can be seen as a limiting case of SRT as v⟶0, while the same is
not true relative to QM as ħ⟶0 (p. 109), so it follows that SRT reduces CM but QM
does not (see Nickles 1973; Batterman 2006)—may seem to run contrary to our own
claim, namely that SRT is conceptually less similar to CM than QM is. But the fact that
one can view CM as a Bdegenerate idealization^ (Hooker 1992) of SRT, on the one
hand, while one cannot do the same for CM with respect to QM, on the other, is
compatible with our claim that SRT is conceptually less similar to CM than QM is.
After all, ours is a thesis about the conceptual frameworks of these theories, while
Batterman has raised a thesis about the theories themselves. Prima facie, and most
interestingly, this suggests that relative theoretical reducibility does not imply relative
conceptual proximity, which is a conclusion that is only possible given that one
distinguishes scientific theories from the conceptual frameworks in which they are
embedded.

8 Conclusion

On the basis of an analysis of three physical theories in terms of their phase-space
formulations, we have argued for two theses: (1) Conceptual space models of concep-
tual frameworks bear a striking resemblance to the phase-spaces of physical theories
and that this resemblance is strong enough to warrant the thesis that phase spaces are
conceptual spaces. (2) By identifying the types of changes in the underlying conceptual
space that occur when one theory supplants another, the degree of conceptual continu-
ity between physical theories’ and their successors becomes apparent.

With respect to the first thesis, the three examples we have given of physical theories
in their phase space formulations may have sufficed to convince the reader that phase-
space is conceptual space. With respect to the second thesis, we hope to see correspond-
ing analyses of further examples and additional debate of the severity ordering of change
operations on conceptual spaces. However, we judge our main conclusion—that the
conceptual framework of CM is more similar to that of QM than to that of SRT—to be
relatively immune to disagreements over the severity ordering of changes. Indeed, when
considered carefully, we judge that conclusion to be rather less shocking than its contrary.

Finally, given the (revised) severity ordering of conceptual changes here proposed,
‘whether a given historical transition constitutes a mild (Bconservative^) or a more
radical (Brevolutionary^) change’ becomes a question that admits of more nuanced
answers than are typically found in the extant literature.

14 The general schema is: T ¼ lim
ε→0

T*
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