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Abstract This paper develops a philosophical investigation of the merits and faults
of a theorem by Lanford (1975), Lanford (Asterisque 40, 117–137, 1976), Lanford
(Physica 106A, 70–76, 1981) for the problem of the approach towards equilibrium
in statistical mechanics. Lanford’s result shows that, under precise initial conditions,
the Boltzmann equation can be rigorously derived from the Hamiltonian equations of
motion for a hard spheres gas in the Boltzmann-Grad limit, thereby proving the exis-
tence of a unique solution of the Boltzmann equation, at least for a very short amount
of time. We argue that, by establishing a statistical H -theorem, it offers a prospect to
complete Boltzmann’s combinatorial argument, without running against the objec-
tions which plug other typicality-based approaches. However, we submit that, while
recovering the irreversible approach towards equilibrium for positive times, it fails
to predict a monotonic increase of entropy for negative times, and hence it yields the
wrong retrodictions about the past evolution of a gas.

Keywords Approach towards equilibrium · Statistical mechanics · Boltzmann
equation · Lanford

1 Introduction

The famous Boltzmann equation is an irreversible equation describing the macro-
scopic time-evolution of low-density gases. Despite its successful applications,
its technical and conceptual status has remained problematic since Boltzmann’s
Boltzmann (1872) heuristic derivation. A theorem by (Lanford 1975, 1976, 1981)
shows that, under precise initial conditions, the Boltzmann equation can be rigor-
ously derived from the Hamiltonian equations of motion for a hard spheres gas in the
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Boltzmann-Grad limit, thereby proving the existence of a unique solution of the equa-
tion, at least for a very short amount of time. As such, Lanford’s theorem represents
a serious candidate to solve the outstanding problem of establishing the spontaneous
approach towards equilibrium in statistical mechanics. Yet, the result is subject to
quite severe limitations. In fact, its assessment in the philosophical literature is rather
ambivalent. Let us illustrate it by referring to two quotes by some of the most acute
commentators. Uffink (2007) emphasized the foundational importance of Lanford’s
work in light of its close connections with Boltzmann’s original formulation of the
kinetic theory of gases and statistical mechanics:

the approach developed by Lanford... deserves special attention because it stays
conceptually closer to Boltzmann’s (1872) work on the Boltzmann equation
and the H -theorem than any other modern approach to statistical physics... Fur-
thermore, the results obtained are the best efforts so far to show that a statistical
reading of the Boltzmann equation or the H -theorem might hold for the hard
spheres gas. [Uffink (2007), p.111]

On the other hand, Sklar (2009) stressed that the idealized regime introduced by the
Boltzmann-Grad limit dramatically constrains the domain of applicability of the the-
orem, and its short time-interval of validity would not even justify the usual realistic
applications of the Boltzmann equation at the macroscopic level.

[Lanford’s] derivation has the virtue of rigorously generating the Boltzmann
equation, but at the cost of applying only to one severely idealized system and
then only for a very short time (although the result may be true, if unproven,
for longer time scales). Once again an initial probability distribution is still
necessary for time asymmetry. [Sklar (2009)]

Admittedly, appealing to the Boltzmann-Grad limit, which is essential to obtain
a rigorous derivation of the Boltzmann equation, restricts one just to highly diluted
gas systems. Moreover, the time-scale of the theorem is extremely short: in fact, it
is of the order of one-fifth of the mean free time, that is the average time that a
particle in the gas would take to undergo two successive collisions. However, even
though these limitations may not be overcome, they ought not to obscure the con-
ceptual importance of Lanford’s result for the approach towards equilibrium: indeed,
the time-bound is still sufficiently long for one to observe a monotonic increase of
entropy for very rarefied gases out of equilibrium. In fact, a statistical H -theorem can
be derived as a corollary, which predicts that, for the vast majority of non-equilibrium
states satisfying the initial conditions, there will be a monotonic increase of the nega-
tive of the H -function through time until the system reaches equilibrium. As we wish
to argue, this offers a prospect to complete the combinatorial argument, that is the
basis of Boltzmann’s (1877) formulation of statistical mechanics, without running
against the objections which plug other typicality-based approaches. Instead, in our
opinions, the major concern about Lanford’s theorem arises when one applies it to
negative times, in that, once the initial conditions are posited, it fails to yield the right
retrodictions about the past evolution of the gas. In reference to the last sentence of
the above quote by Sklar, that raises doubts as to whether time-asymmetry is really
introduced by the initial probability distribution.
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In this paper we wish to evaluate the merits and faults of Lanford’s theorem for
the irreversible approach towards equilibrium. We begin by reviewing Boltzmann’s
original work, specifically his derivation of the Boltzmann equation and the H -
theorem in the kinetic theory of gases and his combinatorial argument in statistical
mechanics, and point out some open problems Section 2. We present Lanford’s the-
orem together with its limitations in Section 3. We then address the issue whether it
can solve the problems left open by Boltzmann. In particular, we explain how it can
be used to complete the combinatorial argument, thereby recovering the spontaneous
approach to equilibrium for positive times Section 4. In the last section, we conclude
by tackling the issue whether the theorem is also true for negative times. Since a
detailed analysis of the theorem would require one to engage in some rather techni-
cal subtleties, which may distract one from its philosophical significance, we defer it
to the Appendix, where we also discuss its extendibility to arbitrarily long times.

2 Boltzmann’s legacy

At the macroscopic level, thermodynamic systems display a tendency to evolve from
some initial non-equilibrium state into an equilibrium state and to remain there for
the rest of time. For example, consider a gas contained in a closed box: if the ini-
tial state is such that at time t = 0 the gas is compressed in the right corner of the
box, the gas tends to uniformly distribute in the entire volume available within the
box until it reaches an equilibrium state at a later time t > 0. In fact, we never
observe the reversed process, in which the gas uniformly distributed in the box would
spontaneously leave the state of equilibrium and set itself into a state in which it is
compressed in the corner of the box. Irreversible processes taking place in agree-
ment with our macroscopic observations are accompanied by a monotonic increase of
entropy. One of the goals of statistical physics is to recover the spontaneous approach
towards equilibrium from a microscopic point of view. For this purpose, one makes
some hypothesis about the microscopic constitution of the system under investigation
and appeals to probability theory.

In the hard spheres model a gas system is assumed to consist of N molecules,
idealized as rigid and impenetrable spheres of diameter a and mass m, which are
allowed to interact only through elastic binary collisions. Let us suppose that the gas
is enclosed in a container, e.g. a box, occupying the finite-volume region � with
perfectly elastic reflecting and smooth walls. For most of time the molecules move
freely within the box according to the Hamiltonian equations of motion (H.E.M.), but
occasionally undergo collisions resulting in a change of their momenta. The micro-
scopic state is represented by a point x = (�q1, �p1, ..., �qN, �pN) in the 6N -dimensional
phase space � ≡ (� × R3)N . The motion and mutual collisions of the particles
are governed by the laws of classical mechanics, which are time-reversal invariant.
The time-evolution of a microstate x is in fact given by xt = Ttx, where Tt is the
Hamiltonian flow defined on the phase-space at any time t .

The crucial question then is: given that the microscopic dynamics is time-
symmetric, how can one account for the irreversible approach towards equilibrium
observed at a macroscopic level? In his original work, Boltzmann developed at
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least two main proposals: the 1872 derivation of the Boltzmann equation and the
H -theorem in the kinetic theory of gases, and the 1877 combinatorial argument in
statistical mechanics. Yet, both accounts failed to establish the approach towards
equilibrium. Below, we discuss them in the order.

2.1 The Boltzmann equation and the H -theorem

In the kinetic theory of gases, the macroscopic state of the system is represented
by a continuous (normalized) distribution function f (�q, �p) on the 6-dimensional
one-particle phase space �×R3, that is also called μ-space. Boltzmann (1872) con-
structed the Boltzmann equation (B.E.) for a gas in the hard spheres model as an
evolution equation describing how such a state-distribution changes in the course of
time due to the free rectilinear motion of the particles and their mutual collisions.
The crucial assumption in his derivation is the Stoßzahlansatz (or “assumption about
the number of collisions”), which requires that, given any pair of particles, say 1 and
2, a factorization condition

f (2)(�q1, �p1, �q2, �p2) = f (�q1, �p1) · f (�q2, �p2) (1)

for the two-particle distribution function into the one-particle distribution functions
of each particle holds only before collisions. He also added a special condition on
the initial state-distribution f0 according to which each direction of momentum is
equally probable. The Boltzmann equation for the time-dependent state-distribution
ft (�q, �p) takes the following form:

∂

∂t
ft (�q, �p1) = − �p1

m
· ∂

∂ �q ft (�q, �p1)

+Na2
∫
�w12·( �p1−�p2)≥0

d �p2d �ω12

(
�ω12 · �p1 − �p2

m

)

× [
ft (�q, �p ′

1 )ft (�q, �p ′
2 )− ft (�q, �p1)ft (�q, �p2)

]
(2)

where �ω12 is a unit vector pointing from the center of particle 1 to the center of
particle 2. In particular, the constraint �ω12 · ( �p1 − �p2) ≥ 0 means that the particles
are approaching each other. The first term in the right-hand side of the equation is the
free flow operator and the second term is the collision operator (notice the coefficient
Na2 appearing in front of the integral in the latter).

Boltzmann then associated the entropy of the gas with the negative of the
H -function defined as −H [f (�q, �p)] := − ∫

f (�q, �p) ln f (�q, �p)d �qd �p, and demon-
strated the H -theorem as a corollary that strictly follows from the validity of the
Boltzmann equation: if at all time t there exists a solution ft of B.E. with initial
value f0, then the H -function cannot increase in the course of time, i.e. − dH [ft ]

dt
≥ 0,

where the equality obtains just for the stationary Maxwell-Boltzmann distribution
fMB which describes the system at equilibrium. The H -theorem thus predicts that,
for all initial non-equilibrium microstates, entropy increases monotonically until the
system reaches equilibrium, and then it remains constant for the rest of time. How-
ever, one can identify three major limitations in this attempt to establish the approach
towards equilibrium.
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First of all, Botzmann’s original derivation of B.E. was just heuristic. In fact, his
argument rests on the alleged relation between the microstate x of the system and its
macroscopic state-distribution f . Yet, as it stands, such a relation is not exact: for,
the former is a point in the 6N -dimensional phase-space �, while the latter is a con-
tinuous function on the 6-dimensional one-particle phase-space. Each microstate x

gives rise to a (normalized) exact distribution function on the μ-space, that in modern
terminology can be expressed as a sum of Dirac δ-functions

F [x](�q, �p) = 1

N

N∑
i=1

δ3(�qi − �q)δ3( �pi − �p) (3)

Since real gases are composed by a finite number N of molecules, F [x](�q, �p) can
only be discrete, and hence it cannot be identified with the continuous distribution
function f (�q, �p). So, in order to provide a rigorous derivation of the Boltzmann
equation from the Hamiltonian equations of motion, one ought to establish an exact
relation x ∼ f and show that it holds in the course of time, once some suitable initial
conditions are posited.

Furthermore, Boltzmann could not prove the existence of a unique solution of
equation (2). The problem of showing that, given the function f0 at the initial time
t = 0, its time-evolution ft is a unique solution of the Boltzmann equation with
initial value f0 for all time t ≥ 0 is still an outstanding issue in non-equilibrium
statistical physics, which has been settled only in special cases. In particular, the
lack of solutions of B.E. implies that the antecedent in the above formulation of the
H -theorem would not be verified. Cercignani (1972) observed that the problem of
existence of a unique solution of the equation is closely related to the problem of
providing a rigorous derivation of B.E. from H.E.M. . Lanford’s theorem establishes
precise conditions under which the sought-after result can be achieved, at least for a
short interval of time.

Finally, even on the assumption that an exact relation x ∼ f is established at all
times and that there exists a unique solution of equation (2), the H -theorem cannot
be true in general. Famously, Loschmidt (1876) argued that, if one lets a system out
of equilibrium evolve for some time and then suddenly reverses the momenta of all
particles, the system will evolve back until it reaches its initial state after the same
amount of time. In fact, the reversibility objection shows that for every solution of
H.E.M. for which the H -function decreases one can construct another solution for
which the H -function increases, thus providing a counter-example to Boltzmann’s
H -theorem. Moreover, Poincarés recurrence theorem entails that almost any initial
microstate of the system will eventually evolve in accordance to the Hamiltonian
flow into a microstate arbitrarily close to itself. Drawing from this, Zermelo (1896)
observed that to any monotonic decrease of the H -function in the course of time
there must correspond a monotonic decrease too. The reversibility and the recurrence
objections thus indicate that the approach towards equilibrium asserted by the H -
theorem cannot obtain for all initial microstates. One may still hope, though, that
a monotonic increase of the minus H -function can be demonstrated for almost all
initial non-equilibrium microstates. A proof of this fact would constitute a statistical
H -theorem.
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2.2 The combinatorial argument

In his 1877 work, Boltzmann conceded that there are exceptions to the H -theorem,
and claimed that a justification of the approach towards equilibrium should be given
on a statistical ground. That is what the combinatorial argument purports to establish
within the formalism of statistical mechanics. Let P = {A1, ..., Aj } be a parti-
tion of the one-particle μ-space � × R3 into disjoint cells Aj of equal volume δA,
which are taken to be rectangular in position and momentum. With any microstate
x there is associated a macrostate Z(x) := {n1(x), ..., nj (x)}, where nj represents
the occupation number in Aj , corresponding to the number of particles whose posi-
tion and momentum lie within the given cell. The occupation number is related to the
state-distribution f by the following stipulation:

nj (x) = Nf (�qj , �pj )δA (4)

Here, the value f (�qj , �pj ) is assumed to be constant over the whole cell Aj . Since the
molecules are taken to be all identical, macrostates do not change under permutations
of the particles, and hence different microstates can realize the same macrostates.
Boltzmann made the further crucial assumption that all possible microstates have the
same probability, that is tantamount to introducing the uniform Lesbegue measure μ

on the phase space �. Let �Z = {x ∈ � : Z(x) = Z} be the set of phase points
realizing a given macrostate Z: the probability of Z is then obtained by computing
the value of μ over �Z. Since the measure μ is uniform, such a probability is pro-
portional to the volume |�Z| of the corresponding region, given by the number of
microstates realizing Z.

Next, Boltzmann associated the entropy of a macrostate Z with the quantity
ln |�Z|, that is often referred to as the Boltzmann entropy, and show that it is given
by −kBNH [f ], where kB is known as the Boltzmann constant and depends on the
nature of each physical system. It follows that the volume of a macrostate Z is
such that |�Z| ≈ e−NH [f ]. Finally, he demonstrated that, under certain assump-
tions, the equilibrium macrostate Zeq , which is specified by the occupation numbers
obtained by means of formula (4) for the Maxwell-Boltzmann distribution fMB , cor-
responds to the region of phase-space � with the largest volume among all possible
macrostates. Accordingly, equilibrium microstates are more numerous than the non-
equilibrium microstates realizing any other macrostate. Indeed, one can show that,
for a huge number N of particles, �Zeq is overwhelmingly larger than any other
region in �, and thus |�Zeq | >> |�Z| for all Z 	= Zeq : under the requirement that
the total energy E of the system remains constant, the corresponding region tends to
occupy the vast majority of available phase space. Let us refer to this fact as the dom-
inance of the equilibrium macrostate. It means that the equilibrium macrostate is the
most probable macrostate, as well as the one associated with the highest Boltzmann
entropy. Arguably, this would guarantee that any initial non-equilibrium microstate
is very likely to evolve into an equilibrium microstate at a later time.

However, one ought to stress that one of the assumptions adopted to prove the
dominance of the equilibrium macrostate restricts the applicability of the combinato-
rial argument only to the case of ideal gases, where there are no interactions between
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the molecules. Specifically, Boltzmann assumed that the total energy E of the sys-
tem is additive, that is E = �jnjEj , where Ej is the energy of an individual particle
whose mechanical state lies in the cell Aj , which is taken to be equal to the aver-
age energy in the cell. This requires that the energy of each particle does not depend
on the mechanical states of the rest of the particles in the system, and hence if fol-
lows that Ej cannot contain contributions from any interaction potential. Clearly, if
one wishes to dispense with such an assumption, one ought to provide an alternative
proof that the region �Zeq has maximal volume in phase-space.

More importantly, as the Ehrenfests (1912) first recognized, the combinatorial
argument is incomplete, in that it fails to provide any proof about the time-evolution
of the system. In fact, it is a merely static argument and, as such, it cannot estab-
lish the spontaneous approach towards equilibrium it purports to demonstrate, even
within its narrow conditions of applicability. All it proves is that, for ideal gases, if
the initial microstate x0 is a non-equilibrium microstate, then ln |�Z(x0)| < ln |�Zeq |,
and hence x0 is associated with a lower Boltzmann entropy than an equilibrium
microstate. Yet, this does not entail that x0 is very likely to evolve into a microstate
xt = Ttx0 contained in �Zeq at some later time t > 0. In fact, one is not even
assured that x0 is very likely to evolve into any microstate realizing a macrostate
Z(xt ) of higher Boltzmann entropy than Z(x0). In particular, even if one concedes
that x0 would eventually evolve into an equilibrium microstate, nothing would pre-
vent the Boltzmann entropy from decreasing during some time-interval: the system
could in principle evolve into a microstate xt realizing a macrostate Z(xt ) which is
of lower Boltzmann entropy than the macrostate Z(xt ′) at a previous instant t ′ < t .
The incompleteness of the argument lies in the fact that there lacks any information
about how the macrostate of the system changes in the course of time. In order to
complete the combinatorial argument, one ought to add a dynamical ingredient which
would induce a monotonic increase of the Boltzmann entropy ln |�Z(xt)| through
time. Unfortunately, the available solutions proposed in the literature are rather unsat-
isfactory (cfr. Uffink (2007) and Frigg (2008)), so that the problem of establishing the
approach towards equilibrium in Boltzmann’s formulation of statistical mechanics
remains open.

Since Lanford’s approach purports to develop Boltzmann’s legacy, as suggested in
the quote by Uffink in the Introduction, we now wish to evaluate whether it can settle
the problems in Boltzmann’s original work.

3 Lanford’s theorem

In this section we explain in what sense Lanford’s theorem provides a rigorous deriva-
tion of the Boltzmann equation from the Hamiltonian equations of motion, thereby
proving the existence of a unique solution of B.E., at least for a short interval of time.
We also discuss the limitations of the applicability of the result to realistic gases.

The first step to obtain a rigorous derivation of B.E. is to establish an exact relation
between the microstate of the gas and its macroscopic state-distribution. It requires
one to work in a suitable limiting regime for the hard spheres model: indeed, as the
number of particles increases, the discrete exact distribution F [x] generated by the
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microstate x would converge to some continuous, differentiable distribution func-
tion f . In the Boltzmann-Grad limit (B-G limit), one lets N grow to infinity while
simultaneously letting the diameter a of the particles go to zero, in such a way that
the quantity Na2 remains finite and non-zero. Here, we make the dependence of the
terms on both parameters N and a explicit by using the superscript (a) as a shorten-
ing, and we denote the B-G limit by a → 0, where it is intended that one also takes
N → ∞. Given a partition P of μ-space into cells of equal size rectangular in posi-
tion and momentum and given some positive real number ε, one establishes an exact
relation x ∼(P,ε) f if F [x] converges in distribution to f in the B-G limit in the sense
that

| nj (x)−N

∫
Aj

f (�q, �p)d3 �qd3 �p |≤ ε for all Aj in P (5)

Equivalently, we say that x represents f within the tolerance (P, ε).
Next, one would like to show that, for any initial non-equilibrium microstate x0

which represents the continuous function f0 within a certain tolerance, its time-
evolution xt = Ttx0 represents the solution ft of B.E. with initial value f0 at any
later time t . However, due to the time-reversal invariance of H.E.H., there is some
initial microstate which does not evolve through time in accordance with the irre-
versible Boltzmann equation. Lanford thus set himself to prove that, under precise
assumptions, an initial x0 representing f0 is very likely to evolve into a microstate
xt representing ft . For this purpose, one ought to introduce a probability measure.
Actually, for technical reasons, Lanford’s theorem is expressed in terms of sequences

of probability measures
{
μ
(ak)
k

}
k=1,...,N

, where the index k labels the number of

molecules. To avoid to overburden the notation we omit any reference to k and col-
lectively denote the sequence with μ(a). In particular, Lanford assumed that μ(a) is
absolutely continuous with respect to the Lebesgue measure and symmetric under
permutations of the particles. Given the set �(a)

P,ε
[f ] = {x ∈ � : x ∼(P,ε) f } of

phase-points which represent f within the tolerance (P, ε), the sequence of proba-
bility measures μ(a) is said to be an approximating sequence for f just in case in the
B-G limit it assigns probability one to all microstates in �

(a)

P,ε
[f ], that is

lim
a→0

μ(a)
(
�

(a)

P,ε
[f ]

)
= 1

Since the time-evolution of μ(a) is governed by the Hamiltonian flow Tt , what one
ought to demonstrate in order to complete the derivation of B.E. from H.E.M. is that,
if μ(a) is an approximating sequence for a continuous function f0 at the initial time,
μ(a) ◦ T−t is an approximating sequence for the solution ft of the B.E. with initial
value f0 at any later time t .

Lanford determined sufficient conditions for the sought-after sequence of proba-
bility measures to exist, which are captured by assumptions (1) and (2) in his theorem.
Since the precise statement of these assumptions require one to introduce some extra
technical background, we defer it to the Appendix. Here, we just give an informal
characterization. Assumption (1) is a regularity condition, which rules out initial
probability measures which do not drop exponentially as the Maxwell-Boltzmann
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distribution. Assumption (2) contains a generalization of the factorization condition
in Boltzmann’s Stoßzahlansatz, with the crucial difference that it does not include
the additional provision that it applies only to particles which are about to collide.
For a (diluted) gas with density z and inverse temperature β, the combination of
assumptions (1) and (2) implies the following bound:

f0(�q, �p) ≤ z

(
mβ

2π

) 3
2

e−
1
2
β �p2

m (6)

So, one restricts oneself just to a special class of well-behaving initial probability
distributions which are sufficiently regular in the sense that they do not develop
intractable singularities and satisfy a factorization condition, just as solutions of B.E.
ought to do. From a conceptual point of view, this is analogous to Boltzmann’s deriva-
tion imposing special initial conditions on f0. We are now in a position to spell out
the theorem as it is formulated by (Lanford 1976, 1981). In what follows t̄ denotes
the mean free time, namely the average time a particle would take to undergo two
successive collisions.

LANFORD’S THEOREM

Suppose f0(�q, �p) is a continuous function, and μ(a) is an approximating
sequence for f0. If assumptions (1) and (2) hold at the initial time t = 0, then
μ(a) ◦ T−t is an approximating sequence for the solution ft of B.E. with initial
value f0 during all t ∈ [0, τ ], where τ = 0.2t̄ .

Lanford then proceeded to construct a sequence of probability measures which
verifies the conditions of his theorem. Given a sufficiently fine tolerance (P0, ε0),
one can define the sequence of conditional probability measures

μ
(a)
0 (·) := μ(a)(· | �(a)

P0,ε0
[f0])

concentrated on the set �
(a)

P0,ε0
[f0] comprising all the microstates x such that

x ∼(P0,ε0) f0. By construction, μ(a)
0 is an approximating sequence for f0. If assump-

tions (1) and (2) are satisfied, it thus follows that μ(a)
0 ◦ T−t is an approximating

sequence for the solution ft of B.E. with initial value f0 for all t up to the time-
bound τ corresponding to one-fifth of the mean free time. In fact, for any tolerance
(P, ε), in the B-G limit the sequence μ

(a)
0 ◦ T−t assigns probability one to any ini-

tial microstate x which evolves into a microstate xt = Ttx representing ft within the
tolerance (P, ε), that is

lim
a→0

μ
(a)
0 ◦ T−t

(
{�(a)

P,ε
[ft ]}

)
= 1 (7)

The existence of the thus-constructed sequence μ
(a)
0 guarantees that there exists a

unique solution ft of B.E. with initial value f0, at least for the time-interval of validity
of the theorem.

It is important to stress that this does not mean that the Boltzmann equation holds
on average, but rather that it holds for almost all initial microstates. That is, the
theorem assures that, for any arbitrary tolerance (P, ε), there is a tolerance (P0, ε0)
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such that, for the vast majority of phase-points x0 at t = 0, if x0 ∼(P0,ε0) f0 then
xt ∼(P,ε) ft for any positive time t up to τ . As Lanford put it,

It is simply that, in the Boltzmann-Grad limit, among those microscopic states
which represent a given f0 within some small tolerance, most will have clas-
sical trajectories such that the state at time t > 0 approximately represents ft
provided that t is not too large. [Lanford (1976), p. 73]

The qualification “most”, as synonymous of “almost all”, or “the vast majority of”,
is to be given a measure-theoretic interpretation, in that it is intended with respect
to the measure μ

(a)
0 . In fact, the set of microstates satisfying the initial conditions

which due to the time-reversal invariance of H.E.M. will not evolve in such a way to
agree with B.E. is assigned probability zero by μ

(a)
0 . In the spirit of the theorem, such

exceptional microstates can then be neglected. So, measure-theoretic considerations
play a crucial role in Lanford’s argument. In the next section, we relate this idea to
the notion of typicality.

A statistical H -theorem can be derived from Lanford’s result as a corollary.
For, once an exact relation between the microstate x and the macroscopic state-
distribution f is established, it follows from Boltzmann’s derivation of his original
H -theorem that, for any solution of the Boltzmann equation satisfying assumptions
(1) and (2) at the initial time, the negative of the H -function will increase monoton-
ically until the system reaches equilibrium and will then remain constant for the rest
of time. In fact, one can argue as follows. Let a microstate x0 and the macroscopic
state-distribution f0 be fixed at time t = 0, for which the initial entropy of the system
is −H [f0]: as the macroscopic state-distribution evolves in the course of time as a
solution ft of B.E. with initial value f0, the entropy −H [ft ] increases until it attains
its maximal value −H [fMB]. That is assured to be the case for almost all microstates
x0 satisfying the initial conditions of Lanford’s theorem, at least during an interval
of time [0, τ ]. Before turning to the issue whether this offers a prospect to establish
the irreversible approach towards equilibrium, we address some of the limitations of
Lanford’s result.

3.1 Limitations of the result

As we pointed out in the Introduction, the two main limitations for the applicability
of Lanford’s theorem to realistic gas situations are the idealized regime introduced
by the Boltzmann-Grad limit and the short time of validity of the result. Let us take
them up in the reverse order.

For a (diluted) gas with density z and inverse temperature β, the mean free path
l̄, namely the average distance that a particle would travel between two successive
collisions, is approximatively given by 1

πa2Nz
, with πa2 being the cross section of a

hard sphere. One can then compute the mean free time t̄ as the ratio between l̄ and

the mean square average velocity
√

3
mβ

of the particles. During a time-interval of

length t̄ , about 100% of the particles in the gas would undergo a collision. Clearly,
the time-bound τ of validity of Lanford’s result being of the order of one-fifth of t̄
corresponds to an extremely short interval: for realistic gases in standard conditions
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it amounts to a few milliseconds. Of course, such a short time-scale does not even
justify the usual applications of the Boltzmann equation at the macroscopic level1.

Unfortunately, no fully satisfactory attempt to prove a theorem extending
Lanford’s result to arbitrary positive times has been made. The best effort so far is
that by Illner and Shinbrot (1984), (Illner and Pulvirenti 1986, 1989), who obtained
a result which holds at all time for two-dimensional and three-dimensional diluted
gases expanding in the vacuum. However, the relevant physical models are rather
irrealistic. For, they assume that the mean free path is very large in comparison with
the initial data: in this regime, the density of the gas would become so low that vir-
tually no collision may take place. Furthermore, since the gas is depicted as freely
expanding in the vacuum, Illner and Pulvirenti’s result does not apply to the case
of a gas confined in a finite volume, as in Lanford’s theorem. To prove that, under
mild assumptions, Lanford’s result can be estended in time for hard spheres gases
contained in a box still remains an open challenge in foundations of non-equilibrium
statistical mechanics. On the positive side, no no-go result is known which prevents
Lanford’s conclusion from holding for arbitrarily long times. In fact, there are con-
crete indications that the sought-after global theorem can be obtained. As we explain
in the Appendix, it is just a consequence of the technique of the proof adopted by
Lanford that the time-bound τ arises. Moreover, even by applying the same tech-
nique, one could extend the result to longer times by strengthening the regularity
assumption (1).

Be it as it may, from a conceptual point of view, the limitation in time does not
override the importance of Lanford’s theorem for the problem of establishing the
approach towards equilibrium. Indeed, despite being ridicolously short, the time-
bound τ is already long enough to observe irreversibility, in that the ensuing statistical
H -theorem guarantees the monotonic increase of entropy −H [ft ] during the interval
[0, τ ] if the system is not at equilibrium at the initial time t = 0.

A more serious limitation comes from the appeal to the Boltzmann-Grad limit.
Recall that one requires that the number of hard spheres N tends to infinity while
their diameter a goes to zero in such a way that Na2 remains finite and non-zero. In
this limit one makes precise the idea implicit in the hard spheres model that collisions
are neither too frequent nor too rare, in the sense that the mean free time remains of
order one, so that each particle would typically experience a collision per unit time.
However, a → 0 implies that the quantity Na3, that is proportional to the proper
volume (namely the actual volume occupied by the particles), approaches zero in
the limit. To the contrary, the volume V (�) occupied by the entire gas may be kept
fixed, e.g. the volume of the box, and hence the density of the gas system tends to
vanish. In other words, despite the number of its particles growing to infinity, the gas

1It should be emphasized, though, that this amount of time is not too short for collisions to take place. As
Cercignani (1998) and Uffink (2007) pointed out, during one-fifth of the mean free time about 20 % of the
particles in the gas undergo a collision. Actually, under certain circumstances which depend on suitable
choices of the initial distribution f0, the time-bound may be extended up to 1

2 t̄ (cfr. Lanford (1981)), and
hence in this case about half of the particles would undergo a collision.
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becomes infinitely rarefied. This restricts the domain of applicability of Lanford’s
result dramatically, in that it may only apply to very diluted gases.

A related issue arises within the recent philosophical debate on the use of lim-
its and idealizations in statistical physics. The question is whether, and to what
extent, the limit system, namely the system of infinite particles constructed by taking
N → ∞, provides a description of a target system, namely a real system with certain
physical properties, in which the number N of particles is very large but necessarily
finite. In the B-G limit the limit system appears as a (countable) infinity of extension-
less material points in an otherwise empty volume of space, whereas the target system
is any real gas system comprising a huge number of material particles of very small
size interacting by binary collisions, which is contained in a closed box. Clearly, the
limit system can only give an inexact description of its purported target system, in that
the latter ought to have very low density but cannot have null density. Norton (2012)
maintained that the infinite system constructed in the B-G limit fails to be an idealiza-
tion. He stipulated that an idealization is a system “some of whose properties provide
an inexact description of some aspects of the target system” (p.209). This definition
ought to be contrasted with the notion of approximations, which are defined just as
inexact descriptions of the target system, and as such they would not require one to
regard the construction of the limit system as essential. According to Norton, a limit
system would fail to be an idealization if it does not retain some crucial properties of
the target system, such as determinism. He then observed that in the B-G limit single
collisions between particles becomes indeterministic, contrary to what happens for
finite gas systems in the hard spheres model. For, in order to compute the outcome
of an individual collision between particles 1 and 2, one ought to uniquely determine
six unknowns corresponding to the spatial components of the post-collision momenta
of the two particles. Yet, one has only four conservation equations at one’s disposal,
i.e. one for energy and three for momentum (one for each spatial component), and
so one needs to add some extra constraint. In the case of hard spheres of non-zero
size, the required condition comes from the geometry of the collision, whereby the
momentum transfer is perpendicular to the plane of contact of the surfaces of the two
spheres. Instead, when a → 0 hard spheres reduce to points, and colliding points do
not have a definite plane of contact. The extra constraint is therefore missing. The
fact that one cannot fix a unique resolution of the post-collision momenta means that
binary collisions are no longer deterministic for the limit system, from which Norton
concluded that the infinite system in the B-G limit fails to be an idealization.

Norton’s reasoning has the merit to reveal that the treatment of collisions in the
B-G limit is somewhat problematic. To enforce this point, we would like to make
the further remark that the unit vector ω12 connecting the centers of particles 1 and
2, which appears in the integral in the collision term in the Boltzmann equation (2),
allows one to transform pre-collision momenta into post-collision momenta accord-
ing to the classical laws of collisions (see eq.2 in Lanford (1975), p.75). Yet, when
a → 0, during a collision the positions �q1 and �q2 of the centers of the two parti-
cles coincide, and hence the vector ω12 is no more defined. Therefore, the laws of
collisions cannot apply in their standard form in the B-G limit. In fact, in the proof
of Lanford’s theorem, one proceeds to remove collision points from the allowed
portion of phase space, by arguing that they form a set of measure zero with respect
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to the Lebesgue measure (see the Appendix for more details). However that may
be, Norton’s conclusion rests on his stipulated distinction between idealizations and
approximations: arguably, far from being an idealization, the infinite system in the
B-G limit ought to be regarded as an approximation of its target system. In fact, the
limit system would yield a “good” approximation of a real gas system in the hard
spheres model when the number of particles in the latter is very high and their diame-
ter is very small, so that the quantity Na3 which is proportional to the density remains
non-null. Under this interpretation, the justification for one to appeal to the B-G limit
is merely pragmatic2.

That said, we would like to stress that the B-G limit is essential for the purpose of
obtaining a rigorous derivation of the Boltzmann equation, from which one derives
a statistical H -theorem predicting a monotonic increase of entropy towards equi-
librium. On the one hand, it allows one to establish an exact relation between the
microstate of the system and its macroscopic state-distribution; on the other one,
the fact that the quantity Na2 remains well-defined means that the collision term in
equation (2) does not vanish when a → 0, thereby assuring the irreversible behavior
of the negative of the H -function. Furthermore, the B-G limit puts one in a position
to avoid the recurrence objection which was raised against the original H -theorem.
Already Boltzmann estimated that the recurrence time would tend to be infinite if the
number of particles N goes to infinity. More to the point, Poincarés theorem rests on
the assumption that the volume of total phase space is bounded, which is obviously
not true for N → ∞. As a consequence, in the B-G limit the recurrence theorem
does not hold, and hence one cannot run Zermelo’s objection against any possible
extension of Lanford’s theorem to arbitrarily long times.

So, in spite of the above mentioned limitations, the striking point about Lanford’s
theorem remains, namely that, for extremely diluted gases contained in a box, under
suitable initial conditions one can derive the irreversible Boltzmann equation from
the time-reversal non-invariant Hamiltonian equations of motion, thereby proving the
monotonic increase of the negative of the H -function for some non-trivial amount
of time. We now address the issue whether the theorem can be used to recover the
approach towards equilibrium in Boltzmann’s formulation of statistical mechanics,
at least within its domain of applicability.

4 The approach towards equilibrium

Let us recall why the combinatorial argument is incomplete. If one wishes to show
that any initial microstates x0 is very likely to evolve into an equilibrium microstate,
one needs to introduce a probability measure. However, this issue is highly sensitive

2To make the notion of good approximations more precise, one could perhaps follow a general recipe to
dissolve the mistery of singular limits, such as the B-G limit, outlined by Butterfield (2011). One should
keep in mind, though, that such a recipe may not apply to all cases of limits employed in statistical physics
(see Batterman (2013)) for a detailed analysis of this issue).
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to how such a measure is applied. For instance, one cannot argue that it happens
simply because equilibrium microstates are more probable. Indeed, strictly speaking,
due to Boltzmann’s equiprobability assumption any equilibrium microstate has the
same Lebesgue measure μ as any non-equilibrium microstate. Furthermore, since the
Hamiltonian flow Tt is measure-preserving, the probability of the evolved microstate
xt would remain the same as that of x0 for all time t . Granted, by the dominance of
the equilibrium macrostate, Zeq is overwhelmingly the most likely macrostate. Yet,
one still need to prove that, as time goes on, the initial non-equilibrium microstate
would evolve into microstates xt which realize more and more probable macrostates
Z(xt ) until the system reaches equilibrium. In fact, the spontaneous approach towards
equilibrium can only be demonstrated by showing that the microscopic dynamics
assures the monotonic increase of the Boltzmann entropy for positive times. The
time-evolution of the system is determined by its Hamiltonian, plus some initial
conditions. We submit that, by entailing a statistical H -theorem, Lanford’s result
provides the missing dynamical ingredient required to complete the combinatorial
argument. The key is to recognize the crucial link established in Boltzmann’s argu-
ment between the negative of the H -function and the Boltzmann entropy SB :=
ln |�Z|, which is given by −kBNH [f ]. Clearly, the existence of a unique solution ft
of B.E. with initial value f0 for which −H [ft ] increases monotonically in the course
of time yields sufficient conditions to put the Boltzmann entropy in motion. Below,
we show it explicitly.

To begin with, let us spell out the relation between the region �Z associated with
the macrostate Z realized by a given microstate x and the set �P,ε[f ] of phase-points
such that x ∼P,ε f for the macroscopic state-distribution f . Consider a partition
P of μ-space into a large number of cells. For a given microstate x ∈ �Z(x), the
occupation numbers for any cell Aj are specified by formula (4), that is nj (x) =
Nf (�qj , �pj )δA. Since it is assumed that the value f (�qj , �pj ) is constant within each
cell, one can write nj (x) = N

∫
Aj

f (�q, �p)d3 �qd3 �p. The requirement that there exists
an ε > 0 for which condition (5) is satisfied is thus trivially fulfilled, and hence
x ∈ �P,ε[f ]. On the other hand, strictly speaking, the converse is not true: that is,
the fact that a microstate x represents f within the tolerance (P, ε) does only imply
that the occupation numbers nj (x) are approximately equal to N

∫
Aj

f (�q, �p)d3 �qd3 �p
for any cell Aj . Yet, the positive real number ε in formula (5) can be chosen to be
arbitrarily small. Thus, whenever the exact relation x ∼(P,ε) f is established, one can
regard the sets �Z(x) and �P,ε[f ] as being equivalent to a good approximation. By
looking at the way in which the occupation numbers evolve according to Lanford’s
theorem, one can then determine how the macrostate of the system changes in the
course of time.

For an initial non-equilibrium microstate x0 representing the continuous func-
tion f0 within a certain tolerance, the occupation numbers in the correspond-
ing macrostate Z(x0) = {n1(x0), ..., nj (x0)} are approximatively equal to
N

∫
Aj

f0(�q, �p)d3 �qd3 �p for any cell Aj . The existence of a unique solution ft

of B.E. with initial value f0 assures that the time-evolved occupation numbers
nj (xt ) are approximatively equal to N

∫
Aj

ft (�q, �p)d3 �qd3 �p at all t > 0, thereby
establishing the time-evolution of the macrostate Z(xt ) = {n1(xt ), ..., nj (xt )} with
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Boltzmann entropy ln |�Z(xt)|. Lanford’s result then implies that, for almost all initial
non-equilibrium microstates x0, the time-evolved microstate xt is such that

ln |�Z(xt ′ )| ≥ ln |�Z(xt)| for all t ′ > t ≥ 0

at least for the time-interval of validity of the theorem, which means that the
Boltzmann entropy SB(xt ) cannot decrease for positive times. Moreover, it follows
that ln |�Zeq | ≥ ln |�Z(xt)|, where the equality holds just in case xt ∈ �Zeq , that is
when xt ∼(P,ε) fMB . In other words, the Boltzmann entropy SB reaches its max-
imum when the negative of the H -function is applied to the Maxwell-Boltzmann
equilibrium distribution. This means that, for the vast majority of non-equilibrium
microstates satisfying the initial conditions, the Boltzmann entropy increases mono-
tonically through time and attains its maximal value at equilibrium.

Notice that there are two distinct ways in which probability considerations are
employed here. On the one hand, in the combinatorial argument one assumes the
Lebesgue measure μ on phase-space, and then one computes the probability of the
macrostates realized by a given microstate x by evaluating the size of the correspond-
ing region. On the other hand, in Lanford’s approach the sequence of probability
measures μ(a)

0 is assumed to be absolutely continuous with respect to the Lebesgue
measure, and it is shown that an initial microstate has probability close to one to
evolve through time in accordance to the Boltzmann equation. The above procedure
to complete the combinatorial argument by means of Lanford’s result draws a con-
nection between these two meanings of probability. Accordingly, given the region
�Z(x0) containing all the phase points representing the initial value f0 of a solu-
tion ft of B.E. within the tolerance (P0, ε0), the conclusion expressed by formula
(7) that lima→0 μ

(a)
0 ◦ T−t ({�(a)

P,ε
[ft ]}) = 1 just means that in the Boltzmann-Grad

limit any initial microstate x0 is assigned probability one to evolve into a microstate
xt which realizes the macrostate Z(xt ) corresponding to a region �Z(xt ) of larger
volume (it is important to recognize, though, that not all the phase points contained
in the latter region are the time-evolution of some microstate in �Z(x0)). In other
words, Lanford’s theorem implies that any initial non-equilibrium microstate satis-
fying assumptions (1) and (2) is very likely (with respect to μ

(a)
0 ) to evolve into

microstates realizing macrostates which are more and more probable (with respect
to μ) as time goes on, until the system reaches equilibrium. We wish to emphasize
that the procedure to complete the combinatorial argument we just outlined does not
restrict one to ideal gases. In fact, it bears on an alternative method than Boltzmann’s
original one to prove the dominance of the equilibrium macrostate. In particular, one
does not need to invoke the additivity of total energy assumption. To be sure, the con-
dition E = ∑

j njEj still holds for Ej taken as the average energy in the cell Aj .
However, one can no longer associate Ej with the energy of any individual particle
whose mechanical state lies within the cell. In fact, the energy of a single particle
would not be independent from the other particles: when a binary collision occurs
there are energy exchanges between the colliding molecules, whose mechanical states
are located in distinct cells of μ-space since their momenta are in general quite dif-
ferent from each other. The above procedure thus seems to offer a scheme to extend
the combinatorial argument to physical systems in which the molecules are allowed
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to interact with each other. To this end, it is worth noticing that King (1975) man-
aged to generalize Lanford’s result to include gases in which the molecules mutually
interact by a short-range non-negative potential.

4.1 A typicality-based account

Measure-theoretic arguments to the effect that the vast majority of non-equilibrium
microstates will eventually evolve into equilibrium microstates are sometimes cast in
the literature in terms of the notion of typicality. The basic idea is that a microstate
is “typical” with respect to a given measure on phase space if it belongs to a set of
measure one. Conversely, it is “a-typical” if it has measure zero. Clearly, such a defi-
nition is sensitive to the specific measure one adopts. So, one can identify two distinct
senses of typicality corresponding to the two probability measures described above.
On the one hand, in the combinatorial argument typical microstates are those which
realize the equilibrium macrostate Zeq , since the set �Zeq has measure one with
respect to the Lebesgue measure μ. On the other hand, in Lanford’s theorem typi-
cal microstates are those initial microstates representing f0 within a certain tolerance
which evolve through time in agreement with the Boltzmann equation, since they
form a set of measure one with respect to the sequence μ

(a)
0 of probability measures

absolutely continuous with respect to the Lebesgue measure.
Frigg (2011) criticized various attempts to establish the approach towards equilib-

rium within Boltzmann’s formulation of statistical mechanics by means of typicality
arguments. He contended that they all fail to explain why an initial non-equilibrium
microstate is very likely to evolve into an equilibrium microstate in such a way
that the entropy of the system monotonically increases in the course of time. Such
accounts are based on the notion of typicality induced by the dominance of the
equilibrium macrostate. Although they differ on how they attempt to complete the
combinatorial argument, the common underlying intuition is well exemplified by the
following passage.

For a non-equilibrium phase point x of energy E, the Hamiltonian dynamics
governing the motion xt would have to be ridiculously special to avoid reason-
ably quickly carrying xt into �Zeq and keeping it there for an extremely long
time - unless, of course, x itself were ridiculously special. [Goldstein (2001),
p.43-44, where the notation has been suitably modified]

Goldstein’s quote lends itself to two possible readings. On the first reading, one
argues that a non-equilibrium microstate is very likely to evolve into an equilibrium
microstate simply because the region associated with Zeq occupies the overwhelm-
ing majority of the available phase space. Yet, all one can infer from the dominance
of the equilibrium macrostate is that equilibrium microstates are typical with respect
to μ, but there is no proof that an initial non-equilibrium microstate would evolve
into a typical one at some later time t > 0: in fact, it is even possible that the tra-
jectory of xt in phase space may never intersect the region �Zeq . Once again, the
argument remains static, just as Boltzmann’s original combinatorial argument. The
upshot is that measure-theory alone is not sufficient to provide an explanation of the
approach towards equilibrium. On the second reading, one recognizes the need to add
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some further constraint to the dynamics, which should be general enough to prevent
it from being “ridiculously special”. For instance, the Ehrenfests (1912) proposed to
appeal to the ergodic hypothesis. However, such a condition is known to hold only
in very rare circumstances. In particular, it fails in the case of ideal gases, and hence
it does not apply within the domain of validity of the combinatorial argument. Other
random properties in the ergodic hierarchy, such as mixing, have been proposed in
the literature. Yet, if one wishes to invoke any of them, one is bounded to face similar
difficulties, in that such properties turn out to be false in general for realistic systems.
Furthermore, one ought to provide a justification for adopting the putative dynamical
assumption both on a physical and a conceptual ground.

In the last analysis, as Frigg argued, the existing typicality-based accounts which
rely on the dominance of the equilibrium macrostate fail to explain the approach
towards equilibrium due to the lack of any proven statement that the time-evolution
of a system out of equilibrium would behave in the expected way3. In addition, the
relevant notion of typicality has the drawback that non-equilibrium microstates are
regarded as a-typical, and hence the initial microstate having a negligible probability
should itself be ignored as being “ridiculously special”. The account of the approach
towards equilibrium based on the notion of typicality relevant to Lanford’s theorem
clearly avoids these objections. For one, it provides a proof of the monotonic increase
of entropy observed at the macroscopic level from the details of the microscopic
dynamics. Moreover, it offers a consistent treatment of the initial non-equilibrium
microstates: in fact, typical microstates are exactly those which evolve in accordance
with the Boltzmann equation.

However, even within this framework, there remains some unsolved problem.
Indeed, one of the major limitations of Lanford’s account is that, just as the other
typicality-based accounts, the Lebesgue measure is granted a privileged role. And,
while it is true that the result extends to any measure which is absolutely continuous
with respect to the Lebesgue measure, one still ought to give an independent justifica-
tion to adopt the latter as the appropriate a priori microscopic probability, as Lanford
himself explicitly recognized (cfr. Lanford (1976)).

On this issue, one should note that, according to some recent literature (cfr.
Goldstein (2012), Pitowsky (2012), Hemmo and Shenker (2012)), the notion of typi-
cality ought to be kept distinct from that of probability: in fact, although a probability
measure can well be used to define typical sets (exactly in the same fashion as it was
done in our previous discussion), one does not need to appeal to probability in order
to introduce a measure of typicality. In particular, Pitowsky carefully distinguishes
between the size of a given set, specifically the set of outcomes of an experiment,
which is given by a measure function, and the probability function assigning values
to the elements of such a set. Moreover, he argues that the Lebesgue measure arises
as the natural a priori measure, for it extends to the continuous case the counting
measure, which would represent the obvious choice in the discrete case in that the

3For completeness, let us mention that Frigg also discussed a third account that cannot be traced back to
the spirit of Goldstein’s quote in that it focuses on the structure of the region �Z of phase-space associated
with a macrostate Z at a given time, but he dismissed it for analogous reasons.
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size of the relevant set is determined by counting the number of possible experimen-
tal outcomes. Yet, he also observes that such a measure is not rich enough to fix the
probabilities of the outcomes of the experiment, and hence one still lacks a justifi-
cation for the probabilistic statements of statistical mechanics. Hemmo and Shenker
go even further and reject the claim that the privileged role of the Lebesgue mea-
sure can be justified a priori, since for them only experience can guide the choice of
the appropriate measure in physics as well as the assignment of probabilities. Let us
survey their argument, as they apply it to Lanford’s theorem as a case study.

By drawing from Pitowsky’s distinction, Hemmo and Shenker identifies two dif-
ferent characterizations of the status of the Lebesgue measure in Lanford’s account
and its relevancy for the discussion of typicality. On the one hand, they concede
that the theorem establishes that a large subset of the initial microstates share the
property of evolving in such a way to approach towards equilibrium. In fact, if one
supposes that the result can be extended to arbitrarily long times, the size of the over-
lap between the set of phase-points evolving from the microstates in �Z(x0) according
to H.E.M. and the set �Zeq of phase-points realizing the equilibrium macrostate will
eventually tend to have Lebesgue measure one. This is a statement about the size of
sets and it is indeed uncontroversial, provided that one posits the appropriate initial
conditions. On the other hand, Hemmo and Shenker deny that the theorem can sup-
port the probabilistic statements of statistical mechanics, in that they maintain that
the agreement between its predictions at a given time and the actual experimental
outcomes is merely contingent. As they put it, “assuming that we already know from
experience that the Lebesgue measure of the overlap regions (...) matches with the
relative frequencies of the macrostates, Lanford’s theorem provides possible mechan-
ical conditions, which underwrite these observations” (p.97). To enforce their claim,
they stress the fact that, if one adopts a measure which is not absolutely continuous
with respect to the Lebesgue measure, one may not obtain the sought-after result,
since it may happen that the initial microstates x0 evolving in agreement with B.E.
do not form a set of measure one, and hence the theorem would become empirically
insignificant. So, while Lanford’s result is about the structure of trajectories through
time, it does not really provide one with a dynamical underpinning of the Lebesgue
measure. We actually endorse such a conclusion. However, we also wish to point out
that the fact that one does not have any empirical ground for the preference of the
Lebesgue measure does not in itself undermine the possibility that the latter could be
independently justified as the natural a priori measure along the lines of Pitowsky’s
argument.

Be it as it may, in our views the crucial problem concerning the approach towards
equilibrium in Lanford’s theorem is that it does not give the right account of the
behavior of a gas for negative times. We take this up in the last section.

5 Is Lanford’s theorem true for the past?

The irreversible behavior of the minusH -function for positive times is a consequence
of the fact that, contrary to the Hamiltonian equations of motion, the Boltzmann
equation is not invariant under time-reversal trasformations, just as Loschmidt’s



Euro Jnl Phil Sci (2014) 4:309–335 327

reversibility objection indicated. In order to obtain an irreversible result from a set
of time-reversal invariant equations, one ought to add a time asymmetric condition.
The time-reversal non-invariant ingredient in Boltzmann’s original derivation of B.E.
is the Stoßzahlansatz, in particular the provision that the factorization condition 9
holds only for pre-collision particles. In fact, if one instead assumes factorization
for post-collision particles, one would derive an equation having the same form as
(2) but with a minus sign in front of the collision term, namely the Anti-Boltzmann
equation (Anti-B.E.). That is the time-reversal transformation of B.E.. If ft is a solu-
tion of Anti-B.E., then entropy would monotonically decrease through time, in that
− dH [ft ]

dt
≤ 0 for all t . Therefore, B.E. and Anti-B.E. can hold together just in case

the system is at equilibrium. Although deriving a (unique) solution of B.E. assures
that the predictions of the theory agree with our macroscopic observations about the
approach towards equilibrium, one ought to provide a justification for the choice of
pre-collision over post-collision particles in the Stoßzahlansatz. Nevertheless, nei-
ther Hamiltonian dynamics nor probability theory, being both neutral with respect to
the direction of time, can ground such a preference. As Price (1996) pointed out, in
the absence of an independent justification for the putative time asymmetric ingre-
dient one incurs the risk of falling into some kind of double standard. On the other
hand, a statistical H -theorem would allow one to disregard those exceptional phase
points for which a monotonic increase of the negative of the H -function is not guar-
anteed, such as the microstate constructed in the reversibility objection. Yet, one still
ought to determine whether, and how, time asymmetry is introduced in Lanford’s
theorem.

It is instructive to relate the statistical H -theorem following from Lanford’s result
with an argument by Boltzmann (1895, 1897) based on the so-called H -curve. With
any microstate x one can associate a curve in phase space depicting the evolution of
H [f ] in the course of time. Boltzmann claimed that, with the exception of certain
microstates, the H -curve exhibits the following properties: (i) for most of the time,
the value of the H -function is very close to its minimum Hmin, that is the system
is close to equilibrium; (ii) occasionally the H -curve rises to a peak well above the
minimum value, that is the system fluctuates out of equilibrium; (iii) higher peaks
are extremely less probable than lower ones, that is states of lower entropy are less
probable that states of higher entropy. If at time t = 0 the curve takes on a value
H [f0] much greater than Hmin, so that the system is very far from equilibrium, the
function may evolve only in two alternative ways. Either H [f0] lies in the neighbor-
hood of a peak, and hence H [ft ] decreases in both directions of time; or it lies on an
ascending or descending slope of the curve, and hence H [ft ] would correspondingly
decrease or increase. However, statement (iii) entails that the first case is much more
probable than the second. One would thus conclude that there is a very high proba-
bility that at time t = 0 the entropy of the system, associated with the negative of the
H -function, would increase for positive times; likewise there is a very high probabil-
ity that the entropy would increase for negative times. This conclusion is sometimes
regarded as yielding a statistical H -theorem. The Ehrenfests (1912) actually refined
Boltzmann’s argument by outlining different versions of what the time-evolution of
the H -function may look like, such as the “concentration curve” and the “bundles of
H -curves”. Nevertheless, no proof of these claims was provided (unless one assumes
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the controversial ergodic hypothesis), and hence one does not really have a
theorem.

Lanford’s result fills this gap. In fact, there exists a version of the theorem for
negative times which provides a rigorous derivation of the Anti-Boltzmann equation
(cfr. Lanford 1975 and Lebowitz 1981): that is, under assumptions (1) and (2), if
μ
(a)
0 is an approximating sequence for the continuous function f0, then μ

(a)
0 ◦ T−t

is an approximating sequence for the solution ft of Anti-B.E. with initial value f0
during all t ∈ [−τ, 0]. In other words, the conclusion expressed by formula (7) that
lima→0 μ

(a)
0 ◦ T−t ({�(a)

P,ε
[ft ]}) = 1 now means that in the Boltzmann-Grad limit the

vast majority of microstates x0 satisfying the initial conditions evolve in agreement
with Anti-B.E., from which it follows that the negative of the H -function mono-
tonically decreases for t < 0. Thus, by putting together the versions of Lanford’s
theorem for positive times and negative times, respectively, one finally has a proof of
Boltzmann’s claim that, at any initial time t = 0, there is a very high probability that
the entropy of the system increases in the future as well as a very high probability
that it decreases in the past.

Although his comment is not made in reference to Boltzmann’s H -curve, Uffink
fully recognized this remarkable aspect of Lanford’s result.

The theorem equally holds for −τ < t < 0, with the proviso that ft is now
a solution of the anti-Boltzmann equation. This means that the theorem is, in
fact, invariant under time-reversal. [Uffink (2007), p.116]

Under such an interpretation, though, one ought to face two cumbersome issues
concerning the problem of establishing the approach towards equilibrium in statis-
tical mechanics. First, the theorem being time-reversal invariant, in the sense that it
predicts a symmetric behaviour in the two directions of time for a fixed initial dis-
tribution, raises the question whether there is any time asymmetry at all. Second, the
fact that entropy decreases for negative times entails that the theorem gives the wrong
retrodictions.

Regarding the first issue, one would expect that, given that the microscopic
dynamics is time-reversal invariant, the time asymmetry comes from the initial
conditions, as the quote by Sklar in the Introduction emphasizes. However, the
regularity assumption (1) is manifestly time-symmetric. Likewise, assumption (2)
does not contain any irreversible ingredient either: as we already noted, contrary to
Boltzmann’s Stoßzahlansatz, it does not express any preference for pre-collision over
post-collision phase points. Actually, different derivations of the theorem by King
(1975) and Spohn (1991) replace assumption (2) with a weaker condition4, which is
time-reversal non-invariant. Yet, one still obtains the same kind of time-symmetric
behaviour with respect to t = 0 as in Lanford’s original theorem, and thus the issue
remains unsettled. Incidentally, that seems to indicate that, although initial conditions
are necessary, they may not be sufficient for time asymmetry. So, one is still missing

4Specifically, such a weaker assumption requires that the domain of convergence of each initial correlation
function f

(a)
k is defined on a smaller subset of phase space �k than �k, 	=(0) (see the Appendix for a

definition of these terms).
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an explanation of why, for irreversible processes, if the system is out of equilibrium
at the initial time, entropy should increase in the course of time for the future whereas
it should decrease for the past.

This leads one to the second issue. That can be illustrated with our example of a
diluted gas expanding from the right corner of a box at t = 0. One would expect
that before the initial time the gas is even further compressed in the corner, so that its
entropy is lower. Nevertheless, the theorem predicts that the gas evolves away from
equilibrium for t < 0. As Spohn (1997) put it,

This is the real puzzle because it contradicts everyday experience... So why
does the method which works so well for the future fail so badly for the past?
[Spohn (1997), p.157]

The answer to such a question, in our opinions, rests on the fact that the theorem is
invariant under time-reversal: without the presence of a time-asymmetric condition
holding in both directions of time, for any increase of the minus H -function in the
future there must indeed be a symmetrical decrease of the minus H -function in the
past. But how can one solve the puzzle about the wrong retrodictions? The solution
proposed by Spohn is to invoke an extra assumption asserting that the system starts
off in the distant past from a state of very low entropy. That is known as the Past
Hypothesis. Yet, the status of such an assumption is not quite perspicuous. There are
two possible formulations: either one considers the entire universe as the relevant
system, so that its early state of very low entropy corresponds to the Big Bang; or, in
the spirit of laboratory physics, one refers just to the gas system under investigation
and posits that its past state at some time t < 0 has much lower entropy than its state
at t = 0.

Spohn understands the Past Hypothesis in the first sense, that is as a cosmologi-
cal assumption. Although it has other eminent advocates such as Boltzmann himself,
Feynmann, Penrose and Lebowitz, the view that the low entropy of the early state
of the universe grounds the thermodynamical arrow of time seems untenable. In par-
ticular, Earman (2006) argued that the past hypothesis is “not even false” since the
cosmological models described in general relativity do not fare well with the idea that
the Boltzmann entropy takes on a low value, nor do they support the claim that time-
evolution is accompanied by a global monotonic increase of entropy. Furthermore,
even granting the fact that the entropy of the entire universe is low, this does not mean
that the entropy of some small subsystem is low too, much less does it imply that the
latter ought to increase in the course of time. What one needs to establish in order to
secure the predictions of Lanford’s theorem is that a gas contained in a box manifests
a tendency to evolve towards equilibrium, but considerations about the universe as a
whole are of no help to describe the behavior of some isolated system.

So, one could instead understand the past hypothesis in the second sense, that is
as referring to isolated systems in the laboratory context. In this case, as Spohn him-
self emphasized, the puzzle about the wrong retrodictions does not seem to arise.
In fact, one can simply manifacture a low entropy state for the gas at the initial
time: the behavior of the system before t = 0 is therefore irrelevant, in that it does
not undergo any unconstrained evolution for t < 0. However, in Lanford’s theo-
rem the choice of the initial time is arbitrary, and so if one applies the theorem for
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negative times at any later instant t > 0 one would still get the wrong retrodictions.
Even worse, on this basis one could actually construct an argument which has rather
dramatic consequences for the theorem. For, let the system be prepared in some ini-
tial state at t = 0, and let it evolve during the time-interval [0, τ

2 ]. According to
Lanford’s theorem, the overwhelming majority of initial microstates x0 in �

(a)

P0,ε0
[f0]

are such that their time-evolved microstates x τ
2

represent a solution of B.E. taking on
the value f τ

2
at t = τ

2 . These initial microstates x0 are typical with respect to the mea-

sure μ(a)
0 . Nevertheless, if one now runs the theorem backwards for the same amount

of time, it appears that the behavior of such microstates is far from typical. In fact, in
order to apply the theorem again at t = τ

2 one ought to introduce a different sequence

of probability measures than μ
(a)
0 , namely the sequence μ

(a)
τ
2
(·) := μ(·|�(a)

P0,ε0
[f τ

2
])

concentrated on the set of phase-points representing the continuous function f τ
2

within the tolerance (P0, ε0). According to the version of Lanford’s theorem for neg-
ative times, the overwhelming majority of the microstates in �

(a)

P0,ε0
[f τ

2
] must have

evolved in agreement with Anti-B.E. from some microstates x ′0 at time t = 0. Of

course, x ′0 	∈ �
(a)

P0,ε0
[f0] and hence x ′0 	= x0, unless the initial x0 was an equilibrium

microstate to begin with (an option which would clearly make the result trivial). Since
by the combinatorial argument the volume of �(a)

P0,ε0
[f0] is less than the volume of

�
(a)

P0,ε0
[f τ

2
], the fact that most microstates in the latter region must have evolved in

agreement with Anti-B.E. means that in the B-G limit μ(a)
τ
2

assigns probability zero

to those microstates which evolved from x0 in agreement with B.E. at time t = τ
2 .

In the spirit of the theorem such phase-points of measure zero should therefore be
neglected, despite being the microstates for which one obtains the expected mono-
tonic increase of entropy during the time-interval [0, τ

2 ]. If this analysis is correct,
Lanford’s result would actually lose some of its strength.

6 Conclusion

We discussed whether Lanford’s theorem can be used to recover the approach
towards equilibrium in Boltzmann’s formulation of statistical mechanics. After
addressing its limitations, we showed that it offers a prospect to complete the com-
binatorial argument. However, we then argued that the theorem being time-reversal
invariant fails to yield the right retrodictions about the past evolution of a gas.
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Appendix

We now offer a more technical analysis of Lanford’s rigorous derivation of the
Boltzmann equation. Although the original proof of the result is spelled out by
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Lanford (1975) within the BBGKY approach, here we just refer to the formulation
of the Theorem by Lanford (1976). We then conclude by making a few remarks on
the limitation in time of the theorem and its possible extension to arbitrary times.

7 A rigorous derivation of the Boltzmann equation

Recall that Lanford’s theorem is espressed in terms of sequences of probability mea-
sures. In order to guarantee that the probability measures in the sequence μ(a) :=
{μ(ak)

k }k=1,...,N remain finite in the B-G limit, they must be suitably renormalized. To
this extent, Lanford introduced the rescaled correlation functions

f
(a)
k (x1, ..., xk) = N !

(N − k)!
1

Nk

∫
xk+1, ..., xNμ

(a)(x1, ..., xN) (8)

As the number k of particles increases, such functions are defined on increasingly
larger phase-spaces �k := (� × R3)k . For N → ∞, the renormalization factor

N !
(N−k)!

1
Nk in front of the integral tends to 1, which assures that f (a)

N (x1, ..., xN) =
μ(a)(x1, ..., xN). It can then be shown that μ(a) is an approximating sequence for f
just in case for all k = 1, ..., N

lim
a→0

f
(a)
k (x1, ..., xk)dx1 · · · dxk = 
k

i=1f (xi)dxi (9)

in the sense of weak*-convergence of measures. This means that, for any fixed k,
the correlation functions f

(a)
k converge almost everywhere to a limiting function

lima→0 f
(a)
k on �k , which in turn factorizes into the product of the values of f

computed on the different mechanical states xi of the particles. The factorization
condition embedded in the above formula 9 thus connects the multi-particle descrip-
tion of the system with the description in terms of the one-particle phase space on
which solutions of B.E. are defined. The time-evolved correlation functions f (a)

k,t are

obtained from the time-evolved sequence μ(a) ◦ Tt by means of formula 8.
The assumptions of Lanford’s theorem are formulated as precise conditions on the

correlation functions at the initial time t = 0. The first assumption is a regularity
condition, that rules out those initial correlations functions f (a)

k not bounded by the
product of the gas density z with the equilibrium Maxwellian distribution hβ( �pk) =
(

β
2πm)

3
2 · e−

β �p2
k

2m .

Assumption (1): There is a positive real constant M such that for any k =
1, ..., N

f
(a)
k (x1, ..., xk) ≤ M · zk 
k

i=1hβ( �pk) (10)

Accordingly, one only admits correlations functions which drop off exponentially
as the Maxwellian distribution. From a physical point of view, it prohibits the pres-
ence of particles with very high energy. This restricts one to a special class of
well-behaving probability measures.
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The second assumption requires that, for any fixed k, the correlations functions
f
(a)
k converge in the B-G limit to a well-defined limiting function lima→0 f

(a)
k uni-

formly on all compact subsets of the set �k, 	=(0) = {(x1, ..., xk) ∈ �k | �qi 	=
�qj for all i 	= j}. This domain of convergence comprises all the points for which

no pair of particles would occupy the same position, and hence it excludes those
configurations for which a collision between particles takes place. Furthermore, one
requires that lima→0 f

(a)
k factorizes into the product of the values that the continuous

function f0 takes on at each mechanical state of the individual particles.

Assumption (2): lima→0 f
(a)
k (x1, ..., xk) = 
k

i=1f0(xi) uniformly on all com-
pact subsets of �k, 	=(0).

Crucially, the set �k/�k, 	=(0) for which uniform convergence is not guaranteed has
measure zero with respect to the Lebesgue measure, and thus the exceptional points
in such a set can be neglected. This assumption plays a similar role as the factor-
ization condition 9 in Boltzmann’s Stoßzahlansatz for k = 2. However, it makes no
explicit reference to pre-collision or post-collision particles, and in fact, contrary to
the Stoßzahlansatz, it is time-reversal invariant. Furthermore, the factorization condi-
tion in Lanford’s assumption has the property that, once it is posited at t = 0, it will
hold continuously in the course of time.

Within this framework, we can now see how one obtains the statement of the
theorem we presented in Section 3. Indeed, Lanford proved that, under assumptions
(1) and (2), for all k = 1, ..., N the time-evolved correlation functions converge in the
B-G limit to a well-defined limiting function uniformly on all compact subsets of the
set �k, 	=(t) = {(x1, ..., xk) ∈ �k | �qi − s �pi 	= �qj − s �pj for all i 	= j and s ∈ [0, t]}
at all positive t up to the time-bound τ . By factorization, such a limiting function
lima→0 f

(a)
k,t (x1, ..., xk) is equal to 
k

i=1ft (xi), with ft being a solution of the B.E.
with initial value f0. The domain of convergence �k, 	=(t) is strictly smaller than the
initial domain of convergence �k, 	=(0). In fact, uniform convergence fails for some
initial points due to the fact that the correlation functions evolve in accordance with
the time-reversal invariant Hamiltonian flow. Although �k, 	=(t) becomes smaller and
smaller in the course of time, the set �k,/�k, 	=(t) of exceptional points remains of
Lebesgue measure zero. As a consequence, convergence almost everywhere on �k is
guaranteed for all k = 1, ..., N in the B-G limit, which implies that condition 9 is
satisfied. One can thus conclude that μ(a) ◦ T−t is an approximating sequence for ft
for all t ∈ [0, τ ].

8 Can the theorem be extended in time?

Let us begin by explaining how the time-bound τ arises. Recall that assumptions
(1) and (2) in the theorem imply that the continuous function f0 taken as the initial
data at time t = 0 satisfies the bound expressed by formula (6). Lanford proved
his result by working with a formal series expansion for solutions of the Boltzmann
equation, where the quadratic term is treated as a perturbation on the linear term, and
he proved that, if f0 satisfies a bound of the same form as (6), such a series converges
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up to the positive time τ . His proof proceeds by making estimations on the amount
of time for which the required convergence is guaranteed. Unfortunately, one is not
able to control the convergence of the expansion series for longer times than τ when
the bound given by inequality (6) fails. Notice that the time-interval of validity of
the result being a fraction of the mean free time t̄ depends on the density z and the
inverse temperature β of the gas. Such parameters are introduced in the theorem by
the regularity assumption (1). In fact, it is the failure of the latter to guarantee the
existence of bounds of the form (6) that prevents Lanford’s proof from carrying on
after time τ .

Yet, there are indications that the result can hold for longer times. To this effect,
Lanford himself sketched the following argument:

While the technique of the proof definitely does not extend to larger times,
examination of the proof suggests (at least to me) that the result should remain
true. One can show, for example, that if the bound (1) holds not only for the ini-
tial correlation functions but also for the time-dependent correlation functions
up to time T , and if (2) holds at time zero, then μ(a) ◦ T−t is an approximating
sequence for ft up to time T + τ . [Lanford (1976), p.14, , where the notation
has been suitably modified]

So, the suggestion is that the result could be extended in time by strengthening the
assumptions of the original theorem. Of course, one cannot require that assumption
(2) holds after t = 0, at the price of begging the question: in fact, that would be tan-
tamount to assuming that, for all k, the correlation functions f (a)

k,t converge uniformly
on all compact subsets of �k, 	=(t) to a limiting function which factorizes into the
product of the values of the solution ft of the Boltzmann equation at t > 0; however,
by condition (9), this would entail that μ(a) ◦ Tt is an approximating sequence for ft ,
which is actually the conclusion itself of the theorem. Instead, one could demand that
the regularity assumption (1) holds continuously for some arbitrary positive time T .
Let us try to develop Lanford’s suggestion.

A stronger version of the regularity assumption stated by condition (10) would
require that there is a positive real constant M such that for all k = 1, ..., N

f
(a)
k,t (x1, ..., xk) ≤ M · zk 
k

i=1hβ( �pk)

for any t ∈ [0, T ]. This, together with assumption (2), now implies that the time-
evolution of f0 satisfies the bound (6) up to the positive time T . Thus, by applying
the technique of Lanford’s proof, one can show that there exists a unique solution ft
of the Boltzmann equation for all t ∈ [0, T + τ ]. In principle, since T is arbitrary,
by this procedure one could extend Lanford’s result at all times. This clearly seems
cold comfort in that one would not obtain a derivation of the Boltzmann equation
solely from initial conditions: the strong regularity assumption, as it is stated above,
is a condition which ought to hold continuously for some time t > 0. Perhaps, one
may try and interpret such an assumption as a condition on the class of well-behaving
probability distributions which one admits at the initial time. That is, among the initial
correlation functions f (a)

k ’s which satisfy the bound (10) at time t = 0 according to
the regularity assumption, one admits only those which do not develop singularity
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in the course of time, at least for some fixed time T . So, under this interpretation,
appealing to the stronger version of the regularity assumption would further restrict
the class of well-behaving initial probability distributions allowed by the original
Lanford’s theorem. However, this class would become smaller and smaller as one
fixes higher and higher times T , and hence the strong regularity assumption appears
as rather restraining.

Be it as it may, the main lesson of this argument is that, in order to obtain a
time-extension of Lanford’s result from his original assumptions (1) and (2), one
needs to adopt a different technique of the proof. That is an outstanding challenge in
contemporary mathematical physics.
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