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Abstract Drug features that are associated with Stevens-
Johnson syndrome (SJS) have not been fully characterized.
A molecular target analysis of the drugs associated with SJS
in the FDA Adverse Event Reporting System (FAERS) may
contribute to mechanistic insights into SJS pathophysiology.
The publicly available version of FAERS was analyzed to
identify disproportionality among the molecular targets, me-
tabolizing enzymes, and transporters for drugs associated with
SJS. The FAERS in-house version was also analyzed for an
internal comparison of the drugs most highly associated with
SJS. Cyclooxygenases 1 and 2, carbonic anhydrase 2, and
sodium channel 2 alpha were identified as disproportionately
associated with SJS. Cytochrome P450 (CYPs) 3A4 and 2C9
are disproportionately represented as metabolizing enzymes
of the drugs associated with SJS adverse event reports. Mul-
tidrug resistance protein 1 (MRP-1), organic anion transporter
1 (OAT1), and PEPT2 were also identified and are highly
associated with the transport of these drugs. A detailed review
of the molecular targets identifies important roles for these
targets in immune response. The association with CYP

metabolizing enzymes suggests that reactive metabolites and
oxidative stress may have a contributory role. Drug trans-
porters may enhance intracellular tissue concentrations and
also have vital physiologic roles that impact keratinocyte pro-
liferation and survival. Data mining FAERS may be used to
hypothesize mechanisms for adverse drug events by identify-
ing molecular targets that are highly associated with drug-
induced adverse events. The information gained may contrib-
ute to systems biology disease models.
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Introduction

Stevens-Johnson syndrome (SJS) is a rare, serious, life-
threatening adverse drug event (ADE) often identified as a
post-market safety signal. SJS is thought to be an immune-
mediated phenomenon, closely linked to the human leucocyte
antigens (HLA) of the major histocompatibility complex
(MHC). Recent molecular advances have led to improved
understanding of this relationship. Histologically, a key fea-
ture is keratinocyte apoptosis and death resulting in epidermal
necrosis and blistering as seen on physical examination [1].
Evidence indicates that the immune system mediates this tox-
icity. Cytotoxic T lymphocytes (CD8+) have been isolated
from the blister fluid. Cytotoxic T cells secrete granulysin
and Fas ligand. These cytokines and immune mediators are
found in high levels in the blister fluid. CD8+ T lymphocytes
suggest a role for MHC class-I antigen presentation. HLA
alleles have been associated with skin hypersensitivity reac-
tions for carbamazepine (HLA-B*15:02) and abacavir (HLA-
B*57:01) [2]. Recent investigations have shown that carba-
mazepine and abacavir can interact directly with these specific
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HLA alleles and stimulate T cell immunity [3, 4]. These in-
vestigations support what has been termed the pharmacolog-
ical interaction theory that non-covalent drug binding alters
the MHC-peptide interaction with T cell receptors such that a
T cell response to self-peptides is elicited [5, 6]. These discov-
eries raise hope that drugs may be able to be screened for their
hypersensitivity potential. While these HLA allele associa-
tions are specific, not all individuals with the allele develop
the disease. There remains much to be learned about other
cellular processes that determine which individuals who have
the HLA allele are susceptible.

Allergic skin hypersensitivity reactions including SJS have
been documented following exposure to antibiotics including
the penicillins, sulfonamides, and macrolides; anticonvul-
sants; non-steroidal anti-inflammatory; and antiviral agents.
Prior reviews had attributed this toxicity to the biotransforma-
tion of the drugs in human skin and their active metabolites [7,
8]. Recent investigations have documented the presence of
cytochrome P450 (CYP) enzymes in the skin [9]. Of note,
the CYP isoenzyme profiles are different between the liver
and the skin. The skin CYP isoenzymes may create drug in-
termediates capable of covalently binding macromolecules by
forming haptens, neo-antigens that would be processed and
transported to the cell surface to interact with T cells. The
direct binding of HLA allele studies suggests that non-
covalent binding of the drug is most likely a key mechanism.
However, drug biotransformation may have a role, as oxidant
stress may contribute to the danger signal that stimulates the
immune system to react. Similarly, the impaired function of
common molecular targets may suggest targets important
within a disease model for SJS.

More research is needed to fully understand the pathophys-
iology of SJS. Data mining as a bioinformatics approach is
being applied to the FDA Adverse Event Reporting System
(FAERS) database to generate mechanistic hypotheses into
drug safety issues. The molecular actions of drugs both on-
target and off-target are mapped to adverse events to identify
these mechanisms. We performed a molecular target, metab-
olizing enzyme, and drug transporter analyses of drugs asso-
ciated with SJS on the publicly available FAERS version. This
data mining analysis therefore highlights molecular targets,
enzymes, and transporters that may play a contributory role
in the pathophysiology of SJS.

Materials and Methods

A software program, Molecular Analysis of Side Effects
(MASE), was used for the analysis of the publicly available
FAERS. MASE is currently being evaluated under a Research
Collaboration Agreement by the FDA. MASE integrates the
publicly available FAERS data with various chemical and
biological data sources in a drug-centric focused manner.

The publicly available FAERS data is from 2004 to present.
Within the data integration process, FAERS medication syn-
onyms are mapped to drugs and compounds in DrugBank
(http://www.drugbank.ca/) and PubChem (http://pubchem.
ncbi.nlm.nih.gov/). Based on this medication-drug mapping,
the link to biomolecules and molecular mechanisms involved
in pharmacodynamics and pharmacokinetics is established via
UniProt (http://www.uniprot.org/) and the pathway resources
NCI-Nature (http://pid.nci.nih.gov/), Reactome (http://www.
reactome.org), and BioCarta (http://www.biocarta.com/).
Literature data is extracted based on co-occurrence of MASE
entity names and synonyms in PubMed abstracts (http://www.
ncbi.nlm.nih.gov/pubmed/). Drugs are classified according to
the Anatomical Therapeutic Chemical (ATC) classification
system (http://www.whocc.no/atc/structure_and_principles/).
Indications and reactions are classified using the MedDRA
dictionary (http://www.meddramsso.com/). Proportional
reporting ratios (PRRs) and relative odds ratios (RORs) are
calculated using the approach described by van Puijenbroek
et al. [10]. MASE contains a de-duplication algorithm. The
cases have not been individually reviewed (public FAERS
does not contain narratives). Therefore, litigation cases and
any missed duplicate reports have not been removed from
the total number of reports.

A FAERS search was also performed. The search used the
preferred term Stevens-Johnson syndrome. The top 30 US-
approved drugs having more than 30 FAERS reports were
chosen for a detailed analysis. Note again that the cases have
not been individually reviewed, and therefore, duplicate re-
ports and litigation cases have not been removed from the total
number of reports. Additionally, cases have not been adjudi-
cated for causality. By selecting an N>30 for the detailed
analysis, the likelihood of evaluating a drug not associated
with SJS should be low. This number correlates to when
PRR and empirical Bayesian geometric mean (EBGM) results
become similar, and therefore, PRR results more definitely
exclude false positives. Subsequently, the labels of these drugs
and PubMed were searched to analyze the known biotransfor-
mation data for SJS-associated drugs.

Results: Disproportionate Molecular Targets
Identified by Data Mining FAERS Reported Drugs
Associated with SJS

Table 1 contains the results from the MASE analysis for drugs
(primarily cases after 2004) ranked by PRR with greater than
30 reports, while Table 2 contains the FAERS results using the
FDA program Empirica Signal for drugs ranked by EBGM.
Antibiotics, NSAIDs, and anticonvulsants are heavily repre-
sented in both data mining analyses. The major difference
between the in-house FAERS and MASE analyses is the lack
of many of the NSAIDs. Many of the NSAIDs had marketing
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discontinued prior to 2000, and these reports are likely not
contained in the publicly available FAERS used by MASE.
A comparison of the two tables finds some antibiotics replac-
ing the NSAIDs in the top drug analysis.

All the SJS reports (N=6473) in the current version of
MASE include a total of 906 drugs (considered primary, sec-
ondary, or concomitant). These 906 drugs were analyzed for
their molecular targets in the publicly available databases.
Therefore, if an SJS report has more than one drug associated
with the case, then all the molecular targets of all the drugs
including the concomitants would be identified for that SJS
report.

Table 3 provides the topmolecular target analysis of the drugs
reported in the SJS FAERS reports. Molecular targets identified
in high frequency in SJS cases include cyclooxygenases 1 and
2, carbonic anhydrase 2, and sodium channel protein type 2

subunit alpha. Table 4 lists the drugs and their target analysis,
metabolizing enzyme, and transporter actions as noted from
the MASE databases and supplemented by PubMed search
results. Specific drugs and relationships with these targets
are addressed in the BDiscussion.^

Discussion

One observation that seems to emerge is an association of the
protein targets and roles or links to the immune response.
Cyclooxygenases 1 and 2 are the highest frequency molecular
targets identified. An association with selective COX-2 inhib-
itors has previously been reported by the FDA [38]. This anal-
ysis also noted that the rate was higher for the sulfonamide
COX-2 inhibitors including valdecoxib and celecoxib, when

Table 1 CYP metabolism of top drugs associated with SJS in FAERS

Drug Number EBGM CYP metabolism PubMed ID

Metamizole 117 43.1

Pyrimethamine and sulfadoxine 50 32.4 2C9 (N-oxide) [11–13]

Allopurinol 489 29.3 Xanthine oxidase

Valdecoxib 1298 28.2 3A4, 2C9, glucuronidation Label

Acetylcysteine 64 19.1

Phenytoin 1115 18.7 2C9, 2C19 [14]

Clemastine 37 18.2 Hydroxylated, N-oxide metabolites [15]

Sulfamethoxazole and trimethoprim 803 15.4 2C9 hydroxylamine [16]

Loxoprofen 48 15.1 Yes [17]

Diflunisal 53 14.4 Glucuronidation per label

Zonisamide 112 13.3 3A4 reduction Label

Lamotrigine 1179 13 2A6, 2C11; aryl epoxide; 2B6, 2D6, 3A4 [18]

Nevirapine 277 11.4 3A4, 2B6 Label

Phenobarbital 103 10.4 2C9, 2C19 [19]

Amifostine 42 9.2 Hydrolyzed by alkaline phosphatase Label

Carbamazepine 550 7.6 1A2, 2B6, 2C8, 2C9, 3A4 [20]

Meropenem 49 7.3

Torsemide 32 6.9 2C9 [21]

Ampicillin/sulbactam 50 6.8

Cefepime 40 6.8 Oxidation to sulfone: reduction to sulfide Label

Oxaprozin 37 6.7 Hydroxylation [22]

Cefdinir 47 6.6

Furosemide 246 6.5 P450 gamma-ketocarboxylic acid [23]

Sulindac 85 6.2 1A2, 1B1, 3A4, minimal 2C9 [24]

Amoxicillin 206 6.2

Vancomycin 198 6.2

Pantoprazole 93 5.8 2C19 demethylation/3A4 oxidation

Piperacillin and tazobactam 58 5.8

Fluconazole 153 5.6 2D6, 3A4 [25]

Cefotaxime 56 5.5

Acetaminophen 249 2.9 1A2, 3A4, 2E1, 2C9
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compared to the non-sulfonamide rofecoxib. Another litera-
ture review concluded that the oxicam class of NSAIDs was
the most prevalent class of NSAIDs associated with SJS [39].
Many other SJS-associated drugs have anti-inflammatory ac-
tions, many mediated through prostaglandin inhibition
(Table 4).

Carbonic anhydrase inhibition was identified as another
highly associated SJS target by MASE. Carbonic anhydrase
II (CAII) is involved in the maintenance of cellular pH, water
transport, and ion homeostasis. CAII inhibition is a property
of many sulfonamide and/or dioxothiazine drugs including
antibiotics (ceftriaxone), anticonvulsants (zonisamide), and
diuretics, drug classes commonly associated with SJS [40].
Part of the core structure of the oxicam class includes a S–N
bond into a ring structure, dioxothiazine ring structurally re-
sembling the sulfonamide bond. COX-2 inhibitors

valdecoxib, celecoxib, and metamizole also inhibit CAII
[41]. No studies have been done that evaluate the potential
role for carbonic anhydrase II inhibition in the pathogenesis
of SJS. CAII has been shown to be strongly expressed in
normal skin [42, 43]. CAII is upregulated in atopic dermatitis
and is inducible in keratinocytes exposed to Th2 cytokines
[44]. CAII has been identified as an acute phase protein
[45]. These observations highlight a role for CAII in some
inflammatory responses. Autoantibodies to CAII have been
detected in a number of autoimmune diseases including con-
nective tissue diseases, diabetes mellitus, pancreatitis, and ret-
inopathy. In a study of preeclampsia, anti-CAII antibodies
correlated with increased levels of oxidant stress [46]. CAII-
deficient mice develop duodenal ulcers secondary to impaired
PGE2 signaling [47]. Carbonic anhydrase I has a role in epi-
thelial regeneration in a mouse colitis inflammation model
[48]. Further evaluation of a potential role of carbonic
anhydrase in the pathophysiology of SJS appears warranted.

Sodium channel 2α (Nav1.2) is another target highly asso-
ciated with SJS in the MASE analysis. Nav1.2 seems to be
specific to the anticonvulsants, while the COX and CAII in-
hibitors covered multiple classes of drugs. The only drugs
known to interact with Nav1.2 are the anticonvulsants.
Nav1.2 is expressed on keratinocytes and appears to be asso-
ciated with pain [49]. Carbamazepine and phenytoin bind the
same site on Nav1.2. This fact may highlight a shared struc-
ture activity relationship whereby they interact with HLA-
B*15:02 in a similar fashion, but the other differences in their
structures may result in the stimulation of differing T cell
clones [6]. The epithelial sodium channel is important to
keratinocyte differentiation, migration, and wound healing
[50, 51].

Our analysis identifies CYP3A4 and CYP2C9 as the most
common biotransformation enzymes associated with SJS
drugs. Greater than two thirds of the SJS reports include a
drug that undergoes bioactivation by one or both of these
CYPs. This percentage is likely higher as a number of drugs
in the table have not been tested for potential CYP metabo-
lism. Many of the most common drugs associated with SJS
identified in FAERS have not had metabolic studies per-
formed as elimination is predominantly by the renal route.
This includes seven of the antibiotics primarily eliminated
by the renal route and other older drug approvals including
some drug withdrawals. Thirteen of the drugs have specific
CYPs identified that biotransform the parent drug. Another
five drugs appear to have evidence for CYP bioactivation,
although specific CYPs have not been identified. The 13 drugs
where the CYPs are identified all include CYP2C9, CYP3A4,
or both of these CYPs in their metabolism. Therefore, both
analyses support the hypothesis that drugs that undergo
CYP3A4 and/or CYP2C9 metabolism may be at greater risk
for the development of SJS. CYP3A4 and CYP2C9 are two of
the predominant CYPs in the liver. An oligopeptide microarray

Table 2 MASE analysis
for drugs associated with
SJS (over 30 reports
required)

Drug Number PRR

Valdecoxib 1553 39.2

Zonisamide 80 11.1

Lamotrigine 784 10.0

Metamizole 62 8.7

Phenytoin 305 8.1

Nevirapine 126 7.5

Acetylcysteine 52 7.3

Phytonadione 34 6.9

Cefdinir 32 6.4

Flunitrazepam 32 5.8

Carbamazepine 264 5.7

Ceftriaxone 107 5.7

Sulfamethoxazole 280 5.5

Cefuroxime 123 5.2

Trimethoprim 271 5.0

Rifampin 47 5.0

Azithromycin 120 4.9

Cefepime 34 4.9

Vancomycin 118 4.8

Cephalexin 59 4.8

Allopurinol 269 4.4

Amoxicillin 215 4.1

Fluconazole 135 4.0

Clindamycin 55 4.0

Torasemide 63 3.7

Ciprofloxacin 167 3.6

Chlorpheniramine 39 3.5

Clarithromycin 83 3.5

Erythromycin 31 3.5

Amphotericin B 38 3.3

Acetaminophen 313 1.24

PRR proportional reporting ratio
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Table 3 MASE-identified
molecular targets, metabolizing
enzymes, and transporters for
Stevens-Johnson syndrome for
6473 SJS reports in the public
FAERS Version

Target AE reports PRR CI PRR

CYP3A4 4709 1.34 1.32–1.36

CYP2C9 4371 1.66 1.63–1.69

MRP 1 3638 1.13 1.10–1.15

COX 1 3211 2.01 1.96–2.06

COX 2 2644 2.39 2.32–2.46

UDP-glucuronosyl transferase 2370 6.15 5.95–6.35

Carbonic anhydrase 2 2016 4.9 4.72–5.08

CYP 1A2 2011 0.93 0.89–0.96

SLC 22 member 6 (OAT1) 1467 1.35 1.29–1.41

Na channel protein type 2 subunit alpha 900 8.69 8.17–9.24

Oligopeptide transporter, kidney (PEPT2) 716 2.11 1.97–2.26

CYP2E1 555 0.97 0.89–1.05

Table 4 Reported target, metabolizing enzyme, and transporter actions of drugs highly associated with SJS

Drug Number PRR COX-1/2 CAII SCN2α 3A4/2C9 UDPG PEPT2

Valdecoxib 1553 39.2 s/i s/s, i s (1–9)

Zonisamide 80 11.1 i i s/

Lamotrigine 784 10.0 /i i s/ (1–4)

Metamizole 62 8.7 i/i i [26] ind/

Phenytoin 305 8.1 5a i s, ind/s, i, ind

Nevirapine 126 7.5 s, i, ind/s, i

Acetylcysteine 52 7.3

Phytonadione 34 6.9

Cefdinir 32 6.4 i

Flunitrazepam 32 5.8 s/s i (2b7)

Carbamazepine 264 5.7 5a i s, ind/ind s [27]
i [28]

Ceftriaxone 107 5.7 i [29] i

Sulfamethoxazole 280 5.5 s/ s, i/s, i s (1–9)

Cefuroxime 123 5.2 i

Trimethoprim 271 5.0 s/s, i pigs [30]

Rifampin 47 5.0 s, ind/s, ind (1–1)

Azithromycin 120 4.9 s, i/

Cefepime 34 4.9 i

Vancomycin 118 4.8

Cephalexin 59 4.8 s/ i

Allopurinol 269 4.4

Amoxicillin 215 4.1 i

Fluconazole 135 4.0 i/i i (2b4, 2b7) [31]
s (2b7) [32]

Clindamycin 55 4.0 si/

Torasemide 63 3.7 s/ /s

Ciprofloxacin 167 3.6 Immunsupp Inc COX-2 PGE2 [33] i/ s [34]

Chlorpheniramine 39 3.5 s/ s [35]

Clarithromycin 83 3.5 s, i, ind/

Erythromycin 31 3.5 Down COX-2 by p38 MAPK [36] s, i/

Amphotericin B 38 3.3 Induces COX-2/PGE2 [37]

Acetaminophen 313 1.24 i/i s, i, ind/s

s substrate, i inhibitor, ind inducer
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analysis of human skin samples finds these CYPs to be in
much lower concentrations with CYPs 1A1, 1B1, 2B6, 2E1,
and 3A5 as the predominant human skin CYP isoforms [9]. It
is unknown whether drug exposure induces CYPs in the skin.
In addition, our analysis suggests an association with phase II
metabolism via glucuronidation. Many drugs associated with
SJS also have uridine 5′-diphospho (UDP)-glucuronosyltrans-
ferase as a biotransformation enzyme.

A recognized consequence of the biotransformation of
many drugs includes the production of reactive metabolites
and oxidative stress. This process may represent a danger
signal that promotes an enhanced immune response. Further
research is needed to determine if biotransformation and oxi-
dant stress is a necessary condition for some drugs to cause
SJS.

Our analysis also highlights a number of drug transporters
that may also be associated with SJS. Multidrug resistance
protein 1 (MRP1) is the most commonly identified transporter,
although the PRR score is low. More than half of the reports
include drugs with MRP1 as a target. Another transporter
common to SJS reports is SLC22A6, also known as organic
anion transporter 1 (OAT1). The beta-lactam antibiotics,
NSAIDs, and diuretics are transported by OAT1.

Drug transporters can lead to the intracellular accumulation
of a drug in a tissue, potentially enhancing toxicity. The pres-
ence of 40 solute drug carriers has been identified on human
epidermal keratinocytes [52]. Sorafenib is a tyrosine kinase
inhibitor (TKI) that produces significant skin toxicity, namely,
hand-foot syndrome or palmar-plantar erythrodysesthesia.
The intracellular accumulation of sorafenib has been shown
to depend upon one of these solute carriers, OATP1B1. In
addition, drug transporters have important physiologic roles.
Inhibition of their function likely has detrimental effects. Pro-
benecid inhibits the ABCC-type transporters [53]. This inhi-
bition results in decreased keratinocyte proliferation. Other
physiological responses to this inhibition that may impact
the development of SJS require further investigation.

OAT1 is the most frequent transporter noted for SJS in this
study. Substrates for this transporter include many drugs
known to be associated with SJS. A partial list includes
NSAIDs, β-lactam antibiotics, diuretics, glucuronide conju-
gates, and cysteine conjugates [54]. OAT1 has a transport role
in a number of vital metabolic pathways including the citric
acid cycle, pyruvate, nucleotide, polyamine, and fatty acid
metabolism [55].

Another transporter identified as highly associated with
SJS in our analysis is the oligopeptide transporter, kidney
isoform (PEPT2). This drug transporter handles β-lactam an-
tibiotics and antiviral agents [56–58]. PEPT2 is a proton-
dependent transporter of di- and tri-peptides. PEPT2 trans-
ports intracellularly bacterial peptides that are recognized by
the nucleotide-binding oligomerization domain (NOD)-like
receptor that results in activation of the innate immune system

[59]. PEPT2 appears to have a role in immune activation of
macrophages by the transport of S-nitrosothiols intracellularly
[60]. The consequences of drug and drug-drug interactions on
these pathways are the subjects of ongoing research.

Further testing is needed to determine the overall role the
targets identified in this analysis may play in SJS. It is likely
that some targets contribute to the individual variability that
makes some patients more susceptible to SJS than others.

Further in silico, in vitro, and in vivo experiments
are needed to test these hypotheses. It is possible that
the phenotypic analysis of FAERS may suggest key tar-
gets in pathways associated with SJS and other adverse
events. One example would be to perform knockout
studies to see the importance of the identified targets
in the immune response and future development of an
SJS disease pathway.

The analysis of FAERS data can also provide input for
cheminformatic structure activity response analyses. Compu-
tational analyses can be done to look for chemical similarities
that are shared by the drugs that cause SJS. An analysis of the
drugs that also act upon specific targets will help define the
structural properties of drugs that bind a target. It is possible
that some of the drugs that cause SJS and were not previously
known to interact with carbonic anhydrase may also share this
property. This type of in silico analysis has been described
previously to show that cyclobenzaprine had serotonergic
properties that were then confirmed by receptor in vitro bind-
ing studies [61]. QSAR analyses have been developed to pre-
dict hepatotoxicity [62]. Similarly, FDA-approved drugs have
been searched to identify previously unknown drug tar-
get interactions that were confirmed by in vivo testing
[63]. These in silico analyses may help identify key
chemical ligands associated with SJS. These ligands
may prove to represent similar drug structures that bind
to HLA complexes. Some targets similar to any drug’s
adverse event may represent secondary effects, e.g., akin
to an off-target drug effect.

Another potential application for this data mining ap-
proach is for the analysis of biological plausibility. For
example, if a drug shares many of the targets with other
drugs clearly associated with an adverse event, it is more
likely to also be associated with that adverse event. Acet-
aminophen was recently labeled for SJS. A PubMed
search suggests that acetaminophen may have activity at
most of the targets highly associated with SJS. One report
suggests acetaminophen inhibits COX-1 and COX-2, but
is a more potent COX-2 inhibitor [64]. Acetaminophen is
also reported to be a CAII inhibitor [40]. Using human
recombinant CYPs, 3A4 was found to be the most effi-
cient in the generation of NAPQI, followed by CYP2E1
[65]. CYP1A1, CYP1A2, CYP2C19, and CYP2D6 had
intermediate activity, while CYP2A6, CYP2B6, and
CYP2C9 had weak activity. Glucuronidation is a
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predominant conjugation pathway for acetaminophen clear-
ance. Antibodies to the acetaminophen-glucuronide conju-
gate have been detected in acetaminophen-induced throm-
bocytopenia [66]. Acetaminophen is a substrate and weak
inhibitor of OAT1, while most other NSAIDs are strong
inhibitors of OAT1 [55]. A PubMed search for PEPT2 or
NAV1.2 activity did not identify investigations into activ-
ity at these targets.

Conclusions

Growing evidence implicates a role for direct drug interactions
with MHC complexes as having an important role in the de-
velopment of SJS. HLA studies have identified specific alleles
that are associated with drug-induced SJS. However, only
some patients with the specific allele develop SJS when ex-
posed to the drug. An analysis using FAERS was done to
identify drug-related targets, enzymes, and transporters that
may play a role in the pathophysiology of SJS. The analysis
finds disproportionality for drugs that inhibit cyclooxygenases,
carbonic anhydrase, and sodium channel 2 subunit α.
CYP3A4, CYP2C9, and UDP-glucuronidation represent the
highest frequency biotransformation pathways associated with
these drugs, while MRP-1, OAT1, and PEPT2 are highly as-
sociated with their transport. These common targets may rep-
resent shared structure activity relationships among the drugs
associated with SJS. Further research is needed to determine
the potential role of these targets in the pathophysiology and
development of systems biology disease models for SJS.
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