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Abstract The paper examines the claim that significance testing violates the Princi-
ple of Total Evidence (PTE). I argue that p-values violate PTE for two-sided tests but
satisfy PTE for one-sided tests invoking a sufficient test statistic independent of the
preferred theory of evidence. While the focus of the paper is to evaluate a particular
claim about the relationship of significance testing and PTE, I clarify the reading of
this methodological principle along the way.
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1 Introduction

Significance testing is widely used across the natural and social sciences. Given its
popularity in scientific practice, it might come as a surprise that significance test-
ing has attracted severe criticism in both the statistical and philosophical literature.
For instance, the relationship between significance testing and Bayesian inference
as illustrated by Lindley’s paradox has led to an ongoing discussion (e.g., Sprenger
2013; Spanos 2013; Robert 2014). Further, the relationship between significance tests
and effect size has been subject to criticism (McCloskey and Ziliak 1996; Ziliak and
McCloskey 2008). In addition, significance testing has been criticised on the grounds
that p-values depend on unobserved data (Wagenmakers 2007) and that their inter-
pretation is problematic (Trafimow 2003). This paper is concerned with an objection
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made by Sober (2008): the claim that significance testing violates the Principle of
Total Evidence (PTE). If significance testing violates an independent and widely
accepted methodological principle, then this would constitute a forceful criticism as
it does not rely on the prior commitment to a particular statistical methodology.

I will offer a limited defence of significance testing against Sober’s objection.
My argument proceeds in two steps. First, I will show that the application of PTE
requires the prior specification of a criterion for evidential assessment. Second, I will
demonstrate that when a plausible criterion for evidential assessment is presupposed,
using p-values for inductive inference does not violate PTE for a large and important
class of significance tests. In particular, I will argue that p-values violate PTE for
two-sided tests but satisfy PTE for one-sided tests with sufficient test statistic from
likelihoodist, Bayesian and error-statistical perspectives. Along the way, I will also
shed some light on the reading of PTE. Given the importance of significance testing
in scientific practice, it should be emphasised that I do not aim to defend the use
of p-values tout court. Every particular objection against significance testing merits
a careful investigation. Here, the focus is on the relationship between significance
testing and PTE.

Before turning to Sober’s argument, some terminology has to be introduced. Sup-
pose one is interested in the mean adult size of a certain fish species. In order to infer
the mean size in this species, one takes measurements of a particular fish population
in a pond. The size measurements constitute a random sample X = (X1, X2, ..., Xn)

of size n. The random variables Xi are assumed to be independent and normally
distributed with unknown mean μ and known standard deviation σ = 1. Now, sup-
pose one would like to test the hypothesis H0 - referred to as the ‘null hypothesis’
by statisticians - asserting that the mean μ is equal to, say, 4cm (i.e., H0 : μ = 4).
In order to measure the discrepancy between the parameter value of the mean postu-
lated by the null hypothesis and the sample mean, a test statistic has to be specified.
A canonical choice is to use the test statistic τ(X) = √

n(X̄ − μ0)/σ , where X̄

is the sample mean and μ0 equals 4. As a result the test statistic τ(X) follows the
standard normal distribution under the null hypothesis. After observing a sample
realisation x, a significance tester then calculates the ‘p-value’, formally defined as
P(τ(X) ≥ τ(x); H0 is true) for a one-sided test. That is, the p-value is the proba-
bility of observing a sample realisation that would have given rise to a value of the
test statistic equal or larger than the one actually observed. While a one-sided test
examines only deviations in one direction from the null hypothesis, a two-sided test
takes deviations in both directions into account. In the two-sided case the p-value is
therefore given by P(|τ(X)| ≥ |τ(x)|; H0 is true).1

Having calculated the p-value, the question of what to do next arises. At this stage
there are two different approaches to significance testing within the camp of fre-
quentist statistics. One school of thought, tracing back to Fisher (1925), considers
the p-value as a measure of the strength of evidence for or against the null hypothe-
sis: the smaller the p-value, the less plausible the null hypothesis. Statisticians in this

1In a one-sided test the null hypothesis is sometimes given by H0 : μ ≤ μ0. The p-value is then given by
supμ<μ0

P(τ(X) ≥ τ(x);H0).
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tradition reluctantly specify particular thresholds according to which the data are evi-
dence for (or against) the null hypothesis. Based on some early writings by Fisher,
Spanos (1999, 690) offers the following rules of thumb, while maintaining that they
can be criticised as ad hoc and unwarranted:2

• p-value > 0.1 indicates strong support for H0
• 0.05 < p-value < 0.1 indicates some support for H0
• 0.01 < p-value < 0.05 indicates lack of support for H0
• p-value < 0.01 indicates strong lack of support for H0

An alternative approach to significance testing is more closely related to the
decision-theoretic framework associated with Neyman and Pearson (1933). Here, a
significance test is specified such that the probability of rejecting a true null hypoth-
esis, denoted by α, is fixed at some small number, usually 0.05 or 0.01, which is
called the ‘significance level’ of the test. If the p-value is smaller than α, then the null
hypothesis is rejected. Otherwise the null hypothesis is not rejected.3

Sober (2008) objects that using p-values for inductive inference violates PTE.
When calculating p-values one considers a disjunction of events, in which the actual
event is one of the disjuncts and, hence, uses a logically weaker description of the
observed data. In Sober’s own words:

Fisher’s test of significance [...] has the additional defect that it violates the prin-
ciple of total evidence. In a significance test, the hypothesis you are testing is
called the “null” hypothesis, and your question is whether the observations are
sufficiently improbable according to the null hypothesis. However, you don’t
consider the observations in all their detail but rather the fact that they fall in
a certain region. You use a logically weaker rather than a logically stronger
description of the data. (Sober 2008, 53)

While both the evidentialist (or ‘Fisherian’) and the decision-theoretic approach to
significance testing invoke the concept of a p-value, Sober’s objection applies in dif-
ferent ways. In the case of the Fisherian approach, Sober’s objection applies directly,
as the notion of evidential support characterised by Spanos’s scheme is based on the
p-value. In contrast, Sober’s objection applies to the decision-theoretic approach in
an indirect way; it requires a principle connecting accept/reject decisions with the
notion of evidence. One such principle is given by Sober:4

If learning that e is true justifies you in rejecting (i.e., disbelieving) the propo-
sition P , and you were not justified in rejecting P before you gained this

2Note that Spanos offers a more sophisticated evidential interpretation of hypothesis testing in his joint
work with Mayo (Mayo and Spanos 2006).
3The probability of rejecting a true null hypothesis is referred to as a type I error in the Neyman-Pearson
framework. Additionally, the Neyman-Pearson theory takes the type II error, that is, the probability of
accepting a false null hypothesis, into account. A detailed description of the Neyman-Pearson theory,
however, is not required for the purpose of this paper. I also set aside any interpretational issues resulting
from hybrid forms of statistical testing combining Fisherian ideas with aspects of the Neyman-Pearson
approach (e.g., Mayo 1996).
4Notation has been amended for consistency. Italics in original.
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information, then e must be evidence against P . If learning that e is true jus-
tifies you in accepting (i.e., believing) the proposition P , and you were not
justified in rejecting P before you gained this information, then e must be
evidence for P . (Sober 2008, 5)

The details of such a principle are not of concern here. What matters is that rejec-
tion needs to be understood as a form of ‘evidential rejection’ for Sober’s objection
to apply to the decision-theoretic approach to significance testing.5

2 Interpreting PTE

PTE is regularly invoked in philosophical discussions of scientific method. For
instance, is has been argued that consensus methods in phylogenetic inference are in
conflict with PTE (Barrett et al. 1991). Further, meta-analysis in medicine has been
criticised on the grounds that it violates PTE (Stegenga 2011). In order to assess
whether significance tests violate PTE, it has to be asked what this principle asserts
in the first place. I will approach this question in an iterative manner by refining the
interpretation of PTE in a number of steps. Sober (2008, 41) describes PTE as a ‘prag-
matic’ principle, asserting that you should take account of everything you know. The
roots of this principle can be traced back to Carnap’s inductive logic. Inductive logic
aims to assign an objective probability, called ‘degree of confirmation’, to a hypothe-
sis based on the relationship between hypothesis and evidence. In this context Carnap
introduces what he calls the ‘requirement of total evidence’:

In the application of inductive logic to a given knowledge situation, the
total evidence available must be taken as basis for determining the degree of
confirmation. (Carnap 1962, 211)

Synthesizing Sober’s and Carnap’s remarks, a first interpretation of PTE, denoted
as PTE1, could then read like this: Take into account all available information when
making inferences about a hypothesis of interest.

In order to assess the merits of PTE1, let us return to the fish example introduced
earlier. Following PTE1, one should take into account all available information when
making inferences regarding the mean adult fish size. One problem with PTE1 is that
in any real life situation it is unclear what the term ‘all available information’ amounts
to. There is no such a thing as the logically strongest data set.6 We can always add
further attributes to the description of the data set. For instance, we can enrich the
description of the data set containing the measurements of the fish population by

5For a further discussion, see Sober (2008, 5-7).
6Data d1 are said to be logically stronger than data d2 if and only if d1 logically entail d2. Further, data
d1 are said to be strictly logically stronger than data d2 if and only if d1 logically entail d2 but d2 do not
logically entail d1. Similarly, data d1 are said to be logically weaker than data d2 if and only if d2 logically
entail d1. And, data d1 are said to be strictly logically weaker than data d2 if and only if d2 logically entail
d1 but not vice versa.
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noting whether, say, the fish were difficult to catch, whether it was raining, and
whether Chelsea FC played that day.7

Given the problems with the notion of a logically strongest data set aiming to
capture ‘all available information’ in an inference situation, an obvious remedy is
to formulate PTE in terms of a contrastive principle. The second reading of PTE,
denoted as PTE2, therefore reads as follows: Suppose data d1 are strictly logically
stronger than data d2, then one should use data d1 when making inferences about the
hypothesis of interest.

While PTE2 is more satisfactory than PTE1, it still has consequences that will
strike many readers as counterintuitive. In particular, PTE2 seems to give the false
answer to the question of whether we are always doing something wrong if we use
a logically weaker data set. It seems uncontroversial that PTE only requires using
relevant information. So, using a strictly logically weaker data set is unproblematic if
the additional information in the logically stronger data set is irrelevant. Sober writes:

Although the principle of total evidence says that you must use all the relevant
evidence you have, it does not require the spilling of needless ink. It does not
require you to record irrelevant information. (Sober 2008, 44, my italics)

In a similar vein, Carnap (1962, 211) distinguishes between relevant and irrelevant
evidence and demands either that an agent knows “nothing beyond [evidence] e or
that the totality of his additional knowledge i be irrelevant for [hypothesis] H with
respect to e”.8 Both Sober’s and Carnap’s refinements of PTE point to a third reading,
asserting that one should take into account all relevant information when making
inferences regarding a hypothesis. Again, it is preferable to phrase PTE in terms of a
comparative claim (denoted as PTE3): Suppose data d1 are strictly logically stronger
than d2, then one should use data d1 if the additional information contained in d1 is
relevant for the inference at hand.

PTE3 naturally raises the question of how to establish whether the strictly logi-
cally stronger data are relevant for the inference at hand. Again, the existing literature
offers some insights. Suppose data d1 are strictly logically stronger than data d2. Car-
nap’s criterion for establishing that d1 is relevant for hypothesis H given d2 requires
checking whether changing between d1 and d2 changes the degree of confirmation
of H . Obviously, Carnap’s relevance criterion is formulated in terms of his inductive
logic. Abstracting from the details of Carnap’s account, leads to the following, more
general relevance criterion (denoted as RC): data d1 are relevant for hypothesis H

given data d2 (with d1 ⇒ d2 and d2 � d1) if and only if using d1 rather than d2
changes the evidential assessment.9

7Note that the notion of logical entailment between data sets is agnostic about whether, speaking somewhat
loosely, a data set is strengthened by adding more data (e.g., by taking measurements of more fish) or by
providing a more fine grained description of the existing data (e.g., by taking more detailed measurements
of the same fish).
8Notation has been amended.
9Note that based on RC relevance is a triadic relation; it defines the relevance of a strictly logically stronger
data set for a hypothesis given a strictly logically weaker data set.
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How can RC be put into practice? I will argue that applying RC presupposes
what I will call a ‘criterion for evidential assessment’ (or ‘theory of evidence’ for
short). Here, a criterion for evidential assessment refers to any account that specifies
conditions under which some data d provide evidential support for a hypothesis H .
As understood here, a criterion for evidential assessment is generic in character and
supposed to capture a variety of philosophical and statistical accounts of evidence.
According to the Bayesian theory of evidence, for instance, data d provide evidential
support for hypothesis H if and only if the posterior probability of H exceeds the
prior probability of H :10

Data d are evidence for hypothesis H if and only if P(H |d) > P (H).

Similarly, the law of likelihood (LL) (Hacking 1965) qualifies as a criterion for
evidential assessment even though it warrants only contrastive evidential claims. That
is, LL establishes conditions under which some data d provide evidential support for
one hypothesis H1 over another hypothesis H2:

Data d favour hypothesis H1 over hypothesis H2 if and only if P(d|H1) >

P (d|H2).11

A third prominent theory of evidence is provided by Mayo (1996). Mayo suggests
that data d are evidence for hypothesis H just in case that H passes what she calls
a ‘severe test’ with d. Hypothesis H passes a severe test with d if and only if a) d

‘fits’ or ‘agrees with’ H (with some suitable notion of ‘fit’) and b) there is a low
probability that the test would have produced a result that fits H at least as well as d

does, if H were false.
Having introduced the notion of a theory of evidence, I am in a position to state

my preferred reading of PTE, denoted as PTE4. The principle reads as follows:

Suppose data d1 are strictly logically stronger than data d2, then an inference
about hypothesis H should be based on d1 if changing between d1 and d2
changes the evidential assessment.

Alternatively, PTE4 can be formulated in terms of the notion of relevance captured
by RC: Suppose data d1 are strictly logically stronger than data d2 with d1, then an
inference about hypothesis H should be based on d1 if data d1 are relevant for H

given d2. As discussed, a theory of evidence has to be presupposed in order to apply
PTE4.

The function of PTE4 can be best illustrated by means of an example. Suppose
we evaluate evidential claims within a likelihoodist framework. We observe ten coin
tosses. It is assumed that the tosses are independent and each toss follows a Bernoulli

10This is sometimes referred to as the ‘relative’ Bayesian notion of evidence (e.g., Hartmann and Sprenger
2010).
11This is typically referred to as the qualitative part of the law of likelihood. The quantitative part asserts
that the likelihood ratio P(d|H1)

P (d|H2)
measures the strength of the evidence. For the purpose of this paper I

will focus exclusively on the qualitative part of the law of likelihood. While it is in principle possible that
the choice between logically stronger and weaker data does not matter for qualitative questions but does
matter for quantitative questions, nothing of import depends on this distinction in the context of the paper.
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distribution with parameter p denoting the probability of ‘heads’. The hypotheses
under consideration are H1 : p = 0.5 and H2 : p = 0.6. We are given the following
three description of the observational data:

• d1 = (H, H, T , H, T , T , T , H, H, H)
• d2 = 6 × H, 4 × T
• d3 = (H, H, T , H, T , T , T , (H ∨ T ), (H ∨ T ), (H ∨ T ))

That is, data d1 contain the outcomes of the ten coin tosses in its temporal order,
data d2 only note the frequency of the events ‘heads’ or ‘tails’ and data d3 note
the outcomes of the first seven tosses but only tell us that the last three tosses have
occurred but not the outcomes of these last three tosses. As a result d1 strictly log-
ically entails both d2 and d3. Since both hypotheses assign probabilities to all three
data sets, we do not need to invoke any further assumptions in order to specify the
probability measure required for applying LL. Suppose we start with data d3. Accord-
ing to LL, the data favour hypothesis H1 over hypothesis H2 since P(d3|H1) >

P (d3|H2). Does PTE4 prescribe using the strictly logically stronger data d1 when
making inferences regarding the two hypotheses of interest? The answer is yes, since
data d1 favour hypothesis H2 over hypothesis H1 and, hence, change the (qualitative)
evidential assessment. Now, suppose we start with data d2. Data d2 favour hypothesis
H2 over hypothesis H1. Hence, the evidential assessment remains unchanged if we
move from data d2 to data d1. Both data sets favour the same hypothesis. As a result,
PTE4 does not force us to operate on the logically stronger data set in this case.12

At this stage one might think about further aspects that should be taken into
account when formulating PTE. For instance, I have presumed that the data d1 and d2
are freely available and that they can be analysed without any difference in computa-
tional cost. These assumptions might not be warranted in a more general discussion of
PTE. However, for the purpose of examining Sober’s argument against significance
testing I set these issues aside.

3 Sober’s objection revisited

Having made the case for PTE4 as an adequate interpretation of PTE, I will now turn
to the question of whether significance testing violates PTE as Sober suggests. In
order to assess what data set should be used for inductive inference in any particular
application, PTE4 requires the prior specification of a theory of evidence. Without
such a specification PTE4 cannot be applied and, hence, neither be satisfied nor vio-
lated. The statistical framework that determines what counts as evidence is therefore
primary to PTE. Sober, however, does not explicitly endorse a theory of evidence in
his argument. In order to proceed, I will first adopt LL as the theory of evidence,
given the central role of LL in Sober’s writings (e.g., Sober 2009). PTE4, however,
does not force us to make this choice as the principle is neutral regarding the question
of what theory of evidence to adopt in the first place.

12See also Sober (2008, 45).
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As PTE4 is concerned with prescribing the choice of data for inductive inference,
the question is how this principle can be used to evaluate a statistical technique such
as significance testing. A first answer might suggest comparing the data set used by
the significance tester with the data set used by the likelihoodist. This suggestion,
however, is problematic as both approaches start with the same data set, that is, a
realisation of a random sample. So, there is no difference between the significance
tester and the likelihoodist in this respect. In order to get Sober’s argument off the
ground, we have to compare a different pair of data sets. Since Sober’s objection is
concerned with the use of p-values for inductive inference, we will compare the real-
isation of the random sample used by the likelihoodist with a ‘data’ set containing
only information about the p-value. In that case it is an open question whether chang-
ing between these two data sets affects the evidential assessment by means of LL.
I will show that there is no universal conflict between PTE and the use of p-values
for inductive inference. While violations do occur, there exists a large and important
class of significance tests for which no conflict arises.

As an illustration, let us return to the test of the mean of a normal distribution with
known variance (i.e., the ‘fish example’) introduced earlier. In that case the data are
given by the realisation x of the random sampleX = (X1, X2, ..., Xn), denoted as d1,
and the p-value resulting from this sample realisation, denoted as d2. My argument
proceeds in two steps. In a first step, I will show that the data can be weakened in
accordance with PTE4 by moving from data d1 to data d̃1 consisting of a realisation
of the sample mean x̄. In a second step, I will examine whether the data can be
further weakened from data d̃1 to data d2. As it will turn out, the second step requires
distinguishing between one-sided and two-sided tests.

The first step of modifying the problem by considering the logically weaker data
d̃1 rather than data d1 is warranted since the sample mean T (X) = X̄ is a sufficient
statistic for the mean of the normal distribution. Formally, any real-valued function
T = r(X1, X2, ..., Xn) of the observations in the random sample is called a statistic.
A statistic T is a sufficient statistic for parameter θ if for each t , the conditional
distribution of X1, X2, ..., Xn given T = t and θ does not depend on θ . Speaking
informally, a sufficient statistic summarizes all the information in a random sample
that is relevant for estimating the parameter of interest. In particular, summarizing
the data by means of a sufficient statistic T (X) rather than the random sample X

leaves the likelihood ratio within a class of hypotheses - here, hypotheses regarding
the mean of the normal distribution - constant (Hacking 1965, 110). Hence, PTE4
does not demand using the strictly logically stronger data d1 rather than data d̃1 when
the theory of evidence is provided by LL.13

13Note that while the statistic T (X) = X̄ constitutes a sufficient statistic for the mean of the normal
distribution, one cannot assume that a single sufficient statistic exists for any parameter of interest. For
some parameters, such as the centre of the Cauchy distribution, no single statistic is sufficient. More
systematically, the Pitman-Koopman-Darmois theorem states that under certain regularity assumptions on
the probability density, a necessary and sufficient condition for the existence of a sufficient statistic is that
the probability density belongs to the exponential family. The exponential family (or Koopman-Darmois
family) includes many of the most common probability distributions including the normal, exponential,
gamma, beta, Bernoulli and Dirichlet distributions.
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Next, we have to evaluate whether using data d2 rather than data d̃1 violates PTE4.
I will show that there exists a one-to-one function between the p-value and the value
of the sufficient statistic T (X) = X̄ in the case of the one-sided test but not in the
case of the two-sided test. As the one-to-one function of a sufficient statistic is itself
sufficient, the one-sided p-value is therefore a sufficient statistic for the mean of the
normal distribution.

Let us consider the one-sided test first. Needless to say, there exists a mapping
from the value of the sample mean X̄ to the p-value P(τ(X) ≥ τ(x); H0 is true) since
the test statistic is defined as τ(X) = √

n(X̄ − μ0). What about the opposite direc-
tion? Suppose we are given the p-value P(τ(X) ≥ τ(x); H0 is true) resulting from
the realisation of the sample mean x̄. As the test statistic τ(X) follows a standard nor-
mal distribution under hypothesisH0 we can use a standard normal table to infer τ(x)

from the p-value. Based on the definition of the test statistic as τ(X) = √
n(X̄−μ0),

we can then infer the realisation of the sample mean x̄ by simple algebraic transfor-
mations. So, there exists a function from the p-value to the value of the sufficient
statistic X̄.

Summing up, I have established a one-to-one function between the value of the
sufficient statistic X̄ and the p-value. This implies that the one-sided p-value consti-
tutes a sufficient statistic for the mean of the normal distribution. While Sober (2008,
45) stresses the importance of sufficiency in the context of PTE, he does not mention
that for a large class of significance tests the p-value constitutes a sufficient statistic.
By applying the same reasoning that warranted the use of data d̃1 rather than data d1,
I conclude that using data d2 instead of data d̃1 does not not violate PTE4.

It is worth pointing out that the argument developed here sits well with the result
that one-sided p-values can be interpreted as likelihood ratios (DeGroot 1973). DeG-
root shows that for a given null hypothesis H0, a set of alternative hypotheses H1 can
be constructed such that the p-value of a one-sided test is numerically identical with
the likelihood ratio of the null hypothesis and the family of alternative hypotheses.14

At the same time my argument differs from DeGroot’s result. I have made no specific
assumptions about the alternative hypothesis (or the family of alternative hypotheses)
considered in a likelihood evaluation that would warrant drawing conclusions regard-
ing the numerical equivalence between p-values and likelihood ratios. My argument
holds for any alternative hypothesis about the mean of the normal distribution. This
does not mean, however, that using p-values for inductive inference will yield the
same conclusions as inferences by means of LL. In particular, I do not claim that p-
values serve as a proxy for likelihood based inferences. Rather, I argue that there is
no loss of relevant information when using the information contained in p-values as
opposed to the original data set from a likelihoodist perspective.

Returning to the discussion of Sober’s objection, matters are different in the case
of the two-sided test. Here, the p-value is given by P(|τ(X)| ≥ |τ(x)|; H0 is true).

14More formally, suppose that random variable X has probability density function (pdf) f when the null
hypothesis H0 is true. The set of alternative hypotheses H1 described in terms of the pdf fθ indexed by
the real-valued parameter θ ∈ � is then constructed as follows: If f is the pdf of random variable X, then
fθ is the conditional pdf of X given that X ≥ 0 (DeGroot 1973, 967).
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As a result the p-value does not stand in a one-to-one correspondence with the value
of the sample mean X̄. Speaking graphically, learning about the p-value does not tell
us in which of the two tails of the normal distribution the realisation of the sample
mean is to be found. Hence, there is no mapping from the two-sided p-value to the
value of the sufficient statistic T (X) = X̄. Now, it can then be shown that changing
between data d2 and data d̃1 can lead to conflicting evidential assessments given LL
(see Appendix). As a result the use of p-values violates PTE in the two-sided case.

Given that the choice between the one-sided and the two-sided test has implica-
tions for the question of whether the use of p-values violates PTE4, it is natural to ask
which of these two is to be employed by statisticians. The two-sided test is typically
used to assess whether there is “some effect” in the data if the null hypothesis denotes,
say, the absence of a difference between two treatments. However, Casella and Berger
(1987, 106) critically remark that given their experience few experimenters are actu-
ally interested in the question of whether there is “some difference”. Rather, there is
a direction of interest in many experiments, such as establishing that “the new treat-
ment is better”, which renders the use of a two-sided test inappropriate. While the
statistical issue of one-sided versus two-sided testing cannot be resolved in the cur-
rent paper, it is clear that a one-sided p-value contains information about the direction
of the effect, which is lost in the two-sided p-value.15 So, if the direction of the effect
matters to the investigator, there is a prima facie reason for employing a one-sided
test. One-sided tests therefore constitute an important class of significance tests.

4 Other theories of evidence

So far, the discussion in this section presupposed LL as the theory of evidence needed
to apply PTE4. In order to complete the discussion of Sober’s argument, I will also
consider the Bayesian and the error-statistical accounts of evidence. As it turns out,
the conclusion will be the same: for the class of one-sided significance tests with
sufficient test statistic there is no conflict with PTE while the use of two-sided tests
violates PTE.

In order to relate the previous discussion to the analysis of the Bayesian account,
the following observation is helpful:16 Suppose T = T (X) is a sufficient statistic for
parameter θ with parameter space � equal to an interval of real numbers. Then, for
every possible prior prior probability density for θ the posterior probability density
of θ given X = x depends on x only through T (x). No matter what prior one uses,
one only has to consider the sufficient statistic for Bayesian inference, because the
posterior distribution given T = T (x) is the same as the posterior given the data
X = x. As the p-value of a one-sided test invoking a sufficient statistic can itself be
considered as a sufficient statistic, conditioning on a data set containing information
about the p-value is the same as conditioning on the data X = x. Hence, there is no

15For proponents of one-sided testing see, for instance, Kaiser (1960) and Rice and Gaines (1994); for
two-sided testing see, for instance, Dubey (1991) and Lombardi and Hurlbert (2009).
16See DeGroot and Schervish (2002, 377), exercise 16.
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conflict between the use of p-values and PTE4 for this class of significance tests from
a Bayesian perspective.

Again, it is important to stress that this argument differs from DeGroot’s (1973)
and Casella and Berger’s (1987) results that under certain assumptions p-values can
be interpreted as posterior probabilities. Analogous to the observation that p-values
are numerically identical to likelihood ratios, DeGroot identifies improper priors for
which a one-sided p-value and posterior probability match. Similarly, Casella and
Berger demonstrate that for many classes of priors there is a close numerical relation-
ship between the posterior probability of the null hypothesis and a one-sided p-value.
In contrast, showing that from a Bayesian perspective the use of a one-sided p-value
is not in conflict with PTE does not allow any inferences with regard to the numerical
equality of p-values and posterior probabilities.

Turning to Mayo’s error-statistical account, an important difference to Bayesian
and likelihood theories of evidence has to be noted right from the start. As the error
statistician does not see a general problem in invoking tail probabilities for inductive
inference, the relevant question is what kind of tail probability is suitable for eviden-
tial assessment. At the heart of the error-statistical theory is the quantitative measure
of severity. In order to illustrate this tail probability, consider the following test sce-
nario. Suppose a random variable is normally distributed with known variance and
unknown mean μ0. Further, suppose one wants to assess the severity with which the
hypothesis H0 : μ ≤ μ0 passes a test with the realisation of random sample X = x

against the alternative H1 : μ > μ0. Again, the test statistic τ(X) = √
n(X̄ − μ0)/σ

is employed to measure deviations from H0 in the direction of the alternative hypoth-
esis H1. The severity with which H0 passes the test with data x is then defined as
the probability that the test statistic would have taken a larger value if the alternative
hypothesis H1 had been true:

SEV (μ ≤ μ0)(x, H1) = P(τ(X) > τ(x); μ > μ0).

Since the alternative hypothesis H1 consists of a continuum of point hypotheses it
is unclear, however, how to evaluate this probability from a frequentist perspective.
Mayo and Spanos (2006) observe that SEV (μ ≤ μ0)(x, H1) is bounded from below
by the probability P(τ(X) > τ(x); μ = μ0), which is the one-sided p-value of the
point null hypothesis μ = μ0. As a result there is a close mathematical relationship
between severity and one-sided p-values.

In order to assess whether the use of p-values violates PTE from an error-statistical
perspective, one has to ask whether changing from data d1 = x to data d2 containing
information only about the p-value changes the evidential assessment. Again, the
difference between one-sided and two-sided p-values is crucial. As the one-sided p-
value stands in a one-to-one correspondence with the value of the test statistic τ(X)

(and, hence, test statistic T (X) = X̄), using data d2 rather than d1 is sufficient for
establishing the severity of the test. Once the value of T (X) = X̄ is known, one
can calculate the severity of this test. Using a one-sided p-value does therefore not
violate PTE from an error-statistical perspective. In contrast, the two-sided p-value
does not allow to establish the severity of a test, as information about the direction of
the effect is lost and the value of test statistic T (X) = X̄ cannot be established based
on knowledge of the two-sided p-value.
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Table 1 Summary of results

One-sided test (with sufficient test statistic) Two-sided test

Likelihoodism PTE satisfied PTE violated

Bayes PTE satisfied PTE violated

Error statistics PTE satisfied PTE violated

By highlighting a difference between one-sided and two-sided tests, the error-
statistical position mirrors the likelihoodist and Bayesian views on the relationship
between PTE and significance testing. All three accounts agree that the use of one-
sided p-values with sufficient test statistic is in accordance with PTE while the use
of two-sided p-values violates this principle (see Table 1).

This result should not be too surprising since all three accounts of evidence
subscribe to the Sufficiency Principle (SP). In order to state SP, the notion of the
evidential meaning of an experimental outcome has to be introduced. The ‘eviden-
tial meaning’ of outcome x of experiment E, denoted as Ev(E, x), is supposed to
capture the “essential properties” of the statistical evidence provided by the observed
outcome x of experiment E (Birnbaum, 1962, 270). The two experiments E (with
outcome x) and E′ (with outcome y) being ‘evidentially equivalent’ is denoted by
Ev(E, x) = Ev(E′, y). SP then reads as follows (Birnbaum 1962):17

If E is a specified experiment, with outcome x; if T = T (X) is any sufficient
statistic; and if E′ is the experiment derived from E, in which any outcome
x of E is represented only by the corresponding value T (x) of the sufficient
statistic; then for each x, Ev(E, x) = Ev(E′, T (x)).

In essence, SP states that the evidential meaning of an observation depends only on
the observed value of a sufficient statistic. Since the p-value of a one-sided test with
a sufficient test statistic is itself sufficient, all three accounts of evidence agree that
this quantity captures the evidential meaning of the observed data. SP is therefore to
be seen as a statistical explication of PTE by specifying the conditions under which
an evidential assessment should be unaffected when moving to a strictly logically
weaker description of the data.

A final word on the question of whether to use a one-sided or a two-sided test. The
present discussion suggests a further argument for the use of one-sided p-values. As
using one-sided tests with a sufficient test statistic is in accordance with PTE from a
variety of perspective of what counts as evidence - including likelihoodist, Bayesian
and error-statistical positions - this supports the view of choosing a one-sided over a
two-sided test.

17Notation has been amended.
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5 Conclusion

The paper proposed PTE4 as an adequate interpretation of PTE. According to PTE4,
strictly logically stronger data should be used if they affect the evidential assessment.
Adopting this interpretation of PTE has consequences for assessing the claim that
significance testing violates PTE. First, there is no theory-independent assessment
of whether significance testing violates PTE. Second, when prominent theories of
evidence are presupposed there is no conflict between the use of p-values and PTE
for a large and important class of significance tests. Whatever the flaws of p-values
and significance tests, violating PTE is not one of them under the premise that a
one-sided test with a sufficient test statistic is employed.
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Appendix

Consider the example of the normal distribution with unknown mean and known
variance. Suppose that a likelihoodist is, for whatever reason, interested in the two
hypotheses H0 : μ = 4 and H1 : μ = 5. (Remember that in order to apply LL two
candidate hypotheses need to be specified.) Further, suppose that data d̃1 contain the
information that the realisation of the sample mean is equal to 4.51cm (i.e., d̃1 : x̄ =
4.51) based on a sample of, say, n = 10 measurements. Data d2 contain numerical
information about the two-sided p-value P(|τ(X)| ≥ |τ(x)|; H0 is true) and, hence,
only tell us that the realisation of the sample mean is equal to 3.49cm or to 4.51cm
(i.e., d2 : x̄ = 3.49 ∨ x̄ = 4.51). I will show that changing between data d̃1 and data
d2 leads to conflicting evidential assessments given LL.

Before applying LL, a difficulty has to be dealt with. Since the normal distribu-
tion is a continuous probability distribution, the probability of observing the event
X̄ = 4.51 is equal to zero for both candidate hypotheses. Hence, by comparing
the probability of the data under the candidate hypotheses, LL does not favour one
hypothesis over the other. Instead of comparing the probability of the observation,
likelihoodists therefore compare the value of the probability density of the sam-
ple mean X̄ for each candidate hypothesis (here denoted as fH0(t) and fH1(t)) at
t = 4.51. Following this procedure, the data favour H1 over H0 based on d̃1 since
fH1(4.51) > fH0(4.51).

http://creativecommons.org/licenses/by/4.0/
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The next step is to evaluate and compare the likelihoods P(X̄ = 3.49 ∨ X̄ =
4.51|H0) and P(X̄ = 3.49 ∨ X̄ = 4.51|H1). Let us focus on P(X̄ = 3.49 ∨ X̄ =
4.51|H0). This is a somewhat unusual likelihood to evaluate, as likelihoodists typi-
cally consider a realisation of the random sample as the data set. So, how to proceed?
I assume that the events X̄ = 3.49 and X̄ = 4.51 are mutually exclusive (under H0).
Hence, P(X̄ = 3.49 ∨ X̄ = 4.51|H0) equals P(X̄ = 3.49|H0) + P(X̄ = 4.51|H0).
By applying the reasoning from the previous paragraph, the sum of probabilities
P(X̄ = 3.49|H0) + P(X̄ = 4.51|H0) is then evaluated by means of the sum
fH0(3.49) + fH0(4.51). As fH0(3.49) + fH0(4.51) > fH1(3.49) + fH1(4.51) the
data favour H0 over H1 based on the strictly logically weaker data d2. As a result
changing between data d̃1 and d2 changes the evidential assessment. PTE4 therefore
demands that inferences regarding the mean of the normal distribution are based on
the strictly logically stronger data d̃1. Using only information about the p-value as
embodied in d2 violates PTE4 in the two-sided case.
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