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Abstract This paper is a critical response to Andreas Bartels’ (Theoria 55, 7–19,
2006) sophisticated defense of a structural account of scientific representation. We
show that, contrary to Bartels’ claim, homomorphism fails to account for the phe-
nomenon of misrepresentation. Bartels claims that homomorphism is adequate in
two respects. First, it is conceptually adequate, in the sense that it shows how repre-
sentation differs from misrepresentation and non-representation. Second, if properly
weakened, homomorphism is formally adequate to accommodate misrepresentation.
We question both claims. First, we show that homomorphism is not the right con-
dition to distinguish representation from misrepresentation and non-representation:
a “representational mechanism” actually does all the work, and it is independent of
homomorphism – as of any structural condition. Second, we test the claim of formal
adequacy against three typical kinds of inaccurate representation in science which,
by reference to a discussion of the notorious billiard ball model, we define as abstrac-
tion, pretence, and simulation. We first point out that Bartels equivocates between
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homomorphism and the stronger condition of epimorphism, and that the weakened
form of homomorphism that Bartels puts forward is not a morphism at all. After
providing a formal setting for abstraction, pretence and simulation, we show that
for each morphism there is at least one form of inaccurate representation which is
not accommodated. We conclude that Bartels’ theory – while logically laying down
the weakest structural requirements – is nonetheless formally inadequate in its own
terms. This should shed serious doubts on the plausibility of any structural account
of representation more generally.

Keywords Scientific representation · Homomorphism · Structuralism ·
Idealization · Modeling

1 Structural approaches

There is by now a long tradition of structural approaches to scientific representa-
tion, starting in van Fraassen (1980) and Suppes (1967) to the most sophisticated
recent accounts by Bartels (2006) and Pincock (2012). The tradition’s critics
(Contessa 2011; Frigg 2006; Giere 1999; Suárez 2003; van Fraassen 2008) have
invoked putative counterexamples to structural notions, displaying instances of scien-
tific modeling where a modelB is accepted as a representation of some object, system
or process A, while failing to hold the required structural morphism relation to A. As
a response, defenders of structural accounts have progressively weakened their con-
straints, from isomorphism to embedding, partial isomorphism and, most recently,
to homomorphism. (Van Fraassen was both an early proponent, and is nowadays a
critic, at least in the terms defended here).

It is unclear in these papers what precise claims are being made on behalf of
structural mapping or morphisms, and what exactly is the work that structures
are supposed to perform.1 More worryingly, perhaps, the notion of structure itself
remains imprecise and elusive. But whatever else is claimed on behalf of structural
morphism, it is clear that the point of providing a structural account of representa-
tion is to provide some elucidation, however partial, of the central notion of scientific
representation. Hence we shall take it that any structural account of representation is
minimally committed to the claim that representation in science is a relation that is
appropriately characterized or described as a kind of structural mapping or morphism.
And indeed most authors in the tradition have invoked structural isomorphism and its
variants as part of an analysis of representation. Thus for instance, it is claimed that:

[T]o understand how an organism performs well using a certain representa-
tional system we have to consider the specific contents of the representation
and how they relate to its reference objects. Content is a necessary component

1We are using the term morphism to refer to any structural mapping regardless of the kind of transfer
of structure from A to B that it implies. Therefore the term should not be understood as a synonym for
homomorphism, which is at best the basic, or most elementary, form a morphism can take.
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of representation, and homomorphisms are necessary to explain this necessary
component. (Bartels 2006, 17)

The evidence for these claims and their reach remains nonetheless surprisingly
unclear. It is in particular often unclear, as we shall point out in this article, whether
isomorphism and its cousins are intended to provide an analysis of the notion of
representation itself, or whether they are merely intended to describe some of the
ways in which representation in science achieves some of its characteristic ends, such
as for instance, the aim of accuracy. In other words, it is unclear whether structural
mappings or morphisms are constitutive of representation in science, or merely some
efficient means for representation to achieve its ends. Defenders of the structural
accounts are often imprecise in shifting from evidence for the weaker case to claims
in favor of the stronger constitutive claim. But the inference from the former to the
latter claim is invalid, since the problem of representation and the problem of accurate
representation are by now well-known to be distinct (Callender and Cohen 2006;
Contessa 2007; Frigg 2006). We believe that there is so far no good argument to the
effect that the evidence for the weaker claim (that structural morphisms are typically
involved in the assessment of the accuracy of many mathematical representations
in science) is also evidence for the stronger claim (that structural morphisms are
constitutive of the nature of scientific representation, i.e. that a structural account
of representation is correct). There are powerful independent arguments against the
stronger claim (see Frigg 2006; Suárez 2003) that recommend a skeptical attitude to
structural accounts of scientific representation in general.

In this paper we analyze the most sophisticated and plausible structuralist account
of representation to date, namely Andreas Bartels’ (2006) homomorphism account.
The account’s main virtue is the alleged capacity of homomorphism to account for
the phenomena of misrepresentation, and indeed we believe this to be one of the
greatest stumbling blocks for structural accounts. Hence we begin in Section 2 by
reviewing the problem of misrepresentation in scientific modelling, in both the mis-
targetting and inaccuracy varieties. As an illustration of the latter, we briefly discuss
the essential features of an elementary yet influential historical case of scientific
modeling: the billiard ball model of gases. We argue that there are three ways in
which scientific models typically misrepresent, and we refer to them as abstraction,
pretence and simulation. We provide bare structural characterizations for all of them
in terms of simple structural renditions of their representational sources and targets.
We argue on the basis of the billiard ball model that scientific models abstract, many
pretend, and some simulate; but that this does not take away any of their descriptive,
predictive and explanatory value. Then in Section 3 we summarize Bartels’ homo-
morphism theory of representation and review his claim that this theory accounts for
misrepresentation. We point out the essential role adjudicated by Bartels to what he
calls the “representational mechanism’. Representational mechanisms have a crucial
role for representation (and misrepresentation) to occur and, since these mechanisms
are independent of any structural mapping, we argue that misrepresentation is not
accounted fully in structural terms. This particularly holds for mistargetting as pre-
sented in Suárez (2003) In Section 4 we dispute the claim that misrepresentation
as inaccuracy is accommodated within Bartels’ structural account. We first point
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out that what Bartels calls homomorphism is in fact a stronger notion, namely epi-
morphism. We then show that epimorphism can not account for either abstraction,
pretence or simulation. Turning to homomorphism proper, which is an extremely
weak structural constraint, amounting to the relation technically known as complete-
ness, we show that it can accommodate pretence kinds of misrepresentation, but not
abstraction. Since we argue that most if not all scientific models abstract, it follows
that even the weakest notion of structural morphism is too strong for scientific rep-
resentation. The formal result is summarized in a table in the final section. In the
concluding section, we admonish philosophers to take greater care with structural
accounts of representation – while structural morphisms may provide good and valu-
able resources to assess the accuracy of many mathematical models in science, they
can not actually account for the very relation of representation.

2 Misrepresentation: mistargetting and inaccuracy

“Scientific representations misrepresent”: This is one of the main points of agree-
ment in the recent literature on scientific representation. Any philosophical theory
or account of scientific representation must not only accommodate but also explain
minimally how representations fail to accurately characterize or describe their entire
subject. Representations always simplify to some degree: this is at the heart of why
they are useful in practice.2 Thus it would be a major objection to any philosophi-
cal account of representation that it does not account for misrepresentation. This has
often been an issue for structural accounts – since on such accounts the conditions
for the accuracy of a representation (the ‘matching’ of relations and properties at the
source and target end) are also the very conditions for establishing the relationship
of representation in the first place. This is most evident an objection to isomorphism
accounts, and the relevant question for us is the extent to which the objection can be
answered by means of suitable weakenings of the isomorphism relation. Yet, there is
a stronger form that the objection may take, which we would like to consider in this
section.

The stronger objection begins with the observation that there are distinct forms of
misrepresentation and that these pose significantly different challenges for structural
accounts. Two main kinds were already identified in Suárez (2003) and referred to
there as mistargetting and inaccuracy. A model may misrepresent by being applied
to the wrong target, perhaps as a result of having been mistakenly taken to be a dif-
ferent model in some particular context. The model’s target is selected as part of the
normative practice of model building that gives rise to it, but a particular agent may,
perhaps out of lack of information or competence, apply it to the wrong target. The
model is in that very context misrepresenting in a rather strong sense: it is used as a
representation of a system or object that it is not intended for. We return to the issue
later on in addressing whether Bartels’ account actually provides necessary and suf-

2Jorge Luis Borges’ wonderful discussion of the one-to-one scale map is an exemplary parody of how a
perfectly accurate representation is also perfectly useless (Borges 1954).
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ficient conditions for representation, and whether these conditions can in some sense
be thought to be ‘structural’. For now, we focus only on the varieties of inaccurate
misrepresentation. More specifically we discuss three forms that inaccuracy can take,
and which we refer to as abstraction, pretence, and simulation.

The rough and ready definition of these terms is as follows: An abstraction essen-
tially neglects some of the features of the target system it is about; a pretence ascribes
to the target system features that this does not possess; a simulation both abstracts and
pretends: it both neglects some of the actual features of the system and ascribes fea-
tures to the system that it does not possess. We discuss these distinctions in relation to
one of the best known and most widely discussed examples of an analogical model in
the history of philosophy of science, namely the so-called ‘billiard ball model’ (Hesse
1970). Hesse presents this model as consisting of a negative, positive and neutral
analogy between macroscopic billiard balls and gas molecules in a container. Thus
in her famous dialogue between the Duhemist and the Campbellian, the Campbel-
lian lists the properties of billiard balls and classifies them in three groups in relation
with the analogy with gas molecules. In the negative analogy (the properties that per-
tain to billiard balls but not gas molecules) there are colour, hardness, brightness; in
the positive analogy (the properties that billiard balls and gas molecules share) there
are motion and impact. But there is a third group of properties that constitute what
Hesse calls the neutral analogy. These are in the words of Hesse’s Campbellian, “the
properties of the model about which we do not yet know whether they are positive or
negative analogies: These are the interesting properties, because [...] they allow us to
make new predictions.” (Hesse 1970, 8).

Now, Hesse does not describe them, but there is a further group of properties
of interest in the analogical relationship between billiard balls and gases; these are
the properties of the gas that are most definitely not properties of billiard balls. For
instance, the billiard ball model captures microscopic features of elastic collisions
between gas molecules to some extent, but it does not say anything informative
regarding the macroscopic features of the gas, such as volume, density and pres-
sure. We find ways to draw inferences to those macroscopic properties from the fully
developed kinematical theory of gases, but there are no correlates in a system of
billiard balls for such properties. What’s more, the billiard ball model is positively
misleading as a guide for such properties, since there is no relation in a system of bil-
liard balls between average speed of the balls and the pressure exerted outwards by
the system. Obviously the missing ingredient is free expansion, which is a thermody-
namically irreversible property of any system of gas molecules, but has no equivalent
or corresponding property in any dynamical feature of elastic collisions between clas-
sical particles or massive bodies, such as billiard balls. We could call this the ‘inverse
negative analogy’ (or negative analogy ‘by denial’): they are the properties that per-
tain to gas molecules but not billiard balls. They may even be explicitly denied for
billiard balls (as indeed is the case with free expansion).

In fact, as some careful reading will reveal, the inverse negative analogy is of
particular relevance in Campbell’s original discussion of the example (see Campbell
1957). And there is some sense to this. Hesse had her own reasons to suppress the
discussion of the inverse negative analogy which could only take away from the neu-
tral analogy which she deemed fundamental. It is well known that her chief aim was
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to defend the thesis that the neutral analogy was key to the heuristics of research,
and fully informed its logic. Campbell, however, was mainly preocuppied with the
relation between theory and measurement, and more particularly with the theoretical
presuppositions underlying measurement procedures. In this context the inverse neg-
ative analogy is relevant, for the macroscopic thermodynamic properties in question
are measurable in the laboratory, while the internal microscopic properties of the gas
can only by hypothesized or inferred from observation via the model.

There are further interesting differences between Hesse’s discussion of Camp-
bell’s example and Campbell’s original discussion. Perhaps the most striking is that
Campbell never actually employs the term “billiard ball model”. In fact, he does not
refer to billiard balls once! His analogy is more generally with a system of perfectly
elastic macroscopic balls – and, of course, billard balls are an approximate instance
of these, even though they are not in reality perfectly elastic. But the analogy is fit for
most relevant purposes, since it captures some essential aspects of the relationship
between the laws that apply to both gas molecules and macroscopic yet point-size
elastic balls. As Campbell writes: “The propositions of the hypothesis of the dynam-
ical theory of gases display an analogy [...] to the laws which would describe the
motion of a large number of infinitely small and highly elastic bodies contained in
a cubical box.” (1957, 128). There are however some important points of difference
where the model most definitely goes astray, and they can not be understood to be
part of Hesse’s negative analogy, since they comprise properties of the gas molecules
that the model fails to describe correctly altogether. These properties, which com-
prise what we refer to as the inverse negative analogy, include free expansion, but
also thermal conductivity, and viscosity. As Campbell puts it: “The relation predicted
[between pressure, density, and temperature of the gas and its viscosity] does not
accord with that determined experimentally; in particular it is found that the theory
predicts that the coefficient of viscosity will be be determined by the size and shape
of the containing vessel, whereas experiment shows that it depends, in a given gas,
only on the density and temperature.” (ibid., 134).

While there is no space here to discuss the details fully, the considerations above
already suggest the following distinctions with respect to the ways in which the
elastic macroscopic balls model misrepresents gases. First of all, there are all the
properties of the model elements which are missing in the gases: they constitute the
negative analogy in Hesse’s terms. Thus billiard balls are shiny and hard, but gas
molecules are not (they are neither hard nor soft; neither shiny nor opaque). We may
then say that the model pretendswith respect to its target system. It may seem easy to
discharge these properties by simply redefining the model to include only the positive
and neutral analogies. Thus, one may insist, the analogy is not meant with billiard
balls per se but with constructs that are like billiard balls except in those respects in
which billiard balls are positively unlike gas molecules. But there are a number of
problems with this strategy, some of which were already discussed by Hesse. For a
start, the move is of course circular as a definition of the function of the analogy –
since it requires us to already have a hang on what properties are and are not actually
analogous. And things get even worse when we notice that there are also properties
of gases that the system of elastic balls – whether or not billiard balls – can not pos-
sibly be said to have, including thermal conductivity, viscosity and free expansion.
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This is the inverse negative analogy we are emphasizing here and we may say that
the model abstracts in this case. The analogy as based upon the model denies that the
gas has these properties. In some cases the model even positively misleads regarding
the character of such properties in the gas. If we consider viscosity in the example
above, we see that the fact that the model fails to describe it correctly depends on
the fact that it abstracts from density and temperature on which viscosity actually
depends. Instead, according to the model, viscosity rather depends on properties the
billiard ball model pretends about, such as the size and shape of the containing ves-
sel. In these cases we concurrently abstract and pretend about a property of the target
system, thus simulating it. We then say that a model lies about its target whenever it
is deceptive in this sense about it. There is no sense in which this can be put down
to mere “heuristics”. Rather, as Campbell insists, the model analogy is not to be con-
sidered a mere heuristics in the development of a new theory, but must be understood
to be part of the theory itself: “It is often suggested that the analogy leads to the for-
mulation of the theory, but that once the theory is formulated the analogy has served
its purpose and may be removed and forgotten. Such a suggestion is absolutely false
and perniciously misleading” (1957, 129).

Thus we must take seriously that models misrepresent by abstracting away, and
thus ignoring, certain properties of the target system (escape velocity), by pretending
that certain properties of the target system do obtain which actually do not (hardness
and shine) and by simulating, that is, by misleadingly denying that some properties
obtain which in fact do (viscosity, thermal conductivity). What’s more for some and
the very same elements, a model will typically both abstract with respect to some
property, and pretend with respect to some other. In other words, the representation
by models will typically involve both ignoring certain properties that do obtain and
postulating other properties that do not obtain even for the very same sets of elements
in the domain of the model.

Now, let us attempt to represent these distinctions somewhat more formally, in
what we regard as a hospitable framework for structuralism, which assumes that
there are uncontroversial structural representations of both source and target. This is
a strong assumption, but without which the structuralist conception of representation
does not even get off the ground.3 Thus consider a model and its target as two rela-

3One of the referees points out that this is in fact an incredibly strong assumption. As he or she puts
it: “A system of gas molecules is not a set of elements and a family of labelled relations, etc. It has
no labelled relations because it contains no labels [...] The real world thing being represented is not a
structure, whereas the author’s ‘target’ has to be a structure for the author’s discussion to make any sense
at all”. We agree wholeheartedly with this referee. It is indeed the case that a real physical object, a
system, or a phenomenon, can only be said to be a structure under a description. And it is clear (as one of
us has often pointed out, in e.g. Suárez (2010, p.96)) that any structural description is necessarily vastly
underdetermined: Every real object exemplifies multiple, perhaps an infinite number of, structures. This
simple fact puts great pressure upon structuralist claims regarding ontology (to the extent that claims
to the effect that the “world consists only of structure” or some such thing, are rendered vacuous or,
worse, incoherent – as pointed out by e.g. van Fraassen (2006).) We ignore this issue because almost all
the literature that we do address ignores it too, and also because it can only strengthen our critique of
the homomorphism theory of representation. But it is worth pointing out with the referee that general
widespread acquiescence with a false assumption does not make it any less false or unwarranted.
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tional structures, B = 〈B, (RB)〉 and A = 〈A, (RA)〉, with their own domains of
individuals, A and B, and the sets of relations defined over the domains: respectively
(RA) and (RB). A and B are assumed to be similar structures: while the elements
of A and B may be different, the corresponding relations in RA and in RB have the
same number of arguments (Dunn and Hardegree 2001, 10).

We use the bar symbol for tuples of elements of A and B: ā = (a1, ..., an) ∈ An

and b̄ = (b1, ..., bn) ∈ Bn.
We say that a model B abstracts some property RA

j ⊆ An, j ∈ {1, . . . , m}, of a
target system A if and only if there exists ā ∈ An such that RA

j (ā) ∧ ¬RB
j (f (ā)),

where RB
j ⊆ Bn is the corresponding relation of RA

j in B and f is a mapping from
A to B. The abstracted properties are in the inverse negative analogy, or negative
analogy by denial. We then say that the model B pretends some property RB

k ∈ Bn,
k ∈ {1, . . . , m}, of the target system A if and only if there exists b̄ ∈ Bn and ā ∈ An

such that b̄ = f (ā) and ¬RA
k (ā) ∧ RB

k (f (ā)), where RA
k ⊆ An is the corresponding

relation of RB
k in A. The pretended properties are typically in the negative analogy

as originally discussed by Hesse. Finally, we say that a model B simulates a target
A when it both abstracts and pretends some properties of the same elements of A

and of their images in B; formally, for some tuple ā ∈ An with b̄ = f (ā) ∈ Bn,
some RA

j , RA
k ⊆ An and RB

j , RB
k ⊆ Bn, it is true that RA

j (ā) ∧ ¬RB
j (f (ā)) and

¬RA
k (ā) ∧ RB

k (f (ā)).
We have argued in this section, by appeal to a well-known foundational example

in the literature, that models typically simulate their targets, by both abstracting some
of their properties away and misleadingly asserting some of the properties they do
not actually possess. We next turn to the best candidate we know for a structuralist
conception of representation, namely Bartels’ homomorphism theory, and argue that
it can not accommodate these features.

3 Bartels’ homomorphism theory and the ‘representational mechanism’

The main tenets of a structural account of scientific representation can be summa-
rized as follows: (i) model sources and their targets exemplify, instantiate, possess
or at any rate may be described as relational structures in the sense of mathe-
matical logic, or set-theory; (ii) a model represents a target system only if the
relations in the target are partially or totally transferred to the model via some
sort of morphism.

We have provided a definition for relational structure in the previous section. The
transfer required by condition (ii) is accomplished by some function f : A → B.
In model theory a twofold role is ascribed to f . As a mapping, f assures that each
individual in A has one, and only one, corresponding element (an image) in B. But
in addition, as a morphism, f is a structure preserving mapping and it assures that
related objects possess related properties. The existence of a morphism between the
model and its target is what the advocates of the structural approach take to be the
condition for representation: a model B represents a target system A (if and) only if
B is to some extent morphic to A.
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Isomorphism is sometimes advocated as the basic morphism between structures.
For f : A → B to be an isomorphism, several conditions need to be met. First,
f : A → B must be a bijective function, that is, for every b ∈ B there exists an
a ∈ A such that f (a) = b (also known as surjectivity) and, for every a, a′ ∈ A, if
a 	= a′ then f (a) 	= f (a′) (injectivity). Second, for all j and all elements ai of A:
RA

j (a1, ..., an) if and only if RB
j (f (a1), ..., f (an)). In other words, all relations in A

are transferred to B so that the two structures are relationally identical, in the sense
that the properties they define have identical features. (The structures themselves are
obviously not identical since their domains contain different elements).

The idea that isomorphism may constitute representation has been criticized on
several grounds. There are first of all urgent questions regarding the fundamental
assumption that model sources and targets are or may be said to possess structures.
For instance, van Fraassen (2008) suggests that isomorphism alone cannot serve as
a condition of representation because, he argues, the structure A is a “relevant math-
ematical representation” (ibid, 243) of the target system to be represented only by
construction. That is, we must first of all choose a domain of elements A and a set
RA of relations for it as a description of the target system or phenomenon. The claim
that a model B is isomorphic to A, which allows to use B as a representation of A,
depends on the prior act of construction of A which is essentially a conventional and
pragmatic choice.

Another class of objections, raised by Suárez (2003) and reiterated by Frigg
(2006), undermine the attempt to reduce representation to the relation of isomor-
phism, irrespective of whether the fundamental assumption that model sources
and targets are structures or may be described as such. Thus the logical argu-
ment shows that isomorphism and representation do not share logical properties:
while isomorphism is reflexive, symmetric and transitive, representation is non-
reflexive, non-symmetric and non-transitive. The non-sufficiency and non-necessity
arguments show that representation may fail to obtain when isomorphism holds (non-
sufficiency), and may obtain when isomorphism does not (non-necessity). Finally the
misrepresentation argument appeals to the already mentioned fact that inaccuracy is
intrinsic to all scientific representation, while isomorphism seems to leave no room
for either incomplete or incorrect representation.

In response to these objections the advocates of the structuralist account have
proposed weakenings of the isomorphism relation. For instance, Andreas Bartels
(2006) suggests that homomorphism will serve to overcome at least the misrepresen-
tation objection. Roughly speaking, what allegedly makes homomorphism immune
to the criticisms undermining isomorphism is the fact that homomorphism allows
some parts of the model not to have any counterparts in the target, thus leaving the
necessary room to account for inaccurate representation.

Bartels explicitly endorses the structural account of representation when he claims
that homomorphism is a necessary condition for representation: “something, B, can
represent something, A, only if some structure of the represented domain A is trans-
ferred to its image B” (ibid., 7) and that: “B represents A only if B is a homomorphic
image of A” (ibid., 8). The homomorphism account of representation advocated by
Bartels in fact comprises two parts. One part is purely formal, and treats homomor-
phism model-theoretically. The other part concerns the application of the concept
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‘being homomorphic to’ and claims that this concept is extensionally equivalent to
‘to potentially represent ’. Both the formal and the extensional analyses of homo-
morphism provided by Bartels play a role in his attempt to show that homomorphism
accounts for misrepresentation, so let us look at them in turn.

According to Bartels’ definitions, the following three conditions must obtain for
a structure B to be homomorphic to A: for all j , all (a1, ..., an) in An, and all
(f (a1), ..., f (an)) in Bn:

Completeness: if RA
j (a1, ..., an), then RB

j (f (a1), ..., f (an)) (1)

Faithfulness: if RB
j (f (a1), ..., f (an)) then RA

j (a1, ..., an) (2)

Surjectivity: for every b ∈ B, there exists a ∈ A such that f (a) = b (3)

The condition of surjectivity on f assures that all the elements in B are images of one
or more element in A. Completeness rules out the possibility that there is a relation in
A which has not a counterpart in B, so that the information that B provides about A is
complete. On the other hand, faithfulness rules out that there is a relation in B which
has not a counterpart in A, so that B provides a faithful snapshot of the relational
framework in A. We then say that B is homomorphic to A.

The relation of homomorphism thus defined identifies the set or class of structures
to which any structure B is homomorphic, what we may call its homomorphism class.
According to Bartels, these structures constitute the representational content of B,
that is, they are all potential representational targets of B. In order for any of these
potential targets to turn into the actual target of B, a representational mechanism
must pick it out from the homomorphism class as the target for B. A representational
mechanism can be of two kinds: it may arise from an agent’s intentions and pur-
poses (an intentional representational mechanism), or it may be the result of naturally
occurring causal relations (a causal representational mechanism). In the first case,
the selection of the actual target from the homomorphism class is arbitrary, depend-
ing entirely on an agent’s purposes, while in the second case the selection is driven
by some causal facts that are independent of the agent. In either case, the represen-
tational mechanism has in effect the absolutely ineliminable role of picking out the
actual representational target of a particular model B. In spite of this, Bartels claims
that his theory retains its structural character, since homomorphism is nonetheless
“the necessary condition of correct actual representation” (ibid., 12). Let us inspect
this claim a little closer.

Two forms of misrepresentation are generally considered in the literature: inaccu-
racy and mistargetting.4 The three kinds of misrepresentation presented in Section 1
all lead to inaccuracy, which is misrepresentation in the broad sense. As for mistar-
getting, it is “the phenomenon of mistaking the target of a representation” (Suárez
2003, 233).

Now, homomorphism theory is claimed by Bartels to be conceptually ade-
quate, that is, it sharply distinguishes cases where B represents, B does not

4While misrepresentation as inaccuracy is taken into account in Cartwright (1983), Contessa (2011), Frigg
(2006), Giere (1988), Pincock (2011), Teller (2001), Teller (2008), Suárez (2003), Suárez (2004), and van
Fraassen (2008), misrepresentation as mistargetting is presented in Suárez (2003) and Suárez (2004).
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represent, and B misrepresents. This claim is relevant insofar conceptual inade-
quacy is the usual grounds against structural accounts in the literature. Indeed,
it is argued, the fact that structural accounts treat morphisms as necessary con-
ditions for representation leaves no room for the intermediate condition ‘there
is representation and it is incorrect’: either there exists a morphism from A to
B, hence representation, or there exist not morphism and representation does not
obtain.

According to Bartels, such a charge would be unfair to his homomorphism theory.
Indeed, the distinction between the representational content of B and its target allows
the theory to account for the following situation:

If a reference object for B [B] is chosen by a representational mechanism out
of the set of objects potentially represented by B [B], then B [B] will correctly
represent this object. If a reference object for B [B] is chosen which does not
belong to this set, then this reference object will be misrepresented by B [B].
Thus, the case in which something A [A] is misrepresented by B [B] and the
case in which A [A] is not represented by B [B] (i.e. A [A] is not a reference
object of B [B]) are clearly distinct. (2006, 14)

The distinction between target and content of B plays then a crucial role in accom-
modating those intermediate cases where representation occurs, and it is not correct.
In order to illustrate misrepresentation thus conceived, let’s consider a universe of
discourse which allows the following five structures {B,A1,A2,A3,A4}. Among
the five structures, B is homomorphic to A1 and A2 only. We call H the set con-
taining A1 and A2, which then constitute the representational content of B. Now
suppose that a representational mechanism picks A3 as the target of B, thus mis-
representing A3. Consequently, structure A4 is neither a potential target of B, nor
misrepresented by B. Providing a sharp distinction between representing (picking a
target within H), non-representing (having a structure neither belonging to H nor
picked by a representational mechanism), and misrepresenting (having a structure
not belonging to H and nonetheless picked as a target), the homomorphism theory
has the resources to satisfy conceptual adequacy, thus explaining misrepresentation.
In particular, this notion of misrepresentation may be seen to be addressing directly
the concerns raised by Suárez (2003) about mistargetting: the act of ascribing a tar-
get outside the representational content of B may be thought to make his notion of
mistargetting precise.

However, Bartels’ homomorphism is only allegedly conceptually adequate. Bar-
tels claims that we have misrepresentation if a representational mechanism picks a
target for B outside the setH of all the structures B is homomorphic to. Misrepresen-
tation is then the act performed by a representational mechanism to choose as a target
for B a structure which B is not homomorphic to. Of course, homomorphism is nec-
essary to identify the set H of structures over which neither non-representation nor
misrepresentation can occur. However, before a representational mechanism choses
a target for B among the structures outside H, any of these structures could be either
misrepresented or non-represented at all. Therefore, it is the choice made by a repre-
sentational mechanism to actually determine which structure is misrepresented and,
consequently, which one is not represented. In other words, homomorphism alone
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can not help in sharply distinguishing representation, non-representation and misrep-
resentation. This is because misrepresentation is after all a case of representation –
just an incorrect one. Homomorphism was never supposed for Bartels to be a suf-
ficient condition for representation (or mis-representation). But what his discussion
of the representational mechanism reveals at this point is that he does not actually
take it to be necessary either – since the representational mechanism on its own, on
Bartels’ admission, is able to select a representational target, whether it be one out-
side or inside the homomorphism class. (Otherwise we could not even express the
thought that the structure A3 outside the homomorphism class is mis-represented.)
It follows that being picked out by the representational mechanism is what is really
necessary, regardless of homomorphism.5 Nonetheless, the non-sufficiency of homo-
morphism undermines the conceptual adequacy invoked for the theory built on it.
That “a representational intention has to occur” (p. 12) in order to finalize the dis-
tinction between the non-represented and the misrepresented contravenes the claim
that homomorphism “permits” misrepresentation. As Bartels claims, the reason why
homomorphism could be claimed to fail conceptual adequacy is that “a homomor-
phism between relational structures [A] and [B] either exists or does not exist; in
the first case, [B] represents [A], whereas in the second case [B] does not repre-
sent [A]”, thus leaving unexplained “What would it mean for [B] to represent [A],
but incorrectly?”. We have shown that Bartels’ theory does not break this dead-
lock: if there is homomorphism, there is representation; if there is not, we are left
with an indistinct whole where it is not clear what is not represented and what is
misrepresented.

Bartel’s homomorphism theory falls short also as an account of misrepresenta-
tion as mistargetting. For the original objection raised by Suárez was not reliant on
the possibility of ascribing a target that lies outside of the homomorphism class. To
pursue the example above, the objection does not trade on the actual representa-
tional target A3 lying outside the homomorphism class at all. The objection can be
entirely run within the homomorphism class, and in fact it properly belongs there.
For Suárez’s point is that the mistaken target is assumed wrongly to be the target pre-
cisely because it holds the required structural relation, and merely on account of this
fact. The point of misrepresentation by mistargetting is rather that no structural char-
acterization can distinguish structures within the homomorphism class regardless of
whether they are or not picked out as the actual target. In other words, suppose that
the representational mechanism above picked out A1 as the representational target
of B and that someone mistakenly identifies A2 as the target for B. Then there is no
available structural characterization of this mistake since both structures are on equal
terms in the homomorphism class of B. It should be clear that this point survives
Bartels’ disquisition in the quote above entirely.

5In fact, Bartels’ attempt to accommodate the conceptual adequacy seems to resolve in a form of defla-
tionary, or functional, account. Deflationary (Suárez 2004) or functional (Chakravartty 2010) approaches
treat representation as a function of models which allows model users to gain information about the tar-
get at stake via the model. The ascription, or recognition, of the representational function of a model by a
user is then essential to have representation. The crucial role played by the representational mechanism’s
choice in Bartels’ homomorphism theory puts his theory very much in line with those accounts.
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Homomorphism theory seems then to fall short of what would be required for an
adequate account of scientific representation even by Bartels’ own standards. What
we need to see now is whether the homomorphism theory fares any better in dealing
with misrepresentation as inaccuracy, which is after all where the promise of the
account lies in the first place.

4 Structural morphisms and representational inaccuracy

We need to see now if the formal analysis fares any better than the extensional
analysis and enables the homomorphism account to accommodate the inaccuracy
kinds of misrepresentation. We have seen that Bartels identifies three conditions for
homomorphism (Section 3): completeness, faithfulness and the condition that the
f : A → B be surjective. These conditions, if weakened, might “fit the cases in
which representations do not work perfectly” (Bartels 2006, 9). In such cases, Bar-
tels argues, representation may either “lead to false expectations concerning facts in
the represented domain” or “blur some of the fine grained differences existing in
the represented domain” (ibid.). These are precisely cases of misrepresentation as
inaccuracy. In particular, they do recall the formulation we put forward for, respec-
tively, pretending and abstracting. This is why in what follows we treat Bartels’
formal analysis of homomorphism as an attempt to accommodate misrepresentation
as inaccuracy.

4.1 Homomorphism versus epimorphism

Before proceeding, we need to point out a technical issue about the notion of homo-
morphism advocated by Bartels. In the literature, the only condition required for
homomorphism is completeness, i.e., the condition which assures that every fact in A
has a corresponding (atomic or relational) fact in B.6 On the other hand, a surjective
homomorphism is the condition for B to be the homomorphic image of A.7 There-
fore, the notion of homomorphism that Bartels is appealing to does not coincide with
the standard notion of homomorphism nor with homomorphic image. Indeed, besides
completeness and surjectivity of f , Bartels requires an additional condition, namely
faithfulness:

If (i) [faithfulness] and (ii) [completeness] are fulfilled, f is a homomorphism
from A onto B, and B, by virtue of the existence of f , can be said to be an
homomorphic image. (Bartels 2006, 8)

6See Chang and Keisler (1973), Dunn and Hardegree (2001), Hodges (1997), and Hodges and Scanlon
(2013).
7“A relational structure B is said to be a homomorphic image of A if there exists a homomorphism from
A to B that is onto B (in symbols, B = h∗(A)). (A function f maps A onto B [it should be A onto B] if
for every b ∈ B there is an a ∈ A such that h(a) = b).” (Dunn and Hardegree 2001, 15). Read the bold
character in the quote as our A and B.
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It should be noted, however, that a homomorphic image is not necessarily also a
faithful one. Indeed, the structure B can be a homomorphic image of A and yet bear
a relation RB

j which has no counterpart in A.8

Our claim is that the morphism on which Bartels grounds his structural account is
not really homomorphism. Indeed, Bartels claims for the kind of morphism employed
in his theory more properties than those exhibited by standard homomorphism, i.e.,
surjectivity and faithfulness. A good candidate for the notion of homomorphism as
employed by Bartels is the notion of epimorphism as presented by Rothmaler (2005,
Section 2, 474), who claims for it the same properties as Bartels: surjectivity, faith-
fulness and completeness.9 Although Rothmaler’s notion as well is not standard, we
find it appealing for two reasons. First, it helps us to provide a reliable taxonomy of
morphisms, which has been long overdue in the literature. Second, the taxonomy thus
obtained is a useful device to evaluate the adequacy of those theories of representation
built on morphisms, as shown in Section 4.2.

We can now consider the weakenings which, according to Bartels, allow epimor-
phism to accommodate misrepresentation as inaccuracy. The first form of weakening
is on faithfulness and it leads to the notion ofminimal fidelity (Bartels 2006, 9). While
faithfulness in its original formulation (2) requires that the implication RB

j (f (ā)) →
RA

j (ā) holds for all the counterimages of f (ā) ∈ Bn, all j, RA
j ∈ An, and RB

j ∈ Bn,
minimal fidelity allows the implication to hold for some of the counterimages only.
In other words, minimal fidelity admits the following case:

there exists a tuple b̄ ∈ Bn and ā ∈ An, f (ā) = b̄ : RB
j (f (ā)) ∧ ¬RA

j (ā) (4)

The fact that epimorphism is not necessarily injective is crucial here since a one–to–
one correspondence between the arguments in A and their images in B would make
the conditions of faithfulness and minimal fidelity equivalent: given that each bi ∈ B

in the range of f has only one counterimage ai ∈ An, it is just equivalent to claim that
the conditional RB

j (b̄ = f (ā)) → RA
j (ā) holds for all the tuples of counterimages

of b̄ = f (ā) ∈ Bn, or that it holds for at least one tuple.

8Consider two similar structures, A = 〈A, (RA
1 , RA

2 )〉 and A = 〈B, (RB
1 , RB

2 )〉, with A ∈ A =
{a1, a2, a3, a4}, B ∈ B = {b1, b2, b3}. The mapping f : A → B is surjective, and the condition
of completeness holds. Therefore, B is a homomorphic image of A. To find a case where the con-
ditions of completeness and the surjectivity of f (and A and B are similar structures) are satisfied,
but B is not faithful, we need a relation RB

j ∈ B which has no counterpart RA
j ∈ A and, at the

same time, we need to assure that all the relations in A have their counterparts in B. The function
f : A → B is surjective (and not injective) and ascribes to each argument the following images:
f (a1) = b1, f (a2) = b2, f (a3) = b3, f (a4) = b3. Consider now the case that A has the following
family of relations: RA

1 ⊆ A2 = {(a1, a2), (a1, a3)} and RA
2 ⊆ A2 = {(a1, a2), (a3, a4)}. As for B:

RB
1 ⊆ B2 = {(b1, b2), (b1, b3)} and RB

2 ⊆ B2 = {(b2, b1), (b3, b2)}. The relation RB
1 in B thus corre-

sponds to both the relation RA
1 and RA

2 in A, while the relation RB
2 has no counterpart in A. Therefore, B

is a homomorphic image of A while faithfulness is violated.
9The standard definition of epimorphism is “surjective homomorphism”. Therefore Rothmaler adds faith-
fulness as a further condition. As it will turn out in Section 4.2, this notion of epimorphism works fine
also to distinguish the conditions for having epimorphism from those required for having a “homomorphic
image”.
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The second form of weakening is on completeness, and it admits the case where
some, or even all the relations in A are not preserved in B. Weakening on complete-
ness can take two forms: either some relations in A are not represented at all in B, or
some n−tuples in A are not represented at all in B (which is to say, some n−tuples of
images in B do not stand in any relation of 〈RB〉 although their counterimages stand
in the corresponding relations 〈RA〉).

It is worth noticing at this point the major difference between these two types of
weakenings. The weakened form of faithfulness is a proper condition, in the sense
that it does impose some restrictions on the transfer of structure: it cannot be the case
that a relation in A does not have a corresponding relation representing it in B. The
weakened form of completeness, on the other hand, is not a condition at all, it rather
consists in allowing any possible scenario, which is forecast by Bartels himself: “The
fewer relations for which the transfer of structure holds, and the fewer the number of
elements of A to which the transfer is restricted, the poorer the representation will
be with respect to content. In an extreme case, no content will be left” (ibid., 11).
Another, more astonishing, fact about weakened completeness is that it is a violation
of the very minimal condition required for the transfer of structure (i.e. complete-
ness) and, therefore, for there being a morphism at all. Indeed, to restrict the transfer
of structure either to a certain range of arguments or to certain subsets of relations
implies that f is, respectively, neither a well-defined function nor a proper morphism.
Thus no attempt to ground the representational relation on weakened completeness
may be interpreted as providing a meaningful structural account of representation
given that the very notion of morphism on which the account is claimed to be built
would be left out. The relevant weakenings must be of a different kind. Let us see
what Bartels proposes in order to accommodate inaccurate representations.

4.2 Morphisms and misrepresentation (as inaccuracy)

In the previous section we have introduced the weakenings which, according to Bar-
tels, allow to accommodate misrepresentation as inaccuracy. In order to see whether
they actually accomplish the task, here we confront each morphism, both in its stan-
dard and weakened version, with the formalized versions of abstraction, pretence and
simulation that we introduced in Section 2. For the sake of completeness, our anal-
ysis will include also isomorphism which, as mentioned in the previous sections, is
the morphism employed in other structural accounts. Isomorphism demands the fol-
lowing conditions to be satisfied: completeness, faithfulness, and that the mapping
f : A → B be both injective and surjective.10 Our goal is then to verify that for every
morphism there exists at least one form of misrepresentation which is not accommo-
dated, thus showing that none of the three morphisms account for misrepresentation
as inaccuracy. For the sake of clarity, we recapitulate in Table 1 the conditions for
each morphism, marking with a star the weakened morphisms that we have discussed.

10Dunn and Hardegree (2001, 17) consider the injectivity and surjectivity of f only as a condition for
isomorphism. Chang and Keisler (1973, 21), Hodges (1997, 5) and Robinson (1963, 25) consider also
faithfulness as a condition for isomorphism.
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Table 1 Morphisms

Morphism Characteristic conditions

Homomorphism completeness

Epimorphism surjectivity of f , completeness, faithfulness

Epimorphism∗c surjectivity of f , weak completeness, faithfulness

Epimorphism∗f surjectivity of f , completeness, weak faithfulness

Isomorphism surjectivity and injectivity of f , completeness, faithfulness

Isomorphism∗c surjectivity and injectivity of f , weak completeness, faithfulness

Isomorphism∗f surjectivity and injectivity of f , completeness, weak faithfulness

Epimorphism∗c,f surjectivity of f , weak completeness, weak faithfulness

Isomorphism∗c,f surjectivity and injectivity of f , weak completeness, weak faithfulness

Two things need to be noted before proceeding. First, cases where the morphisms
are weakened on completeness are not to be considered since, for the reasons pre-
sented in the previous section, they are not morphisms at all. Second, in Table 1 the
following two cases are not listed: the case of a surjective homomorphism, and the
case of a faithful homomorphism (without surjectivity). The first case satisfies the
conditions for B to be a homomorphic image of A. The surjectivity of f : A → B,
however, is neither a sufficient nor a necessary condition for homomorphism, so it
can be omitted for the sake of argument without any loss of generality. On the other
hand, a faithful homomorphism f which is not surjective is not an interesting case
to consider, since faithfulness holds for the elements in B which are in the range
of f : A → B only. In what follows, these quantifiers will be omitted whenever
redundant.

We consider abstraction first, which we have formalized as follows:

∃j, RA
j ⊆ An, RB

j ⊆ Bn, ∃ā ∈ An : RA
j (ā) ∧ ¬RB

j (f (ā)) (5)

Let’s start with homomorphism. The formula (1) describing the completeness con-
dition is logically equivalent to the following formula: ¬RA

j (ā) ∨ RB
j (f (ā)) whose

logical contradiction ¬(¬RA
j (ā) ∨ RB

j (f (ā))) is, in turn, equivalent to the formula

for abstracting RA
j (ā) ∧ ¬RB

j (f (ā)). In other words, the condition of complete-
ness is logically incompatible with abstraction. Epimorphism and isomorphism, both
in their standard version and in the version where only faithfulness is weakened,
all satisfy completeness. Therefore epimorphism, epimorphismf , isomorphism and
isomorphismf are logically unsuited to accommodate abstraction.

The second form of misrepresentation is pretence, which we have formalized as
follows:

∃j, RA
j ⊆ An, RB

j ⊆ Bn, ∃b̄ ∈ Bn, ā ∈ An, b̄ = f (ā) : ¬RA
j (ā) ∧ RB

j (f (ā)) (6)

We have just seen that homomorphism and, more precisely, the condition of
completeness, is logically equivalent to the formula: ¬RA

j (ā) ∨ RB
j (f (ā)). Hence,
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Table 2 Morphisms and
inaccuracy Abstraction Pretence Simulation

Homomorphism NO YES NO

Epimorphism NO NO NO

Epimorphism∗f NO YES NO

Isomorphism NO NO NO

Isomorphism∗f YES NO NO

homomorphism allows for pretence as a logical possibility. On the other hand, pre-
tence logically contradicts faithfulness. Indeed, the formula (2) for faithfulness is
equivalent to RA

j (ā) ∨ ¬RB
j (f (ā)) whose logical contradiction is exactly ¬RA

j (ā) ∧
RB

j (f (ā)). Therefore, any morphism that satisfies faithfulness can not accommodate
pretence. This evidently holds for epimorphism and isomorphism. What about the
weakened version of faithfulness? We have seen that weakening faithfulness admits
of a tuple ā ∈ A which does not stand in relation RA

j ⊆ An even though its image

b̄ ∈ B stands in the the corresponding relation RB
j ⊆ Bn. Weakened faithfulness,

then, allows pretence in principle. However, for weakened faithfulness to actually
accommodate pretence, it is crucial that the function f is not injective, otherwise
weakened faithfulness can not accommodate pretence. Therefore, epimorphism∗f

accommodates pretence, but epimorphism, isomorphism and isomorphism∗f do not
accommodate this form of misrepresentation.

The third form of misrepresentation is simulation, which we have formalized as
follows:

∃j, k, RA
j , RA

k ⊆ An, RB
j , RB

k ⊆ Bn, ∃ā ∈ An, b̄ ∈ Bn, b̄ = f (ā) :
(RA

j (ā) ∧ ¬RB
j (f (ā)))

︸ ︷︷ ︸

abstracting on ā,b̄

∧ (¬RA
k (ā) ∧ RB

k (f (ā)))
︸ ︷︷ ︸

pretending on ā,b̄

(7)

Simulation is what obtains from both abstracting and pretending on the same tuple,
which is a common phenomenon in modeling (as stressed by Cartwright 1989; Frigg
and Hartmann 2006). In this case, it is much easier to verify which form of misrep-
resentation is accommodated by which kind of morphism, given that we just need
to jointly consider what abstracting and pretending allow for. It is then the case that
only homomorphism∗c and epimorphism∗f,c accommodate simulation, and neither
of them are proper morphisms that can transfer structure.

In Table 2 we summarize the results of our analysis, which leads us to con-
clude that no morphism that can be said to transfer structure from a source to a
target is actually able to accommodate all forms of inaccurate misrepresentation. The
structural mappings that merely satisfy weakened versions of completeness can not
be said to transfer structure, and the rest are unable to accommodate at least one
main form of misrepresentation as inaccuracy. Therefore we conclude that isomor-
phism, epimorphism and homomorphism all fail to account for the phenomenon of
misrepresentation.
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It is in particular startling that most of the structural accounts proposed so far fail
to accommodate the one form of misrepresentation as abstraction that philosophers
of science have entertained ever since the times of Cambpell’s influential discus-
sion of the kinetic theory of gases. While structural mappings can be very helpful in
establishing the accuracy of certain mathematical representations in physics, they are
unable to characterize the very relation of representation in general.

5 Conclusions

We have examined Bartels’ homomorphism theory of representation in relation to
two typical kinds of misrepresentation in scientific models, which we refer to as
‘mistargetting’ and ‘inaccuracy’. The former involves choosing the wrong target
for a modeling source on account of perceived similarities or structural matches,
and shows representation to be an essentially intentional notion (in a broad sense
that encompasses intended use). The latter involves at least three different kinds
of distortion of model targets by model sources, which we have distinguished as
abstraction, pretence and simulation. We have illustrated these distinctions by means
of a careful study of the historical case of the billiard ball model. This model was
notoriously invoked by Mary Hesse in her rightly influential work on analogy. Nev-
ertheless Hesse’s treatment of the model is itself highly idealized. We claim that
there is more to the actual case study than just positive and negative analogies in
the sense discussed by Hesse. In particular there are inverse negative analogies,
or analogies ‘by denial’, as well as negative analogies by ‘abstraction’: there are
properties of gas molecules that billiard balls lack, as well as properties of billiard
balls that gas molecules lack. We then endeavored to provide formal characteri-
zations for all these distinctions in a form that is suitable to the homomorphism
account of representation. The taxonomy thus obtained proves useful to determine
whether homomorphism – or indeed any other kind of morphism – accommodates
misrepresentation.

We share with Bartels the thought that the adequacy of any account of sci-
entific representation demands such accommodation. Any adequate account must
at least accommodate, if not explain, mistargetting and the three kinds of inac-
curacy we have discussed. Now, as for mistargetting, we have examined whether
Bartels’ account successfully cope with it. A closer analysis has revealed some
issues remain regarding how much work effectively homomorphism is doing in the
account. We have argued that the representational mechanism that Bartels appeals
to is crucial in determining representation, misrepresentation or non-representation.
Thus, there does not seem to be much work left for homomorphism to do. Bartels
does claim that homomorphism is necessary for representation or misrepresen-
tation alike, yet his actual discussion of the role played by the representational
mechanism seems prima facie to belie this claim. As for the three forms of inac-
curacy that we have discussed, we have provided arguments to the effect that
while homomorphism may account for pretence – although not in the form of epi-
morphism actually defended by Bartels – it can not provide for abstraction. We
thus concluded that, contrary to Bartels’ claim, the homomorphism account can
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not provide for any of the two typical kinds of misrepresentation by scientific
models.

A structural account may well be needed to assess the accuracy or faithfulness
of a scientific model, particularly in those cases where the model source and tar-
get can both be given appropriate structural descriptions. Nonetheless, even in such
cases, it does not seem to be the case that the representational relation, or activity,
is constituted by any structural morphism. It is rather what Bartels refers to as the
“representational mechanism” that does all the conceptually required work at this
stage. Once this basic mechanism is in place, it becomes appropriate to ask questions
regarding the structural match of sources and targets. Representation does not essen-
tially consist in transfer of structure from target system to source object. And while
the homomorphism account may describe the means whereby some mathematical
representations operate in science, it can not fully describe representation per se.
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Aires: Emecé. Translated as “On Exactitude in Science”, in: A Universal History of Infamy, E. P.
Dutton 1972.

Callender, C., & Cohen, J. (2006). There is no special problem about scientific representation. Theoria,
55, 67–85.

Campbell, N.R. (1957). Foundations of Science: The Philosophy of Theory and Experiment. New York:
Dover Publication.

Cartwright, N. (1983). How the Laws of Physics Lie. Oxford: Oxford University Press.
Cartwright, N. (1989). Nature’s Capacities and their Measurement. Oxford: Clarendon Press.
Chakravartty, A. (2010). Informational versus functional theories of scientific representation. Synthese,

172, 197–213.
Chang, C.C., & Keisler, H.J. (1973). Model Theory. Amsterdam: Elsevier.
Contessa, G. (2007). Scientific representation, interpretation, and surrogative reasoning. Philosophy of

Science, 74, 48–68.
Contessa, G. (2011). Scientific models and representation. In French, S., & Saatsi, J. (Eds.) The Continuum

companion to the Philosophy of Science (pp. 120–137). London: Continuum.
Dunn, M., & Hardegree, G. (2001). Algebraic Methods in Philosophical Logic. Oxford: Clarendon Press.
Frigg, R. (2006). Scientific representation and the semantic view of theories. Theoria, 55, 49–65.
Frigg, R., & Hartmann, S. (2006). Scientific models. In Sarkar, S., & Pfeifer, J. (Eds.) The Philosophy of

Science: An Encyclopedia (pp. 740–749). New York: Routledge.
Giere, R.N. (1988). Explaining Science: A Cognitive Approach. Chicago: University of Chicago Press.
Giere, R.N. (1999). Using models to represent reality. In Magnani, L., Nersessian, N., & Thagard, P. (Eds.)

Model-based reasoning in scientific discovery (pp. 41–57). New York: Plenum.
Hesse, M. (1970). Models and Analogies in Science. Notre Dame: Notre Dame University Press.
Hodges, W. (1997). A Shorter Model Theory. New York: Cambridge University Press.



90 Euro Jnl Phil Sci (2016) 6:71–90

Hodges, W., & Scanlon, T. (2013). First-order model theory. In Zalta, E.N. (Ed.) The Stanford Ency-
clopedia of Philosophy. http://plato.stanford.edu/archives/fall2013/entries/modeltheory-fo/, fall 2013
edition.

Pincock, C. (2011). Philosophy of mathematics. In French, S., & Saatsi, J. (Eds.) The Continuum
Companion to the Philosophy of Science (pp. 314–336). London: Continuum.

Pincock, C. (2012). Mathematics and scientific representation. Oxford: Oxford University Press.
Robinson, A. (1963). Introduction to model theory and to the metamathematics of algebra. Amsterdam:

North-Holland.
Rothmaler, P. (2005). Elementary epimorphisms. Journal of Symbolic Logic, 70, 473–487.
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