
ORIGINAL PAPER IN PHILOSOPHY OF SCIENCE

Understanding endogenously active mechanisms:
A scientific and philosophical challenge

William Bechtel

Received: 18 October 2010 /Accepted: 8 January 2012 /Published online: 11 February 2012
# Springer Science+Business Media B.V. 2012

Abstract Although noting the importance of organization in mechanisms, the new
mechanistic philosophers of science have followed most biologists in focusing
primarily on only the simplest mode of organization in which operations are envis-
aged as occurring sequentially. Increasingly, though, biologists are recognizing that
the mechanisms they confront are non-sequential and the operations nonlinear. To
understand how such mechanisms function through time, they are turning to compu-
tational models and tools of dynamical systems theory. Recent research on circadian
rhythms addressing both intracellular mechanisms and the intercellular networks in
which these mechanisms are synchronized illuminates this point. This and other recent
research in biology shows that the newmechanistic philosophers of sciencemust expand
their account of mechanistic explanation to incorporate computational modeling, yield-
ing dynamical mechanistic explanations. Developing such explanations, however, is a
challenge for both the scientists and the philosophers as there are serious tensions
between mechanistic and dynamical approaches to science, and there are important
opportunities for philosophers of science to contribute to surmounting these tensions.

Keywords Newmechanistic philosophy of science . Dynamical mechanistic
explanation . Computational modeling . Circadian rhythms . Dynamical systems
theory . Non-sequential organization

The new mechanistic philosophers of science have abandoned the attempt to shoe-
horn biological explanations into nomological models and have focused instead on
articulating the practices of biologists who appeal to mechanisms to explain biolog-
ical phenomena. Most of these accounts have followed the practice, characteristic of
biology through much of the 20th century, of treating mechanisms as sequentially
organized reactive systems (Machamer et al. 2000, for example, characterize
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mechanisms as “productive of regular changes from start or set-up to finish or
termination conditions”). The result is what I characterize as a basic account of
mechanistic explanation. But philosophers of science must remain attuned to ongoing
developments in these sciences. In a host of fields biologists are recognizing that the
mechanisms they confront are neither sequential nor reactive but employ non-
sequential organization of non-linear interactions in open systems to generate endog-
enous activity. Understanding how biological organisms are endogenously active and
how that affects their responses to stimulation is a challenge not just for biologists but
also for philosophers of science, especially the new mechanists, as it requires
integration of new tools, those of computational modeling, with the more traditional
strategies for decomposing mechanisms. In this paper I present examples of recent
biological research addressing endogenously active mechanisms and explore how
relating the tools of mechanistic science with approaches for modeling dynamical
systems provides a framework of dynamic mechanistic explanations that addresses
the scientific and philosophical challenge.

1 The new mechanistic philosophy of science needs dynamics

While the idea of explaining a phenomenon by identifying the responsible mecha-
nism was championed by Descartes, and widely invoked in biology as well as many
other sciences in the centuries since, it was eclipsed in 20th century philosophy of
science by a account that viewed explanation as involving deduction of a linguistic
characterization of the phenomenon to be explained from laws of nature and initial
conditions (Hempel, 1965). Biologists, however, only infrequently appeal to laws and
those are typically laws of physics or chemistry (Weber, 2005). Moreover, the
primary effort in developing explanations in biology is not identifying the laws, but
discovering and describing the constitution of the specific mechanism responsible for
the phenomenon. This involves identifying its parts and the operations they perform
and determining how these are organized to produce the phenomenon of interest. In
the past couple decades several philosophers focused on biology have developed
accounts of mechanistic explanation that attempt to reflect these explanatory endeavors
of biologists (Bechtel & Richardson, 1993/2010; Glennan, 1996, 2002; Machamer
et al., 2000; Bechtel & Abrahamsen, 2005; Darden, 2006; Craver, 2007). Their
efforts have been characterized as constituting a new mechanistic philosophy of
science.1

Central to mechanistic explanation as it has been pursued in biology is the
assumption that the behavior of mechanisms is to be understood in terms of the
operations performed by their parts and that therefore it is essential to decompose
mechanisms into their parts and operations. The ability of parts to perform operations
is assumed to be determined by their internal properties; whether they perform these
operations is determined by the inputs they receive. Mechanistically oriented

1 Important predecessors of the new mechanistic philosophy of science are Wimsatt (1976, p. 671), who
argued that “at least in biology, most scientists see their work as explaining types of phenomena by
discovering mechanisms . . .” and Salmon (1984), who defended a “causal-mechanical view” that drew out
the importance of causal relations but said little about what renders a set of causal processes into a
mechanism.
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scientists have identified an extremely powerful set of tools for decomposing mech-
anisms, for example, by inhibiting or stimulating proposed operations in a mechanism
and analyzing their effects on the overall mechanism to determine their specific
contribution. Identifying how these parts are organized, however, has proven a good
deal more challenging. Mechanistic research often begins by associating a whole
phenomenon with a single part of the responsible system (e.g., Broca’s identification
of the capacity for articulate speech with a region of left prefrontal cortex or
Buchner’s identification of fermentation with an enzyme he designated zymase). In
Bechtel and Richardson (1993/2010) we characterized this as the strategy of simple or
direct localization, but noted that in practice it typically fosters research that leads to
its own supplanting as researchers either identify other components that play funda-
mental roles in generating the phenomenon or discover that the single component
actually contains multiple parts that carry out different operations (e.g., enzymes that
catalyze a variety of reactions that all figure in fermentation). Although Richardson
and I characterized the step of identifying multiple components of a mechanism as
complex localization, in fact research usually begins by positing the simplest arrange-
ment in which multiple parts are organized to generate the phenomenon—a sequen-
tial arrangement in which the product of one operation is provided as an input to the
next operation, which transforms it and passes it to yet another operation, as in an
assembly line. This is the sort of organization that is assumed in Machamer, Darden,
and Craver’s characterization of a mechanism as “productive of regular changes from
start or set-up to finish or termination conditions.” When mechanisms are organized in
this way, basic mechanistic explanation, in which one characterizes the functioning of
the overall mechanism qualitatively in terms of the contribution of each of its parts and
mentally rehearses (simulates) how it produces the phenomenon, suffices.

Historically evolving systems, however, are not limited to such sequential arrange-
ments of parts; connections are spontaneously or opportunistically added between
components, resulting in integrated networks of components. Often this involves
connections through which operations later in what might be envisaged as a sequence
send products (signals) back to operations envisaged as earlier in the sequence. When
individual operations are affected by what is happening in multiple other parts of the
system, some of which they affect through their own operation, and these processes
occur on different timescales, the ability of qualitative mental simulation to determine
the behavior of the overall system is severely compromised. This is especially true
when, in addition to non-sequential organization, the operations within the mecha-
nism are nonlinear when described mathematically and there is a flux of free energy
through the mechanism. In such circumstances, mechanisms can exhibit complex
behavior, including oscillations and even chaos.

Scientists in a variety of fields of biology are increasingly coming to recognize that
mechanisms organized in the manner just described are endogenously active—they
generate activity even when they are not being supplied with what are generally taken
to be their inputs or start-up conditions. Among the biological phenomena that can
result from endogenous activity in the responsible mechanisms are action potentials
in neurons, contractions of heart muscles, locomotion of animals, and mind wander-
ing (for examples and discussion, see Abrahamsen & Bechtel, 2011). Endogenous
activity, however, is often rendered invisible by the investigatory strategies researchers
pursue. In many fields in which there is variability in the recorded behavior, researchers
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focus on the mean change in response to a stimulus and employ the variability in the
response primarily in tests for the statistical significance of differences between
means produced under different circumstances (e.g., the absence of a stimulus
or presence of an alternative one). While variability in the signal recorded is
noted, it is generally treated as noise that renders it difficult to extract what is
regarded as the signal that reflects the response to the stimulus. In fact, such
noise often reflects the endogenous activity of the system. Far from being in a
constant state, the mechanism varies over time and this has consequences for
the activity that might be evoked by what are usually taken as the inputs to the
mechanism. To identify and study this endogenous activity requires a different
approach than that which reveals the parts and operations of a mechanism—
researchers must examine the behavior of the mechanism across time, employing time-
series analysis, and then analyze the patterns of change using tools of mathematical
modeling and dynamical systems theory.

Explaining the behavior of endogenously active mechanisms requires what
Abrahamsen and I (Bechtel & Abrahamsen, 2010) refer to as dynamic mechanistic
explanations, explanations that take into account the parts and operations of the
mechanism, their spatial organization, and the “patterns of change over time in
properties of its parts and operations” that result in the orchestrated behavior of the
mechanism. Mathematical models that employ differential equations to describe the
individual operations are employed to simulate the behavior of the mechanism
through time. Determining appropriate parameter values is often a major part of the
modeling enterprise. In many cases, the models show that some parameter values
result in an initial transient before the mechanism settles into a stable state. But with
other parameter values, more complex patterns of change are generated in the models
and researchers must then investigate whether these parameter values correctly
describe the actual mechanism.

Endogenously active mechanisms often exhibit the simplest of these more com-
plex patterns, oscillatory behavior. In the following section, I discuss the types of
mechanisms that can explain endogenous oscillatory phenomena that are ubiquitous
in biology. In a subsequent section I consider strategies for understanding complex
phase relations that can be established between oscillatory mechanisms before return-
ing in the final section to the challenges both developments present for both scientists
themselves and philosophers of science.

2 Biological oscillations and the responsible mechanisms

Some oscillatory processes in biology are widely recognized—heart rhythms and
ovulation in mammals, fluorescent flashing of fireflies, annual cycles of flowering in
plants and hibernation in some animals, etc. But in fact oscillatory processes are
ubiquitous in biological organisms. Cells exhibit cycles of division and growth.
Oxidative metabolism and sleep exhibit cycles of approximately 90 min. Brain
processes exhibit oscillations at a number of frequencies, from relatively slow
oscillations with periods greater than 10 s, detected with fMRI, to much faster
oscillations (1–80 Herz), detected by EEG or implanted electrodes. Conventionally,
biological oscillations are differentiated into ultradian (those with a period well less
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than 24 h), circadian (those with an approximately 24 h period), and infradian (those
with a period of greater than 24 h).

In this paper I will focus on circadian rhythms as extensive research has resulted in
quite rich understanding of them. These oscillations are entrainable to the daily cycle
on the planet by cues such as light and temperature. But they are maintained in the
absence of such cues, a condition known as free-running, during which they exhibit
periods deviating only slightly from 24 h (hence, the name circa [about] + dies [day]).
They are found in all orders of life, from bacteria to fungi, plants, and animals. And
they regulate a vast range of physiological and behavioral phenomena, including, in
humans, sleep and attention, physiological strength and mental reaction times, heart
rate and basic metabolism, and hunger, thirst, and waste excretion.

Oscillatory mechanisms such as pendulums are well known in physics, where the
opposition of driving and resisting forces with time delays can generate oscillations.
Often oscillations arise where they are not desired, as when negative feedback is
employed with the objective of maintaining constant values for regulated variables
but ends up producing oscillations instead. For example, a common household
thermostat is designed to keep a room at a specified temperature, but results in an
oscillation between a slightly lower and a slightly higher temperature. Considerable
engineering work has gone into developing procedures to minimize the oscillatory
range. But in biology such oscillations are sometimes useful, and research has been
devoted to how oscillations may be maintained. For example, when the lac operon
was identified as a feedback mechanism at the genetic level in bacteria (wherein a
gene product figures in regulating gene expression), Goodwin (1965) undertook an
investigation of when such mechanisms might produce sustained oscillations. He
determined that in addition to feedback and a continual supply of energy, at least one
of the reactions had to be non-linear when described mathematically. Goodwin’s
account of the conditions under which oscillation occurred influenced modeling of
mechanisms for creating circadian rhythms once empirical research began to provide
clues to the basic mechanism.

Konopka and Benzer (1971) provided the first clue to the underlying mechanism
when they identified a Drosophila gene, which they named period (per), whose
various mutants exhibited shortened or lengthened periods or became arrhythmic.
In the 1980s it became possible to measure the changing concentrations of permRNA
and the resulting protein (PER) and both were found to oscillate, with per mRNA
reaching peak concentrations several hours in advance of the protein. This led Hardin
et al. (1990) to propose a feedback mechanism in which per was transcribed into
mRNA in the nucleus, the mRNAwas transported to the cytoplasm to synthesize the
protein PER, and the protein was in turn transported back into the nucleus where, in
some at the time unspecified manner, it inhibited further transcription (see Fig. 1).

Since molecules of PER degrade over time it seemed plausible that the proposed
mechanism would generate oscillations, but it was possible that it would instead settle
into an equilibrium state. While further mechanistic research (decomposing the
system into components and discovering how they were organized in the cell) was
needed to resolve questions such as how PER could inhibit per transcription, it could
not reveal the temporal dynamics of the mechanism. Pursuing that goal required a
different approach, one that focused on how the proposed mechanism would behave
in real time. That is, the mechanistic explanation provided only the starting point for a
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dynamic mechanistic explanation. Goldbeter (1995) took the next step by offering a
mathematical model of the behavior of Hardin et al.’s circadian mechanism, com-
prising five differential equations. Figure 2 shows the first of these equations and
illustrates how its terms and variables correspond to properties of certain parts and
operations in the mechanistic account.

Using biologically plausible parameter values in the mathematical model of its
dynamics, Goldbetter succeeded in demonstrating that such a mechanism could

Fig. 1 Hardin et al.’s (1990) proposed feedback mechanism for generating circadian oscillations in
Drosophila

Fig. 2 A dynamic mechanistic explanation. Equation (1) in Goldbeter’s (1995) model shown in relation to
the relevant portion of Hardin et al.’s proposed circadian mechanism (Fig. 1). A property of certain parts of
that mechanism (the concentration of per mRNA and of its protein, PER) directly correspond to the
variablesM and PN. The salient property of two operations—their rate—corresponds to the two terms of the
equation. These terms include several parameters: vS represents the maximum rate for the accumulation of
M, KI is a threshold constant for inhibition, n is the Hill coefficient indicating the minimum number of
cooperating molecules required to achieve inhibition, vm is the maximum rate for the degradation ofM, and
Km is the Michaelis constant for the degradation reaction

238 Euro Jnl Phil Sci (2012) 2:233–248



indeed maintain oscillation. In fact, the system of equations generated what is known
as a limit cycle. By plotting the successive states of the system in phase space (with
mRNA and protein concentrations as the two axes), the system is seen to approach
the cycle (dark oval in Fig. 3) as a limit and, if ever perturbed from this cycle, to
return to it. The oval represents the continued oscillations such a system would
exhibit were the limit ever reached.

Even at the time this mechanism was proposed and being modeled, researchers
suspected there were more components (one indicator was that PER lacks a DNA
binding region and so something else must mediate its inhibition of its own tran-
scription). In short order researchers identified numerous other Drosophila clock
genes comprising positive and negative feedback loops (several of these additional
components are shown in Fig. 4). Although one can try, especially by appealing to such
a figure, to rehearse mentally the behavior of such a mechanism, it becomes very
difficult to anticipate how the positive feedback loop generating CLOCK interacts with
the negative feedback loop through which PER interacts with CLOCK, and how that
interacts with CRY when light is present. Will the mechanism sustain oscillations, or
settle into a stable state? Again, this was a question that required mathematical modeling
to answer: a variety of models (Leloup &Goldbeter, 2000; Smolen et al. 2004) indicate
that under biologically plausible parameters stable oscillations will result.

The primary function of these models is to determine how a mechanism involving
interaction of multiple parts will behave. But they also can be used to address other
questions. For example, is the mechanism robust to changes in parameter values, or
are there parameter values that radically alter the behavior of the mechanism? Such
questions are typically addressed by running the computational model under various
parameter settings and analyzing the results (often by portraying them graphically).
Smolen et al., for example, manipulated the parameters affecting CLOCK to deter-
mine whether the positive feedback loop was essential to generating sustained
oscillations (in their models it did not appear to be so). Leloup and Goldbeter
investigated parameters affecting the breakdown of PER and TIM, and found values

Fig. 3 Limit cycle generated by
Goldbeter’s (1995) mathematical
model
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that produced behavior corresponding to known sleep pathologies, thereby suggest-
ing how the mechanism could explain these pathologies. The point to be emphasized
is that such modeling provides understanding beyond that which is available from
identifying the parts, operations, and organization of the mechanism and mentally
rehearsing its functioning. With mechanisms exhibiting complex behavior, modeling
has a crucial role to play.

This brief exposition of the mechanism generating circadian rhythms in Drosophila
has considered only research on the core mechanism for generating rhythms, and has
not discussed either the processes by which these rhythms are entrained by light or
those through which they serve to regulate physiological processes and behaviors of
the fly. Although much has been learned in the past decade, there is still far less
known about these processes than about the core mechanism. What is becoming
apparent, though, both from research on flies and on mammals, is that these processes
are themselves not sequential but involve complex feedback processes whereby the
core mechanism regulates its own inputs, and what appear to be output systems affect
the clock’s own behavior (see Bechtel & Abrahamsen, 2009, pp., for details). This
means that ultimately neither the core mechanism nor its input or output system can
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Fig. 4 A more complete account of the Drosophila oscillator. The large open arrows indicate whether the
promoter turns gene expression on or off. The smaller open arrows represent the combined processes of
gene transcription in the nucleus, transport to the cytoplasm, and translation in the cytoplasm
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be fully understood independently of the others as the operation of components
within the core mechanism both affect the operations performed elsewhere in the
organism and are affected by those. This further undermines the prospect of under-
standing the mechanism in terms of a sequence of operations from start to termination
condition. Fortunately, once they have developed a mathematical model for the core
mechanism, modelers can add additional terms to the appropriate equations to
characterize how operations occurring elsewhere affect, even in a nonlinear fashion,
the components of the core mechanism itself. Thus, dynamic accounts of mechanism
can succeed in understanding the oscillatory behavior produced in mechanisms for
which simple sequential accounts fail.

3 Populations of synchronized oscillators in complex phase relations

In this section I consider a further example in which synchronization of oscillators
illustrates the need to develop dynamic mechanistic explanations. For this example I
shift from Drosophilia, in which a small number of ventral and lateral neurons
constitute the core circadian mechanism, to mammals, in which a part of the hypothal-
amus, known as the suprachiasmatic nucleus (SCN), a structure consisting for 8,000–
10,000 neurons on each side of the brain in mice, serves as the core mechanism.2

Lesions to the SCN result in loss of circadian behaviors, and transplanting a donor
SCN into the ventricles restores some of these circadian behaviors (Silver et al. 1996).
Initially it seemed plausible that individual SCN neurons all behaved the same, so that
the behavior of the SCN was simply a collective effect of its individual neurons, but
Welsh et al. (1995) showed that when SCN neurons were dissociated in culture on a
microelectrode array (which allowed for retention of “abundant functional synap-
ses”), some neurons oscillated in antiphase with others and the periods of oscillation
varied substantially between neurons (ranging from 21.25 to 26.25 h, with a standard
deviation of 1.25 h). In contrast, the circadian behavior in organisms is much more
regular, and indeed Welsh himself had previously shown that the overall circadian
signal shows virtually no variability (Welsh et al. 1986). Subsequent research dem-
onstrated that the variability was largely eliminated in non-dispersed explants in
which nearly complete connectivity is maintained (Herzog et al. 2004). This reveals
that regular time keeping emerges at the population level from coupling processes
that synchronize highly variable component timekeepers.

Coupling of oscillators requires the transmission of a signal between oscillators,
and research on possible coupling agents in the SCN identified vasoactive intestinal
polypeptide (VIP) as the primary synchronizing agent, although GABA and gap-
junctions may also be involved (Aton & Herzog, 2005). The process of coupling is
complicated by the fact that there are at least two distinct regions of the SCN, a core
and a shell (van den Pol, 1980). Differences between these regions include: (1)
patterns of connectivity by which they receive inputs from other parts of the brain

2 There are some important differences between the basic circadian mechanism in Drosophila and
mammals, but it is largely conserved. This conservation facilitated the identification of parts of the
mammalian mechanism, and the discovery of new components in the mammalian mechanism also
supported comparable discoveries in Drosophila (see Bechtel, 2009).
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and send outputs to other brain areas and other organs, (2) only neurons in the core
release VIP (those in the shell produce arginine vasopressin instead), (3) neurons in
the shell oscillate in advance of those in the core, but (4) only those in the core
maintain sustained endogenous oscillations.

The ability of oscillators to synchronize when a signal is transmitted between them
has been known since the observations of Huygens, but over the 20th century it was
also recognized that, depending on the character of the oscillators themselves and the
timing of the signal between them, the resulting behavior can be extremely complex,
sometimes involving toroidal oscillations, deterministic chaos, or coexistence of
multiple attractors (Grebogi et al. 1987). Computational modeling is thus essential
for understanding the effects of the release of VIP in synchronizing the oscillations of
individual neurons in the SCN.

The first effort to model the coupling process, by Gonze et al. (2005), did not take
into account the anatomical details about the SCN, but simply explored whether
generation of a compound such as VIP could synchronize independent mechanisms
of the sort thought to be responsible for circadian rhythms. The modelers adapted a
version of the Goodwin oscillator (mentioned above) to represent the generation and
degradation of a single clock protein in each of 1000 modeled neurons and added
equations describing the change in concentration of VIP as it was created by each
oscillator and then degraded and calculating the mean of VIP concentration across the
population. They then added a term to the equation describing the change in concen-
tration of the clock protein that increased the rate of change proportional to the mean
concentration of VIP. When the parameter in this term was set to 0, Gonze et al.
obtained results much like those of Welsh et al. (the periods of different oscillators
were highly variable), but when it was set to 0.5, the oscillators synchronized.

In this initial model, Gonze et al. assumed that VIP was produced by all SCN
neurons and instantly and equally distributed to all others. This is one of the modes of
network organization whose properties were investigated by mathematicians in the
field of graph theory in the mid-20th century (for discussion and references, see
Strogatz, 2001). Mathematicians also explored the properties of two other network
structures, regular lattices and randomly connected networks, and deployed two
useful measures for characterizing information flow, characteristic path length and
the clustering coefficient. The characteristic path length is the mean of the shortest
path between pairs of nodes and reflects how quickly information can be transmitted
through the network. The clustering coefficient is the proportion of possible links in
local neighborhoods that are actually realized and reflects how much specialized
processing can be accomplished by cooperating nodes. Short characteristic path lengths
and higher clustering are desirable for information processing and are realized in fully
connected networks. However, maintaining complete connectivity between all neurons
in a network is metabolically very expensive. However, the other modes of organization
initially explored each only exhibit one of the desirable features: regular lattices only
allow high clustering whereas random networks only facilitate short characteristic path
lengths.

The tradeoff between path length and clustering, however, is not inevitable. Watts
and Strogratz (1998) investigated a new class of networks in which most connections
are between local units but a few are long-distance. They found that these networks,
which they termed small-worlds, exhibited both short characteristic path lengths and
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high clustering. They also demonstrated that a host of real-world networks, including
networks of movie actors linked by co-appearances, the electrical power-grid of the
Western U. S., and the neural network of the nematode worm Caenorhabditis
elegans, exhibit small-world properties. In addition, they examined the functional
properties of small-world networks, showing how they allow for rapid spread of
infectious diseases, enable efficient problem solving in cellular automata, and reduce
the likelihood of cooperation in iterated prisoner dilemma games. Of particular
interest, they examined coupled phase oscillators and demonstrated that synchroni-
zation occurred almost as fast in small-world networks as in fully-connected net-
works. They speculated that the brain has a small-world architecture and that this
could explain the synchronization of widely separated neurons in visual cortex. This
speculation has been supported by connectivity matrices Sporns and Zwi (2004)
developed based on published neuroanatomical data, including Felleman and van
Essen’s (1991) study of the macaque’s visual cortex. Moreover, Sporns and Zwi
showed that the brain networks exhibit characteristic properties of small-worlds: short
characteristic path lengths and high clustering. (See Bullmore & Sporns, 2009, for
additional analyses of structural and functional connectivity in brain networks.)

Might the SCN exhibit a small-world architecture? Vasalou et al. (2009) investi-
gated this question in a modeling study. They began with a previous effort of their
own (To et al. 2007) in which they adapted the model of mammalian circadian
oscillations developed by Leloup and Goldbeter (2004) so that only some neurons
maintained oscillations without synchronization and VIP diffused from each neuron
in which it was generated. They modified the connections in the network to reflect
small-world connectivity and demonstrated synchronization that approximated what
was achieved in a totally connected network. They were also able to capture three
other phenomena observed in experimental studies: with VIP (1) the percentage of
oscillating neurons in the SCN rises from about 30% to nearly all, (2) the period is
extended from approximately 22 to approximately 24 h, and (3) the variability in
periods is largely eliminated. Vasalou et al. emphasize the cost virtues of small-world
networks over totally connected networks—they can achieve the same synchroniza-
tion with fewer neural connections, which are very energetically expensive to develop
and maintain. The researchers do not, however, pursue the possibility that the high
clustering in small-worlds may generate other useful features, including the ability of
localized clusters to maintain oscillations offset from others that may serve to regulate
different functions that must be performed at different times of day (e.g., those linked
to the onset of daylight and those linked to the end of daylight). Demonstrating that
the SCN actually exhibits small-world organization and what virtues that offers
requires further research.

What is noteworthy is that all of the research on how synchronization between
oscillators might arise in the normally functioning SCN has been conducted in
mathematical simulations. This reflects the fact that the knowledge sought about
the dynamic behavior in a complexly organized mechanism goes beyond what basic
mechanistic research alone could provide. Mechanistic research provided needed
information about the component parts of the SCN and their individual behaviors
and about the basic neural architecture found in the SCN, but was not itself able to
determine the temporal behavior such a mechanism would produce. This is what
mathematical modeling provides. The modeling efforts, though, do not eclipse
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mechanistic research. Rather, they build upon its results, and poses new questions
about the realism of the models (e.g., about the plausibility of the parameters
employed in the models and their robustness under various parameter changes) which
themselves can only be answered by further mechanistic research.

4 Dynamics and the future of mechanistic philosophy of science

In the two previous sections I developed examples in which research on circadian
rhythms has identified the non-sequential organization of non-linear operations that
generate the rhythms and the processes by which oscillators with variable periods are
synchronized through networks of connections to produce regular oscillations. I offer
these not as eccentric examples but as exemplary of recent developments in biology.
My point in presenting these examples is to show how biological understanding of
these mechanisms requires supplementing the traditional basic approach of mecha-
nistic explanation exemplified in biological practice and described in the philosoph-
ical accounts of the new mechanists. Traditional mechanistic modes of inquiry have
been highly successful in identifying the components of the individual oscillatory
mechanisms and the agents through which they couple. Such research, however, is
not able to show how a mechanism with the proposed parts, performing the specified
operations, and organized in a specified manner, will actually behave. This requires
bringing to bear additional tools, those of mathematical modeling and dynamical
systems analysis, to offer dynamic mechanistic explanations.

In arguing for the need for philosophy of science to attend to dynamic mechanistic
explanation I am embracing the same naturalistic approach that initially gave rise to
the new mechanistic philosophy of science. The new mechanism emerged as philos-
ophers of biology noted the poor fit of traditional philosophical approaches to
explanation to prominent instances of explanation in biology. But biology is a moving
target. While mechanistic research directed at decomposing mechanisms into their
parts and operations is still fundamental, biologists are increasingly recognizing and
confronting the challenges of recomposing mechanisms and understanding the com-
plex behavior that results when the organization is non-sequential. The recognition of
the need to employ mathematical models and dynamical systems analysis to under-
stand biological mechanisms is one of the factors contributing to the recent rise of
systems biology (Noble, 2006; Boogerd et al. 2007). Investigators are increasingly
discovering that mechanisms that were once envisaged as operating sequentially
involve feedback loops that support complex dynamical behavior. If philosophy of
science is to characterize actual science, its models of explanation must accommodate
the integration of dynamics into mechanistic explanations.

So far I have presented mathematical modeling as an approach that complements
and extends basic mechanistic research. But integration of mechanistic and dynamical
approaches is not easy and can be challenging to bring about. Mechanistic research
strategies require researchers to decompose mechanisms into their parts and charac-
terize the properties of these parts independently of their role in the mechanism. A
variety of experimental manipulations are employed to reveal the operations per-
formed by the parts of the mechanism and it is assumed that the parts operate the
same under these experimental manipulations as they do in the mechanism as found
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in nature. However, as a result of non-sequential organization, the operations of the
parts are modulated by operations occurring elsewhere in the mechanism and these
effects are typically altered in the experimental context. Far from being intrinsic to the
parts, these operations are context sensitive. Such variability is expected in dynamical
models, in which the parts are characterized in terms of variables—things that vary.
So there is inherent tension in construing the parts both as having fixed properties, as
envisaged in mechanistic research emphasizing decomposition, and being variable, as
characterized in dynamical models. Yet, both approaches are needed in order to
understand the endogenously active mechanisms found in biology—researchers need
to identify parts in terms of their properties and recognize how these change over
time, partly as a result of other changes in the mechanism and external factors
impinging on the mechanism. In practice, biologists often proceed by first assuming
that the parts and operations are stable across contexts and so describe them. These,
however, serve as “first approximations” (Bechtel & Richardson, 1993/2010) which
then must be revised in light of further research that reveals ways they are sensitive to
context.3 Were the effects of context to swamp any attempt to track parts and
operations, mechanistic explanation would fail (a point clearly articulated by Simon,
1969, in his discussion of near-decomposability). In much of biology, fortunately, it
remains possible to identify parts and operations even as mathematical equations are
employed to characterize how they are affected in various ways by being incorporated
into complex systems.

The tension that arises between mechanistic decomposition and mathematical
modeling is also reflected in philosophical positions. Some of the new mechanists
(e.g., Craver, 2007) reject the proposal that mathematical models are explanatory. But
in order to determine that a mechanism could explain a phenomenon, investigators
must be able to show that it could generate the phenomenon. For relatively simple
mechanisms, they can proceed sequentially, mentally representing each process of
change, but I have stressed that this is not possible when the organization of the
mechanism is non-sequential, the operations are non-linear, and there is a flux of free
energy through the mechanism. Then the only tools for determining that the mech-
anism will generate particular behaviors are those of mathematical modeling and
dynamical systems theory. Without them, mechanistic explanation is blind.

One of the factors that motivates Craver to deny that models, including computa-
tional models, are explanatory, is that models can be proposed that are not grounded
in experimental research identifying the parts and operations incorporated in the
model. He denies, for example, that Hodgkin and Huxley’s model of the action
potential is explanatory since the key components of the mechanism, the ion chan-
nels, and the operations by which they opened and closed, had not been discovered
and the key parameters in the model resulted from fitting data on the voltage sensitive
conductance of ions. They were not grounded in details of the mechanism. Likewise,
many advocates of dynamical approaches are critical of mechanistic research, main-
taining that developing mathematical characterizations of how variables change over

3 One might view the context-sensitive behavior of parts and operations as a reason to repudiate the project
of decomposition. For reasons indicated below, I contend that the project of decomposition remains crucial
to mechanistic biology. The context sensitivity of components can be accommodated by articulating the
interaction between intrinsic features of components with processes external to them.
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time is sufficient for explanation (Chemero, 2000). Left ungrounded, the variables in
dynamical equations cannot be related to the actual processes bringing about the
phenomenon. The proffered explanation reflects only a possible way the phenomena
might have been generated, and accordingly is empty.

Computational models, however, need not be so detached from the details of the
mechanism. Modelers structured the equations in the models of circadian oscillations
in Drosophila discussed above in light of what was known of the parts and operations
of the responsible mechanism. Their exploration of parameters was less directly
constrained, but they were still concerned to show that the parameter values that
produced appropriate circadian behavior were biologically plausible. In modeling the
network structure that would produce synchronization, researchers are constructing
models that exceeded what is known of the connectivity of the SCN. But part of their
objective is to provide guidance for further experimental investigations. The models
are not floating free of the mechanism, and an important part of the evaluation of the
adequacy of such models is whether they accurately describe the mechanism (see also
Kaplan & Craver, 2011). In these cases, dynamical accounts do not supersede
mechanistic research, but provide understanding of how a mechanism with a given
constitution actually behaves.

5 Conclusion

Both in science and in the philosophy of science, there is a challenge in
integrating mechanistic research emphasizing decomposition and dynamical
modeling in dynamic mechanistic explanations. But such integration is essential
if science is to understand the endogenously active mechanisms that are found
in living systems. Scientists in fields such as circadian rhythm research are
increasingly discovering the need to integrate the two approaches and are
attempting to do so, and philosophers can both learn from and potentially
contribute to the ongoing efforts at integration in this and other domains of
biology that confront endogenously active mechanisms. In doing so, philosophy
of science can maintain the sort of productive engagement with science that has
been one of its signature virtues in recent decades.
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