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Abstract
Background The misuse of prescription opioids (MUPO) is a
leading public health concern. Social media are playing an
expanded role in public health research, but there are few
methods for estimating established epidemiological metrics
from social media. The purpose of this study was to demon-
strate that the geographic variation of social media posts men-
tioning prescription opioid misuse strongly correlates with
government estimates of MUPO in the last month.
Methods Wewrote software to acquire publicly available tweets
from Twitter from 2012 to 2014 that contained at least one key-
word related to prescription opioid use (n = 3,611,528). A

medical toxicologist and emergency physician curated the list
of keywords.We used the semantic distance (SemD) to automat-
ically quantify the similarity of meaning between tweets and
identify tweets that mentioned MUPO. We defined the SemD
between two words as the shortest distance between the two
corresponding word-centroids. Each word-centroid represented
all recognized meanings of a word. We validated this automatic
identification with manual curation. We used Twitter metadata to
estimate the location of each tweet. We compared our estimated
geographic distribution with the 2013–2015National Surveys on
Drug Usage and Health (NSDUH).
Results Tweets that mentioned MUPO formed a distinct clus-
ter far away from semantically unrelated tweets. The state-by-
state correlation between Twitter and NSDUH was highly
significant across all NSDUH survey years. The correlation
was strongest between Twitter and NSDUH data from those
aged 18–25 (r = 0.94, p < 0.01 for 2012; r = 0.94, p < 0.01 for
2013; r = 0.71, p = 0.02 for 2014). The correlation was driven
by discussions of opioid use, even after controlling for geo-
graphic variation in Twitter usage.
Conclusions Mentions of MUPO on Twitter correlate strong-
ly with state-by-state NSDUH estimates of MUPO. We have
also demonstrated that a natural language processing can be
used to analyze social media to provide insights for syndromic
toxicosurveillance.

Keywords Social media . Epidemiology .Misuse . Opioids .

Natural language processing . Computational linguistics

Introduction

Approximately 35 million Americans over age 12 used pre-
scription opioids for nonmedical reasons at least once in the
last year [1]. The misuse of prescription opioids (MUPO) is
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associated with adverse hormonal and immune system effects,
abuse, and addiction [2]. American healthcare costs of MUPO
increased from $53.4 billion in 2006 [3] to $70.4 billion in
2013 [4].

Americans turn to online resources and social networks to
discuss healthcare issues; 72% of US web users have sought
health information online within the past 12 months; 34% of
adult web users have read or shared health concerns or com-
mentary on social platforms [5, 6]. Nearly three out of four
Americans use at least one social networking site [7].

Social media platforms, such as Twitter, Facebook, or
YouTube, facilitate the exchange of short messages, via desk-
top, laptop, tablet, or smartphone. Messages exchanged on
these platforms have previously been successfully analyzed
for syndromic surveillance of infectious diseases [8] and sen-
timent analysis of the treatment of migraine headaches [9].
Twitter is an online news and social networking service where
users post messages, called Btweets,^ and reply to tweets that
others send. Tweets are limited to 140 characters. Anyone can
read publicly posted tweets. Only registered users can post
tweets. Users access Twitter through its website interface or
mobile device app. Among social networks, the
microblogging platform of Twitter offers several advantages
for digital epidemiology; its users tend to write frequent, short
messages (tweets) on a wide variety of topics, users often
indicate their location and other demographic information,
messages are publicly searchable, by default, and the Twitter
platform is frequently used via desktops, laptops, and mobile
devices [10]. The use of social media to study the epidemiol-
ogy of drug use has focused on using social media as a source
ofmaterial for qualitative analysis, as ameans to digitally acquire
large amounts of data, often from online forums, that experts
then process entirely manually. Prior analyses include an explo-
ration of the demographics of well-defined communities [11],
the frequencies of keywords related to stimulant abuse [12] or
alcohol [13], and surveys of drugs mentioned in online discus-
sion forums [14]. A limitation of all of these studies is that
comparing the findings of these studies to established findings
is not straightforward; for example, it is difficult to relate the
frequency of words to prevalence of use in the population.
This difficulty hinders validation of social media as an emerging
data source for public health research.

Our aim was to determine whether Twitter could provide
data on MUPO that agreed with government survey data, es-
tablishing Twitter as a potential longitudinal source for
syndromic surveillance. We used the National Survey on
Drug Usage and Health (NSDUH) as our standard for com-
parison. The NSDUH is conducted by professional inter-
viewers, confidentially surveying residents from a random
sample of US households, in person, over the course of about
an hour about their substance use [1]. Each year, NSUDH
surveys approximately 70,000 people. A secondary objective
was to evaluate the potential of social media for

toxicosurveillance in a scalable and automated fashion so that
our approach could be readily adapted and extended. We hy-
pothesized that the geographic distribution of tweets about
MUPO would closely correspond to that of NSDUH survey
data about MUPO.

Methods

We performed a prospective study of the incidence of discus-
sions onMUPO using publicly available data from Twitter. The
Institutional Review Board (IRB) approved this study at the
authors’ institutions. Figure 1 outlines the study. We analyzed
tweets from January 2012 to December 2014, coinciding with
the data collection period for the 2013, 2014, and 2015National
Surveys on Drug Usage and Health (NSDUH). Table 1 briefly
defines some terms from Big Data analysis and natural lan-
guage processing that may be unfamiliar to the reader.

Tweet Preprocessing Twitter provides an application program-
ming interface (API) that enables programmatic consumption of
its data. AnAPI is an access point allowing researchers to collect
automatically data that have been made publicly available. The
Twitter Streaming API allows unrestricted access to all public
tweets matching any given filter criteria in real time. For exam-
ple, using the keyword filter of BAdderall,^ all tweets mention-
ing that substance are collected.We acquired two types of tweets
from Twitter, tweets that contained the keywords in Table S1
(signal tweets) and those that contained at least one alphanumer-
ic character (basal tweets). Using langdetect [15], an open-
source Python module built on Google’s language detection
algorithm, we restricted data collection to only English language
tweets. For each tweet, we converted all words to their dictio-
nary form (lemma) using nltk (a package for natural language
processing in Python [16]), removed stopwords, and converted
all text to lowercase, as follows:

& Lemmatization: All words in the tweet were converted to
their associated lemma, or dictionary form. Lemmatization
reduces the inflected forms of a word to a common base
form, taking context and meaning into account (e.g., better
becomes good, saw becomes see if used as a verb
and saw if used as a noun). Lemmatization thus allows
similar words to be grouped together and treated as a
single item.

& Stopword removal: Stopwords are words deemed irrele-
vant or carrying little to no information in a given context,
and that can thus be removed. In general, the most com-
mon word and words with only grammatical functions
(e.g., the, and, is, at, on, that) qualify as stopwords.
Specific applications may call for additional stopwords.
The list of stopwords we removed from our English

J. Med. Toxicol. (2017) 13:278–286 279



language tweets is available on request and at our GitHub
repository.

& Lowercase conversion: All text was converted to lower-
case. Although not strictly necessary, this simplifies
computer-based word comparisons.

Fig. 1 Study design. Data are
collected from Twitter via
Twitter’s Streaming API. Tweets
having less than one character are
excluded. Tweets are filtered into
"signal" tweets (tweets of interest)
if they have keywords; otherwise,
into "basal activity". MUPO
tweets are identified by clustering
on SemD and validated by expert
curation. A scaled version of the
fraction of MUPO tweets in each
state is compared with the
NSDUH estimate for that same
state

Table 1 Selected terms
associated with Big Data analyses Term Description

Lemma The form of the word, without inflections, that would be found in the dictionary,
for example Bchild^ not Bchildren^

Stopword Aword with no intrinsic semantic value, for example, Ba,^ Bthe,^ Bof.^ Additional
words may be stopwords in one context but not another.

API Application Program Interface; method to allow programs to access the data of
other programs without human interface

Ontology A formal description of the semantic relationship between words

GitHub repository An online cloud storage and code-sharing community.

Resource for open-source software

Semantic similarity A quantification of the similarity in meaning between two phrases

Twitter Streaming API An API that provides real-time access to tweets. As soon as a user emits a publicly
available tweet, it becomes available to the Streaming API.

Semantic similarity
matrix

A two-dimensional grid where each square denotes the semantic similarity between
two pieces of text (tweets in this context). Each square in the grid is specified by
two co-ordinates, canonically called the ith and jth coordinates, counting from 0.
For example, the lower right square of a 2 × 2 grid would be identified as 11.

Centroid Mean position of all points in a cluster, analogous to center of mass in physical
objects.
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Comparing Tweets To quantify the similarity in meaning
(semantic similarity) between tweets, we used a straightfor-
ward extension of Jiang-Conrath similarity [17]. The Jiang-
Conrath similarity quantifies the similarity between twowords
as proportional to the distance in WordNet to the nearest
hypernym common to both words. WordNet [18] is a widely
used map of semantic relations among English words that has
been extensively validated and is actively maintained. One
common way to visualize WordNet is as a grid where similar
meanings of words occupy closer positions on the grid. One
word is a hypernym of another word if the first word has a
more general meaning that includes the second word. For
example, color is a hypernym of red and bird is a hypernym
of pigeon. Our extension, which we termed the semantic dis-
tance (SemD), rests on the concept that the more similar in
meaning two words are, the more synonyms they share. Our
SemD calculates the semantic similarity between two words
as the weighted combination of the Jiang-Conrath similarity
between those two words and the Jiang-Conrath similarity
between all pairs of synonyms of those two words. In the next
section, we discuss how we determined the weighting factors.
In keeping with terminology frommachine learning, we termed
the weighting factors the semantic kernel (see Supplemental
section BJiang-Conrath Similarity and WordNet^ for more
detail).

Computing the Context of Tweets The context in which a
word occurs helps specify which meanings of that word are
most germane. We took context into account by weighting the
combinations of meanings of each word by the relative fre-
quency with which all synonyms of the meaning of a word
occur in the text. For example, if a text excerpt contains twice
as many words pertaining to drugs as to aviation, then the
meaning of high as in intoxicated with marijuana receives
twice as much weight as as high as in elevated in altitude.
We excluded tweets for which we could not calculate the
SemD (3.2% for 2012, 2.5% for 2013, and 3.1% for 2014),
generally because those tweets contain too few recognizable
words (for example, Bonereallylongword^ cannot be proc-
essed, whereas Bone really long word^ can).

We identified clusters of tweets as tweets with correlated se-
mantic distance values, using k-means clustering [19]. To in-
crease objectivity, we identified the number of clusters as that
number that maximized the silhouette coefficient [20], a
parameter-free measure of the goodness of separation of data
for a given number of clusters. The silhouette coefficient ranges
between −1 and 1, with −1 indicating that clusters completely
overlap and 1 indicating that the clusters are completely separate.
The number of clusters that maximizes the silhouette coefficient
is the most likely number of clusters in the data. As an example
on more familiar terms, a perfect diagnostic test would have a
silhouette coefficient of 1, completely separating those with the
disease from those without.

Tweet Curation Independently, one emergency physician
(NG) and one medical toxicologist (AM) manually curated
the same 5% random sample of all tweets we acquired, rating
each tweet as Brelated or Bnot related^ to MUPO.^We did this
to identify whether the clusters identified using SemD had any
toxicologic meaning. Two examples of tweets rated as
Brelated to MUPO^—censored for profanity but not for non-
standard orthography—are as follows:

1. 420 blaze it How abot yo grow up and shoot heroin like an
adlt, oxy sh*t

2. percocet’s keep me motivated, good weed keep me
motivated

Examples of tweets rated as Bnot related to MUPO^ are as
follows:

1. Knee x-rayed and been given some pain killers. Waiting
to see dr now. Was such a lovely afternoon.

2. Thank yo! Hx How are you today? I hope everything is
amazing.

3. Try something new today (not heroin) and f*ck the world.
☺☺

4. Today I get to place a british boy, a heroin addict, and a
bookish girl next door in one day.

Geocoding Tweets We estimated a tweet’s location in three
ways. If metadata contained latitude and longitude coordi-
nates, we directly used them. In our sample, approximately
2% of tweets contained explicit coordinates of latitude and
longitude. This level of explicit geocoding is consistent with
prior studies [21, 22]. For the remaining tweets, we used
Carmen [23], an algorithm that estimates the location of the
user based on the user’s connections, tweets, and metadata. If
a tweet and its metadata contained too little data for Carmen to
estimate the location with greater than 80% probability, we
added tweets from that user’s profile until the probability
exceeded 80%. Using Carmen allowed us to identify the
geolocation of an additional 12% of tweets.

Scaling To compare data from NSDUH and Twitter, we
scaled each data set by the population in each state. For
NSDUH, we divided the number of respondents in each state
who endorsed MUPO by the total number of respondents in
that state. For Twitter, we divided the number of MUPO
tweets by the total number of tweets geolocated to that state.
To allow comparison on the same scale, we scaled each data
set by the formula z = (x −min(x)) / (max(x) −min(x)), where
min (or max) refers to the minimum (maximum) and x refers
to the Twitter or NSUDH data set. The resulting variables
range between 0 and 1.
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Sample Size Calculation Our central statistical test is a com-
parison of the difference between two proportions with inde-
pendent samples. We chose our chance of false positives
(alpha) at 0.01. We adjusted this alpha for the simultaneous
comparison of three hypotheses (whether Twitter and
NSDUH were comparable for each age group defined by
NSDUH) using a Bonferroni correction factor of 3, yielding
a final alpha of 0.0033. We chose our initial chance of false
negatives (beta) at 0.01, yielding a power (1-beta) of 99%.We
chose a more stringent than usual power, in consideration of
the novelty of the approach. Choosing a more stringent power
also mitigates the effect of unequal sample sizes on the chance
of false negatives. Using estimates from the previous 10
NSDUH, we estimated the prevalence of MUPO to be around
2%. We assumed that the Twitter rate would be comparable,
i.e., 1.9 to 2.1%. We chose this small difference so that our
study would be powered to detect even small differences be-
tween Twitter and NSDUH. A sample size calculation using
those parameters yielded a suggested sample size of 1,696,621
across all age groups for each year. While we had no control

over the number of respondents in NSDUH, we obtained the
extra n necessary from Twitter.

Principal Component Analysis Principal component analy-
sis (PCA) identifies the largest sources of variance in the data
and allows high-dimensional data to be visualized in two di-
mensions [24]. PCA projects the data onto new axes, termed
Bprincipal components.^ In contrast to the original axes, the
principal components are linearly independent. The principal
components of a circle, for example, are not the x- and y-axes,
but the polar coordinates (radius and angle). PCA is concep-
tually similar to performing multivariate regression while si-
multaneously identifying and controlling for confounding var-
iables and collinearity. A limitation of PCA is that it cannot
account for nonlinear interactions.

Software All analyses were performed with available open-
source software or custom software (written by MC) in the
Python programming language [25]. All code is available up-
on request and posted publicly at the GitHub repository http://

Fig. 2 Separation of tweets into semantic clusters. Each panel is the
projection of the same 0.01% random sample of tweets projected onto
the two principal components indicated by the panel’s axes. PC1 refers to

principal component 1, PC2 principal component 2, PC3 principal
component 3. Diagonal shows the distribution of values projected onto
each principal component. Data from 2012

282 J. Med. Toxicol. (2017) 13:278–286

http://github.com/mac389/Toxic


github.com/mac389/Toxic . The terms of service of Twitter
prohibit sharing the actual tweets and metadata.

Results

For 2012, we obtained approximately 1.3 million unique
English language tweets from the Streaming API that
discussed MUPO. For 2013 and 2014, we obtained approxi-
mately 1.1 million and 1.2 million tweets, respectively. These

account for 0.00065% of the annual volume of tweets. Of
those, we obtained geographic information for 85,328
(2012), 64,112 (2013), and 79,442 (2014). The NSDUH sur-
veys approximately 70,000 individuals (each person
interviewed is a proxy for approximately 4500 US residents
[1]). Tweets readily fell into two clusters (Fig. 2). The silhou-
ette coefficient peaked at 0.44 for two clusters (Fig. S1). We
labeled the green cluster as containing tweets referring to
MUPO because that cluster was significantly enriched
(p = 0.016) for curated tweets discussing MUPO. The

Fig. 3 Twenty most common
words in MUPO and not-MUPO
clusters in signal stream. X-axis
shows the frequency of words in
each category on a logarithmic
scale. Same logarithmic scale for
both panels. Twitter data from
2012

Fig. 4 Twenty most common
words from basal activity stream.
X-axis shows the frequency of
words in each category on a
logarithmic scale
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Cohen’s kappa for curation was 0.87 (Table S4). The words in
MUPO tweets are different from those in non-MUPO tweets
(Fig. 3) and those in tweets not mentioning any opioids (Fig.
4).

The x-axis in Fig. 4 starts at two orders of magnitude great-
er than the x-axis in Fig. 3, indicating that, as expected, only a
small amount of tweets generated each day mention MUPO.

Figure 5 compares our estimate of MUPO from Twitter
with NSDUH across NDUH-defined age groups for 2012.
Figures S2 and S3 are the counterparts to Fig. 6 for 2013
and 2014. We quantified agreement using the Spearman rank
correlation coefficient. Our MUPO estimates significantly
correlated across all age groups (Fig. 6). In 2012 and 2013,

the coefficient was higher for those ages 18–25 than those
ages 12–17, although this difference was not statistically sig-
nificant (p = 0.78, two-sample Kolmogorov-Smirnov test). In
2014, the correlation coefficient was significantly higher for
those 26 or older than for those 12–17 (p < 0.01, two-sample
Kolmogorov-Smirnov test) or 18–25 (p < 0.01, two-sample
Kolmogorov-Smirnov test).

The agreement between Twitter and NSDUH could be con-
founded by population density. To account for this, we
assessed the correlation between unscaled Twitter and
NSDUH data. None of these correlations were significant
(Table 2).

Discussion

The purpose of the study was to determine whether data from
social media could accurately estimate the geographic location
and relative prevalence of MUPO when compared to an
established epidemiologic gold standard (i.e., the NSDUH).

Fig. 5 Scatter plot of estimates of
MUPO fromNSDUH and Twitter
for 2012. Title of each panel
indicates NSDUH age range.
Open circles are estimates for
each state scaled as indicated in
BMethods^ section. Solid line
shows linear regression line

Fig. 6 Correlation between NSDUH and Twitter across age groups.
Legend indicates NSDUH age groups. All correlation coefficients are
significantly greater than 0

Table 2 Median state-
by-state Spearman corre-
lation between unscaled
Twitter data and
unscaled NSDUH
responses

Year of NSDUH study r

2012 0.24

2013 0.32

2014 0.31

No correlation is statistically signifi-
cantly greater than 0 as assessed by the
Kolmogorov-Smirnov test
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We used a novel application of natural language processing,
the kernel-weighted semantic distance (SemD), to automate
content analysis. Our approach leverages the observation that
discussions on Twitter about MUPO have linguistic character-
istics that distinguish them from other discussions [26], which
allowed us to automatically separate tweets based on linguis-
tics characteristics.

The main finding of this study is that Twitter and NSDUH
provide significantly correlated estimates of the geographic
distribution of MUPO over a discrete time period. The stron-
gest correlation occurred between data from Twitter and
NSDUH data from those aged 18–25. The correlation in-
creased from 2012 to 2013 and then decreased from 2013 to
2014, although these differences were not statistically signif-
icant. This work demonstrates that social media can be used to
estimate fundamental epidemiologic quantities, in contrast to
prior work that used social media to define a population or
estimate quantities that might correlate with established epi-
demiologic metrics such as prevalence.

Data on the epidemiology of MUPO traditionally come
from government surveys, such as the annual National
Survey on Drug Usage and Health. Social media may provide
a complementary source of data, especially on nonmedical
substance usage in certain age groups (particularly adoles-
cents, teens, and young adults). Users of social networks often
publicly broadcast their location and information about their
peers and behaviors. Further information about these users,
such as age, can be inferred from patterns of communication
and association with other users. There are challenges to
extracting data from social media data, which are of compa-
rably lower quality than government-sponsored survey data.
Discussions of substance use on social media often use slang
and highly referential language. Users may post misleading
messages to portray a pattern of substance use that they asso-
ciate with social status [27]. While it is difficult to verify the
content of Internet posts with the same certainty as serum
concentrations, social media, nevertheless, can provide data
that, in the aggregate, can be used for population health
studies.

Limitations We used processed versions of the tweets that
regularized spelling, ignored emoticons, and changed the part
of speech of some of the words. This increases the number of
tweets that we could analyze at the cost of possibly distorting
or overlooking synonymy, sarcasm, irony, and hyperbole.

Our data are subject to sampling bias. The Twitter API
provides a random 1% sample of all tweets at any given time.
Although we are unaware of any published literature on this,
anecdotal evidence frommultiple groups suggests that succes-
sive samples from the Twitter API are not independent. Only
1–2% of the tweets encoded by the Twitter API contain ex-
plicit latitude and longitude coordinates. We used Python
module Carmen to increase the number of tweets with

geographic information. Carmen infers location based on
metadata and the text of the tweet, which may add another
layer of bias. Our calculation of the semantic distance also
uses the text of the tweet. The accuracy of Carmen is already
known to depend on the amount of metadata and length of text
of a tweet. These limitations notwithstanding the correlation
between Twitter and NSDUH did not statistically significantly
vary over 3 years, suggesting that the correlation we found is
stable.

This paper describes an agreement between social media
and government surveys; however, it provides no insight into
mechanisms underlying this agreement. Our conceptual hy-
pothesis is that people discuss on social media what they in-
tend to do in the physical world. This hypothesis has held for
research involving cardiovascular mortality [27] and major
depression [28, 29]. Our approach may be inaccurate if it does
not sample the at-risk population evenly. In the physical
world, new users of substances behave differently from chron-
ic users; they use different vocabulary and associate with dif-
ferent parts of the population [30]. We assumed that new and
chronic users communicate similarly on Twitter and that those
communicating online about a substance are the ones using it
in the physical world.

Further work is necessary to correlate the geographic var-
iation noted in this paper with geographic variation in policies
and laws on controlled substances, mental health and addic-
tion services, and known risk and protective factors. As
geolocation algorithms improve, it would be desirable to look
at trends in usage at the more granular levels of a city or
Congressional district. The compilation of a time-series of
usage will help further establish our method and may allow
novel insights.

Conclusions

We used Twitter data to estimate the geographic variation in
discussions on MUPO. We found that our estimates agreed
with national survey data, suggesting that social media can be
a reliable additional source of epidemiological data regarding
substance use. Furthermore, we have demonstrated that tech-
niques from machine learning can be used to analyze social
media to canvass larger segments of the general population and
potentially yield timely insights for syndromic surveillance.
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