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Abstract
Introduction Opioid analgesic use is a major cause of morbid-
ity and mortality in the US, yet effective treatment programs
have a limited ability to detect relapse. The utility of current
drug detection methods is often restricted due to their retro-
spective and subjective nature. Wearable biosensors have the
potential to improve detection of relapse by providing objec-
tive, real time physiologic data on opioid use that can be used
by treating clinicians to augment behavioral interventions.
Methods Thirty emergency department (ED) patients who
were prescribed intravenous opioid medication for acute pain
were recruited to wear a wristband biosensor. The biosensor
measured electrodermal activity, skin temperature and loco-
motion data, which was recorded before and after intravenous
opioid administration. Hilbert transform analyses combined
with paired t-tests were used to compare the biosensor data
A) within subjects, before and after administration of opioids;
B) between subjects, based on hand dominance, gender, and
opioid use history.
Results Within subjects, a significant decrease in locomotion
and increase in skin temperature were consistently detected by

the biosensors after opioid administration. A significant
change in electrodermal activity was not consistently detected.
Between subjects, biometric changes varied with level of opi-
oid use history (heavy vs. nonheavy users), but did not vary
with gender or type of opioid. Specifically, heavy users dem-
onstrated a greater decrease in short amplitude movements
(i.e. fidgeting movements) compared to non-heavy users.
Conclusion Awearable biosensor showed a consistent phys-
iologic pattern after ED opioid administration and differences
between patterns of heavy and non-heavy opioid users were
noted. Potential applications of biosensors to drug addiction
treatment and pain management should be studied further.
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Introduction

Opioid overdose is a leading cause of accidental death in the
USA, with death rates rising steadily over the last 20 years [1].
Of the over 22,000 deaths relating to pharmaceutical overdose
in 2011, three quarters involved opioid analgesics [2].
Increases in problematic opioid use have paralleled a corre-
sponding increase in drug treatment admissions [3]. Drug
treatment programs currently focus on behavioral and phar-
macologic interventions to sustain abstinence, and success is
typically measured by self-reports or urine drug screening [4].
Both measurement methods are limited by such factors as
recall bias, distortion, and lack of precision [5]. A detection
method that accurately detects opioid use as it occurs in real
time would provide several distinct advantages including the
ability to obtain environmental and behavioral contexts sur-
rounding relapse as well as an opportunity for targeted
interventions.

These data were presented as a platform session at the Society for
BehavioralMedicineAnnualMeeting onApril 1, 2016 inWashington, DC
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Portable biosensors are small, wearable devices similar in
size and appearance to a wristwatch that continuously monitor
various physiologic parameters of the wearer. Biosensors de-
signed for research applications commonly measure surrogate
markers for sympathetic nervous system activity, namely elec-
trodermal activity (EDA), skin temperature, and locomotion
(Table 1). Similar devices have been utilized to monitor mul-
tiple physiologic and pathophysiologic conditions known to
involve robust SNS changes such as stress, post-traumatic
stress disorder (PTSD), and epilepsy [6–8]. They have also
been applied to compliance monitoring for drug adherence
and suicide risk [9, 10] and are able to detect cocaine use in
natural environments [11].

Before biosensors can be deployed in natural environments
to detect opioid use, a pattern of expected response must be
established and contributing factors must be defined. We un-
dertook the present study in a controlled environment with
known doses, times, and routes of opioid exposure to deter-
mine if a standard response pattern of EDA, skin temperature,
and locomotion occurs after intravenously administered opi-
oids. We also examined the relationship between this response
and patient variables such as opioid use history, gender, and
location of measurement with respect to hand dominance.

Methods

The study protocol was approved by the Institutional Review
Board at the University of Massachusetts. Informed consent
was obtained from all subjects prior to participation.

Biosensor

The Q sensor™ (Affectiva, Waltham, MA) was used to obtain
all biometric data (Fig. 1). The sensor is approximately
4 × 5 cm and is secured via Velcro band to the volar aspect
of the participant’s wrist. Electrodermal activity (in
microSiemans), skin temperature (in degrees Celsius), and

locomotion (in units g) in the X (anterior-posterior), Y (medi-
al-lateral), and Z (caudad-cephalad) axes were continuously
recorded at a sampling rate of 8 cycles per second.

Enrollment and Study Protocol

A total of 30 subjects who presented to the emergency depart-
ment (ED) at a large tertiary care medical center with a pain-
related complaint were recruited for this study. A toxicology
fellow and a research assistant enrolled a convenience sample
of subjects during in-house call hours (two weekdays per
week, 9 AM–5 PM). Patients who were likely to receive intra-
venous analgesics were identified by the ED electronic track-
ing board and approached to participate. Inclusion criteria
were age between 18 and 90 years old, ability to consent,
and willingness to wear the biosensor on their wrist before, dur-
ing, and after the administration of opioid analgesics. Exclusion
criteria were inability to wear the biosensor (e.g., amputation),
musculoskeletal causes of pain limiting motion (e.g., acute frac-
tures), pregnancy, inability to consent, and incarceration.

As the study was designed not to interfere with patient care
or delay treatment, the duration of biosensor monitoring pre-
opioid administration varied between subjects. A minimum of
5 min of data prior to receiving the opioid analgesics was
obtained to allow sufficient time to establish a physiologic
baseline, and 30-min post-administration data was obtained
to capture the peak physiologic effect of the opioid. To correct
for this variability in duration of baseline monitoring, only the
5 min immediately prior to opioid administration was used for
the baseline biometric characteristics. Study subjects were
able to discontinue their participation in the study at any time.
Figure 2 demonstrates the enrollment and participation of par-
ticipants through the study.

Evaluation of Opioid Use History

In order to determine differences in physiologic responses to
intravenous opioid administration based on use history,

Table 1 Physiologic parameters
commonly measured by portable
biosensors

Physiologic parameter Definition

Electrodermal activity
(EDA)

A measure of electrical conductance of the skin, which varies with the amount of
cutaneous sweat production. Sweat production is mediated by the sympathetic
nervous system, and therefore, EDA is an indirect measure of sympathetic nervous
system activity [5], which may be heightened or depressed with exposure to various
drugs

Skin temperature A measure of the temperature of the skin/body surface. Skin temperature may differ
from core temperature depending on the vasoconstriction or vasodilation effects of
sympathetic nervous system activity that can be mediated by drug use

Locomotion A measure of a patient’s motor activity with respect to the body location on which the
sensor is worn, measured in three axes (x, y, and z). Movement patterns are expected
to vary with sympathetic nervous system activity. The X-axis is the anterior-
posterior direction; the Y-axis is the lateral direction; the Z-axis is the caudad-
cephalad.
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patients were classified into two categories: heavy and non-
heavy users. Heavy opioid users were defined as having
chronic daily opioid use, being on opioid maintenance therapy
(e.g., methadone, buprenorphine), or having a diagnosis of
opioid abuse. Subjects that did not meet these criteria were
classified as non-heavy users. The patient’s opioid use history
was determined by the patient’s self-report, as well as data
obtained through the patient’s electronic medical record at
the same medical center for the previous 10 years, looking
specifically at the patient’s prescription drug use history and
documented social history. Two reviewers (SC and KW)
reviewed all data and assigned each patient to a category,
and results were compared for agreement. In the event of
difference in classification, a third reviewer (EB) was asked
to review.

Statistical Analysis

Signal Processing of Locomotion Data

To better understand the rapid fluctuations and heterogeneity
inherent in the measurement of locomotion, we estimated the

amplitude of the fluctuations using Hilbert transform method
[12]. This method is widely used in signal processing to esti-
mate the amplitude of the data that rapidly changes with time
(non-stationary). We applied Hilbert transform to the data at
each of the axes and obtained the amplitude, which reflected
the fluctuations in the data. To check whether such fluctua-
tions were random in nature, we plotted the distribution of
amplitudes. This showed a skew distribution rather than a
Gaussian (normal) distribution suggesting that the amplitude
fluctuations were not random. To characterize the distribution
of amplitudes, we used gamma function as well as lognormal
function, as these functions are both generally used for skew
distributions [13]. Figure 3 shows how the raw data from Z-
axis (a) is converted to the estimated amplitude plot via the
Hilbert transform method (b) from a single subject. A density
plot of the amplitudes was then generated (c). Figure 4 shows
how the distribution of amplitudes for all subjects was then
displayed as density plots along with the functions used to
characterize the data.

The signal processing technique included an estimation of
mu (average) and sigma (standard deviation) of lognormal
distribution as well as shape (of the curve) and scale
(absolute) parameters of the gamma distribution for each axis
of dimension. Changes in these parameters indicate changes in
each distribution. Thus, an increase in mu of lognormal distri-
bution or an increase in scale of gamma distribution indicates
a decrease of short amplitudes on that axis. An increase in
sigma of lognormal distribution or decrease in shape of gam-
ma distribution indicates more right skewness of the distribu-
tion. Once pre- and post-administration values were obtained
for each parameter (mu, sigma scale and shape for each of the
three axes), they were compared using paired t tests.

Skin Temperature and EDA

Skin temperature and EDA data inherently demonstrate less
rapid fluctuations compared to locomotion and thus did not
require the application of signal transform methods described
above. Instead, paired t tests were used to compare the differ-
ence between pre- and post-opioid administration body tem-
perature and EDA.

Effect of Subject Characteristics

To examine the effects of opioid use history, age, gender, type
of opioid, antiemetic use, and hand dominance on the changes
in the temperature, EDA, and locomotion, a generalized esti-
mating equation approach that assumed an exchangeable cor-
relation between two hands (dominant hand and non-
dominant hand) was used. The difference in parameters of
temperature, X, Y, and Z were the outcome variables, as these
were found to be significant in the original analysis. A sepa-
rate model was run for each outcome variable. Age, gender,

Fig. 1 Picture of Q sensor
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type of opioid, antiemetic use, history of opioid use (classified
into two groups, heavy users and non-heavy users), and dom-
inant hand versus non-dominant hand were the independent
variables in all the models. All analyses were performed using
SAS, version 9.3 (SAS Institute, Inc., Cary, NC).

Results

Demographics

Thirty participants were enrolled over a 4-month period.
Of the 35 potential participants screened for enrollment, 2
participants declined to participate and 3 were disqualified
because they did not receive opioids due to a change in treat-
ment plan. The demographic data are depicted in Table 2. The
numbers of female and male participants were approximately
equal. The majority of participants were right-hand dominant
which is reflective of the general population [14]. Morphine
was the most common opioid administered, which is reflective
of local practice. The duration of baseline monitoring ranged
from 5 to 48 min, with a mean duration of 16.5 min.

Biophysiometric Parameters

Within Subjects Pre- and Post-Opioid Changes

Pre- and post-opioid delta values for all parameters are sum-
marized in Table 3. EDA did not show a significant difference
post administration compared to baseline. Average patient
skin temperature was significantly higher after opioid admis-
sion (p < 0.001). Average units in overall movement parame-
ters associated with the mean of X, Y and Z axes decreased
significantly after opioid administration (all p values range
<0.05), shown in Fig. 4.

Between Subjects Comparison Groups (Table 4)

Heavy Versus Non-Heavy Users: Heavy users had a greater
relative decrease of short amplitude signals on the Y-axis com-
pared to non-heavy users, suggesting a specific decrease in
small movement immediately after opioid administration
(Fig. 5). There was no significant difference between heavy
and non-heavy users on skin temperature change or EDA.

Fig. 2 Flow diagram for study
participants
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Age: Advanced age was associated with a greater decrease
in movement on the X-axis after opioid administration when
compared to younger patients.

Other Parameters: No significant effect on the change in
skin temperature or locomotion were found based on gender,
type of opioid (synthetic versus non-synthetic), hand domi-
nance, and concomitant antiemetic use.

Discussion

In this preliminary study, wearable biosensors detected an
increase in skin temperature and decrease in locomotion im-
mediately following opioid administration, which is consis-
tent with the physiologic effect of this drug class.

Fig. 3 a, b, c Sample from a single subject, showing the raw data from Z-
axis (a) along with the estimated amplitude obtained from the Hilbert
transformation (b). Distribution of amplitudes from individual above
represented as density plots (black is lognormal, and gray is gamma
function) (c)

Fig. 4 Lognormal (top panels) and gamma distribution function (bottom
panels) obtained from the average values (mu) of all subjects of X, Y, and
Z axes of locomotion data during pre (black line) and post (dotted line)
opioid administration

Table 2 Participant
characteristics Characteristic Percent (N = 30)

Age
18–50 63 %
50–82 37 %

Sex
Male 47 %
Female 53 %

Hand dominance
Right 90 %
Left 10 %

Chief complaint
Abdominal pain 87 %
Flank pain 7 %
Back pain 3 %
Other 3 %

Opioid analgesia
Morphine 70 %
Hydromorphone 23 %
Fentanyl 7 %

Opioid user class
Non-heavy 70 %
Heavy 30 %

Table 3 Within subjects pre- and post-opioid results

Parameter Average delta p value

Skin temp (°C) N/A 2.62 <0.0001

EDA (microS) N/A 0.67 0.11

Locomotion (G)

X-axis Mu −0.54 0.00

Sigma 0.01 0.70

Shape 0.00 1.00

Scale −0.04 0.00

Y-axis Mu −0.29 0.04

Sigma −0.04 0.40

Shape 0.11 0.75

Scale −0.02 0.08

Z-axis Mu −0.46 0.02

Sigma −0.01 0.82

Shape 0.29 0.29

Scale −0.03 0.00
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Interestingly, heavy users as defined in our study had a signif-
icant reduction of short amplitude signals (i.e., fidgeting) com-
pared to non-heavy users, particularly in the Y-axis (medial-
lateral direction). In general, we expect heavy users to have a
less pronounced effect when given an equivalent dose of opi-
oid analgesic as a subject with less historical opioid exposure;
however, these data suggest that their physiologic response is
qualitatively different. Fidgeting or restless is described on
multiple opioid withdrawal scoring systems [15] and is typi-
cally qualified subjectively by the subject or an observer. Our
study was not designed to address craving or withdrawal or
their relationship to opioid administration; however, we hy-
pothesize that this phenomenon of short amplitude shifting
may be related to subclinical opioid withdrawal in dependent
subjects. The Y-axis predominance of this effect may be due to
the physical limitations imposed by the ED stretcher in these
participants. This should be explored further as it may have
significant implications in the application of this technology.

The observed biometric patterns exhibited by our partici-
pants are unlikely to be reflective of other processes such as
the relief of pain or the onset of sleep. Previous literature on
biometric response to pain has demonstrated significant rise in
EDA during painful stimuli and to a lesser degree decrease in
skin temperature [16, 17].We would expect that if the changes
were simply due to relief of pain, a marked decrease in EDA
would occur, which was not observed in our study population.
Biometric monitoring of sleep is complex, and the expected
profile depends on the stage of sleep. Skin temperature does
rise with sleep as seen in our study group. However, sleep
onset has been associated with a gradual decrease in EDA
amplitude [18], while high-frequency EDA activity is noted
in multiple other sleep stages including REM sleep [19].
These characteristic EDA changes were not seen in our
participants.

Fig. 5 Gama distribution function from the non-dominant hand of heavy
users (black line) compared to the non-dominant hand of non-heavy users
(dotted line) in the Y-axis of the movement data. The low amplitudes in
heavy users are significantly reduced compared to non-heavy users. The
paramete rs are heavy users , Y- sca le = 0.15 ± 0.11 and
Y-shape = 2.49 ± 1.18, and non-heavy users Y-scale = 0.11 ± 0.09 and
Y-shape = 3.41 ± 2.16

T
ab

le
4

B
et
w
ee
n
su
bj
ec
ts
co
m
pa
ri
so
n
va
ri
ab
le
s

Te
m
pe
ra
tu
re

X
m
u

Y
m
u

Z
m
u

X
sc
al
e

Y
sc
al
e

Z
sc
al
e

D
F

C
hi
-s
qu
ar
e

p
D
F

C
hi
-s
qu
ar
e

p
D
F

C
hi
-s
qu
ar
e

p
D
F

C
hi
-s
qu
ar
e

p
D
F

C
hi
-s
qu
ar
e

p
D
F

C
hi
-s
qu
ar
e

p
D
F

C
hi
-s
qu
ar
e

p

A
ge

1.
00

0.
05

0.
82

1.
00

0.
03

0.
86

1.
00

0.
09

0.
76

1.
00

0.
04

0.
84

1.
00

4.
35

0.
04

1.
00

0.
84

0.
36

1.
00

1.
23

0.
27

G
en
de
r

1.
00

0.
00

0.
94

1.
00

0.
60

0.
44

1.
00

0.
49

0.
49

1.
00

0.
11

0.
74

1.
00

0.
06

0.
81

1.
00

0.
00

0.
95

1.
00

0.
39

0.
53

Ty
pe

of
op
io
id

m
ed

2.
00

2.
20

0.
33

2.
00

3.
66

0.
16

2.
00

1.
89

0.
39

2.
00

2.
77

0.
25

2.
00

3.
35

0.
19

2.
00

0.
43

0.
80

2.
00

5.
92

0.
05

A
nt
ie
m
et
ic
s

1.
00

0.
40

0.
53

1.
00

0.
25

0.
62

1.
00

1.
11

0.
29

1.
00

1.
61

0.
20

1.
00

2.
71

0.
10

1.
00

0.
08

0.
78

1.
00

0.
78

0.
38

H
an
d
do
m
in
an
ce

1.
00

0.
26

0.
61

1.
00

0.
15

0.
70

1.
00

0.
13

0.
72

1.
00

0.
61

0.
43

1.
00

2.
05

0.
15

1.
00

0.
27

0.
60

1.
00

1.
00

0.
32

U
se

hi
st
or
y

1.
00

1.
60

0.
21

1.
00

1.
57

0.
21

1.
00

5.
88

0.
02

1.
00

1.
57

0.
21

1.
00

3.
18

0.
07

1.
00

1.
34

0.
25

1.
00

0.
31

0.
58

260 J. Med. Toxicol. (2016) 12:255–262



Non-invasive, wearable devices are rapidly becoming pop-
ular due to commercially available versions marketed as
health tracking tools [20, 21]. Various patient populations
have reported the devices as acceptable for wear in both con-
trolled and natural environments, further supporting their fea-
sibility for use in outpatient therapy [8, 22]. The sensors are
small and user friendly and provide continuous data streams
that can be stored for retrieval and review at a later time point
or transmitted wirelessly for real-time review and analysis.
Substance abusing populations would benefit significantly
from the ability to extend therapeutic support into natural en-
vironments. Before these devices can be deployed clinically
however, more data is needed to identify a variety of states
related to drug exposure (use, toxicity, withdrawal) and to
more precisely distinguish these profiles from behaviors asso-
ciated with daily life (i.e., sleeping or prolonged sedentary
states). Multiple studies are underway to examine the biomet-
ric profiles associated with opioid administration in a variety
of clinical scenarios to better define our parameters and devel-
op identification profiles that are both sensitive and specific to
the events of interest. This preliminary study works toward
that goal.

The ability to identify instances of opioid use and opioid
tolerance in real time could have a significant impact in mul-
tiple clinical settings including pain management and sub-
stance abuse treatment. In patients starting opioid therapy,
biosensors could be used to monitor for developing opioid
tolerance and to identify individuals at risk for substance
abuse/addiction. In patients undergoing substance abuse treat-
ment, biosensors can be applied to detect episodes of drug use.
Relapse data can either be reviewed retrospectively to or trans-
mitted wirelessly to trigger an intervention (for example, an
alert to a family member or a community support system).
Mobile platform-based applications can be programmed to
recognize these patterns and can record contextual data (i.e.,
timing, location, circumstance) of events, which can be ulti-
mately used to tailor behavioral interventions. Future studies
should focus on utilization of biosensors to gauge response to
behavioral therapy, to evaluate opioid tolerance and narcotic
seeking behaviors, and to integrate with mobile technology
platforms to deliver real-time interventions.

Limitations

The main limitations is the inability to generalize these results
due to small sample size (N = 30) and the controlled healthcare
facility setting where dose and route of administration are
highly standardized. We expect that patients who engage in
recreational self-administration of opioids would use higher
opioid equivalent doses based on their tolerance and history.
The particular opioid and dose administered in our study was
based on treating physician discretion, and differences in agent

may also influence results. Given that our study population was
presenting for acute pain, this may have influenced both the
baseline data and the response to opioids observed. Our duration
of baseline data was limited, as we were not permitted to pro-
long the subjects’ wait time for medication. Patient use history
was based on self-report and review of the electronic medical
record, raising the possibility of inadvertent misclassification.
Motion measurements in natural environments may be different
than those of subjects lying on a stretcher in the ED.

Conclusion

Wearable biosensors show a consistent physiologic pattern
after opioid administration in an ED population. This biomet-
ric response shows some distinguishing features between
heavy and non-heavy opioid users in a controlled ED setting.
This pattern may be useful to detect episodes of opioid use in
real time. Further study is needed to evaluate the potential
diagnostic and interventional applications of these devices in
drug abuse treatment and pain management.
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