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Abstract
In this paper a system to monitor road conditions, detect unsafe driving behaviours and determine the influence of rainfall 
on traffic safety in real time using different machine learning algorithms, has been proposed. The system developed consists 
of a mobile application that captures car movement using its in-built accelerometer and gyroscope sensors and a server that 
monitors weather conditions at 16 key locations in Mauritius using the OpenWeather API. Road conditions, pothole, speed 
bumps as well as driving events were analysed using the K-Nearest Neighbour (KNN) and Multi-Layer Perceptron (MLP) 
algorithms. Moreover, a mathematical model, which incorporates the predicted rainfall in the estimation of braking distance 
and recommended speed, has been proposed. An average accuracy of 80.9% was obtained for pothole detection, 70% for 
speed bumps and 85.5% for unsafe driving behaviours detection. The proposed model with rainfall data predicted the brak-
ing distance and recommended speed with a Mean Absolute Percentage Error (MAPE) of 14.7% and 0.735% respectively.

Keywords Traffic safety · Braking distance · Rainfall forecasting · Potholes · Unsafe driving behaviours · Speed bumps · 
Machine learning · Real-time

1 Introduction

Traffic safety holds an important place in our lives as it 
ensures the well-being and protection of individuals on the 
road. The impacts of road accidents should not be over-
looked as in many cases, they may lead to financial losses, 
injuries or even loss of lives. In Mauritius, the number of 
registered road accidents for the first semester of 2022 was 
37% higher than in the first semester of the previous year 
[1]. According to the World Health Organization (WHO), 
about 1.3 million people lose their life due to road acci-
dents each year and between 20 and 50 million additional 
individuals suffer from non-fatal injuries [2]. This indicates 
that measures need to be taken to remediate the situation. 
In Sweden, a new road layout called “2–1 road” was intro-
duced. It consists of two wide shoulders with a two-way 
lane in between which allows overtaking in a safe way [3]. 

Authorities in Australia have installed wire rope safety bar-
riers which makes car crashed more forgiving [4]. However, 
these projects tend to be costly and time-consuming. A better 
approach would be to integrate a system for monitoring real-
time traffic safety by considering factors such as road surface 
conditions, driving behaviours and the influence of weather.

S everal studies have been conducted to implement such 
a system by making use of machine learning techniques. 
In [5], a system for detecting potholes using images from 
the phone camera is proposed. The system uses CNN to 
process the images and a modified VGG16 backbone to 
balance computation speed and accuracy. Similar work 
using images for detecting potholes is proposed in [6]. The 
proposed scheme made use of thermal imaging to extend 
pothole detection at night when thermal vision is not avail-
able. Studies carried out in [7, 8] proposed pothole detec-
tion schemes using accelerometers and gyroscopes from 
phone in-built sensors. These types of systems proved to 
be highly accurate. In [9], speed bumps were detected 
using sensor data collected from a raspberry pi and mak-
ing use of a logistic model created from statistical features. 
Another system for detecting speed bumps using LSTM 
is proposed in [10]. To identify unsafe driving behaviours 
the work proposed in [11] made use of sensors present in 
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the car. A list of descriptive features was identified to char-
acterize the driver’s behaviour. Feed Forward neural Net-
works and SVM were then used to classify the descriptive 
features. In [12], a classification framework which uses 
machine learning for detecting unsafe driving behaviours 
was developed. 2000 truck drivers were surveyed and the 
algorithms utilized were CART, RT AdaBoost and GBDT. 
The system was able to identify 9 types of unsafe driving 
behaviours. Similar works are carried out in [13–17].

In this paper, a real-time system consisting of a mobile 
application and a local server for monitoring road condi-
tions and unsafe driving behaviours as well as estimat-
ing braking distance and recommending a safe driving 
speed during rainfall is presented. The mobile application 
is developed using android studio and is used to moni-
tor sensor and location data which is sent to the local 
server to be saved in a MySQL database. Weather condi-
tions at 16 locations are monitored by the server using 
the OpenWeather API. The mobile application displays a 
map containing the user’s device location. Weather pre-
dictions based on the current location of the device can 
be requested. The server is a desktop application created 
using NetBeans and is used to perform all the computa-
tions. Based on the sensor data, potholes, speed bumps 
and unsafe driving behaviours are detected using KNN 
and MLP algorithms and the results are sent to the mobile 
application. MLP and KNN have proved to give good 
results for pothole detection in [8, 18], for speed bumps 
in [19], and unsafe driving behaviours in [11, 20]. Hence, 
they have been employed in this paper. The braking dis-
tance and recommended speed are estimated using the pre-
dicted rainfall intensity and speed of the vehicle. Rainfall 
is predicted using MLR. At the end of the driver’s jour-
ney safety ratings based on the performance of the driver 
and the quality of the road are calculated and sent to the 
mobile application.

The main research questions addressed in this paper 
are as follows:

 Q1. How to implement a system for detecting potholes, 
speed bumps and unsafe driving behaviours using 
machine learning in real-time using in-built smart-
phone sensors?

 Q2. What is the performance of KNN and MLP in terms of 
accuracy for the mentioned system?

 Q3. What is the influence of weather conditions such as 
rainfall on traffic safety?

 Q4. How can the braking distance and recommended speed 
be estimated based on the intensity of rainfall and the 
speed of a vehicle?

 Q5. How to give safety ratings based on the road quality 
and performance of a driver?

The main novelties of this work are as follows:

• A system which combines detection of potholes, speed 
bumps and unsafe driving behaviours in a single applica-
tion is proposed.

• Previous works have investigated the effects of road con-
ditions and weather on traffic safety but not jointly.

• A mathematical model for estimating braking distance 
from the speed of a vehicle and rainfall intensities is pro-
posed. Previous works have investigated the variation of 
skid resistance with rainfall intensity and how braking 
distance is calculated using skid resistance. However, no 
work has been carried out to combine these two concepts.

• A mathematical model for recommending a safe driving 
speed during rainy weather is proposed.

• A new method for assigning ratings to a driver and the 
road based on the driver’s performance and road quality 
is presented.

This paper is organized as follows. Section 2 provides a 
background review of previous works which have imple-
mented systems for monitoring road conditions, unsafe driv-
ing behaviours and the influence of weather on traffic safety. 
Section 3 describes the implementation of the proposed sys-
tem and outlines the processes involved. Section 4 evaluates 
the proposed system by performing tests on the algorithms 
used and interprets the results obtained. The expected capa-
bilities of the system are also illustrated. Section 5 concludes 
the paper and provides possible future improvements to this 
work.

2  Related Works

In this section a review of pothole detection, speed bump 
detection and unsafe driving behaviours detection schemes 
using machine learning is presented. A review of schemes 
analysing the impact of rainfall on traffic is also given.

Most methods for detecting potholes using mobile 
devices rely on images captured from the phone camera. 
In [5], Khaled R. Ahmedpresented a system for detecting 
potholes in real time which balances speed and accuracy. 
The system is automated and makes use of an efficient 
deep-learning convolutional neural network (CNN) for 
image processing. To achieve high accuracy and improve 
the computation speed, a VGG16 network was modified by 
eliminating some of the convolutional layers and making use 
of different dilation rates. The VGG16 backbone provided 
faster R-CNN when compared with other backbones such 
as MobileNetV2 and InceptionV3. The experimental results 
showed that this system provides an accuracy of 88%. In [6], 
a technique for detecting potholes using thermal imaging 
was proposed with the aim of finding the feasibility of such 
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a system. This approach extends existing pothole detection 
schemes to be able to operate at night when night vision is 
not provided. The system makes use of CNN and to train the 
model, images of potholes under different conditions and 
weather were collected. To increase the size of the train-
ing set, data augmentation techniques were applied. The 
experimental results showed that the system was able to 
classify images with an accuracy of 97.08%. In [7], vibra-
tion sensors and global positioning system receivers found 

in a smartphone were used to detect potholes automatically. 
Several machine learning algorithms were analysed among 
which the Random Forest method gave the best results with 
a precision of 85%. It was also found that features extracted 
from frequency and time domains of the data collected per-
formed better than other features used for pothole identi-
fication. The system was validated using datasets created 
from different types of roads and tested to see if it can be 
applied universally. Similarly, in [8] a pothole detection 
system using accelerometer and gyroscope sensors found 
in modern smartphones is proposed. The system relies on 
vibrations created by potholes which can be easily measured 
on the axis reading. A neural network was trained from the 
sensor data to distinguish potholes from non-potholes. Fig-
ure 1 illustrates the architecture used.

The results showed that the classification model had an 
accuracy of 94.78% which is suitable for creating an accu-
rate and sensitive supervised model for pothole detection.

In [19], Johny Marques et al. proposed a method to iden-
tify and mark anomalies on the road namely speed bumps 
by utilizing a GoPro for image capture and several machine 
learning algorithms. Data was collected for different types 
and shapes of speed bumps and three machine learning 
classification models were selected namely Naive Bayes, 
Multi-Layer Perceptron, and Random Forest. The flowchart 
in Fig. 2 shows the methodology used.

Fig. 1  Architecture for pothole detection system

Fig. 2  Flowchart for speed 
bump detection
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The accuracy obtained for the three algorithms was 
above 96% and the system was able to generate precise 
maps of vertical road irregularities quickly with a fast 
update rate. In [9], speed bumps were detected by first col-
lecting data from sensors such as accelerometer, gyroscope 
and GPS mounted on a car. The sensors were connected to 
a Raspberry Pi where statistical features which characterize 
the data are extracted. A machine learning approach was 
then used to find a logistic model that can detect speed 
bumps accurately. Results showed that the system could 
detect speed bumps with an accuracy of 97.14%. In [10], 
Vibrations caused by the vehicle passing over speed bumps 
are monitored. The 3-axis accelerometer data was collected 
and processed by a classification model. The algorithm 
used was LSTM as it has the capability of processing data 
over time while accelerometer data was continuously cap-
tured. The results showed an accuracy of 98% with minimal 
false positives cases.

In the study carried out in [11], a method for recognizing 
safe and unsafe driving behaviours using sensors present 
in the vehicle is proposed. A list of descriptive features to 
characterize the driver behaviour was created based on the 
following parameters:

• Engine speed
• Vehicle speed
• Engine load
• Steering wheel angle
• Throttle position
• Brake pedal pressure

Two classification algorithms namely Feed-Forward 
neural Networks Support Vector Machines (SVM) were 
selected for identifying the descriptive features. The clas-
sification models were able to classify the data with a mean 
accuracy above 90% which shows the capability of the sys-
tem to identify different driving styles. In [12], a classifica-
tion framework was developed to identify unsafe driving 
behaviours of truck drivers with the aim of reducing truck 
crashes. A survey was carried out among 2000 truck driv-
ers to create the framework using machine learning. The 
machine learning algorithms considered were CART, RT 
AdaBoost and GBDT. The models consisted of six first-
level input dimensions and 51  s-level input indicators 
related to proactive and objective factors. Nine types of 
unsafe driving behaviours were identified. Figure 3 shows 
the framework used.

The results showed that the accuracy of the models varies 
from 64 to 95%.

Prediction of rainfall has been carried out in several 
works using data mining and machine learning tech-
niques. In [13] daily rainfall intensity was predicted using 
algorithms such as Random Forest, Multivariate Linear 

Regression (MLR) and Extreme Gradient Boost. The atmos-
pheric features which influence rainfall were identified using 
the Pearson correlation technique. These features were then 
used as input to the regression models. The performance of 
the algorithms was measured using the Root Mean Square 
Error and the Mean Absolute Error. The results showed that 
Extreme Gradient Boost performed better than the other 
algorithms. In [14], a prediction model using Long Short-
Term Memory (LSTM) was proposed. Meteorological data 
was first collected and pre-processed. The pre-processing 
includes removing missing values, eliminating empty fields 
and normalizing the data. The deep-learning model was then 
trained from the data and tests were carried out to evaluate 
the performance of the algorithm. From the results obtained, 
it was concluded that LSTM performed better than machine 
algorithms such as MLP, KNN and SVM. In [15], Fowdur 
et al. presented a real-time weather forecasting system with 
collaborative regression. Weather data was collected using 
the OpenWeather API from a smartphone and desktop 
device for 4 different regions. Collaborative regression was 
then applied using five algorithms namely Multi Polynomial 
Regression (MPR), Multi Linear Regression (MLR), Multi-
Layer Perceptron (MLP), K-Nearest Neighbours (KNN) and 
Convolutional Neural Network (CNN). The performance 
of each algorithm with and without collaborative regres-
sion was determined. The results showed that collaborative 
regression provides a MAPE which is 5% lower than non-
collaborative methods. It was also observed that MLR gave 
better results than the other algorithms.

Several previous works have been carried out to deter-
mine the effect of weather conditions on traffic safety. 
In [16], the influence of changes in friction coefficient 
attributed to weather conditions is analysed. The dynamic 
motion of three types of vehicles namely bus, sedan and 
truck were investigated under different values of friction 
coefficients using an Adams/Car Simulator. The results 
showed that values of friction coefficients above 0.6 had no 
significant effect on braking distance and these values were 
attributed to dry weather conditions. As expected, values of 
friction coefficients 0.5, 0.4, 0.28, and 0.18 were attributed 
to wet, rainy, snowy and icy conditions respectively since 
these values had a consequent effect on braking distance.

In [17], skid resistance at different rainfall intensities was 
evaluated based on various pavement surface conditions, 
tyre thread design and the operating conditions of the tyre. 
Two types of roads namely Porous Asphalt (PA) and Dense 
Asphalt Concrete (DAC) were considered. The following 
tests were then carried out:

• Evaluate the effect of rainfall intensity on wet skid resist-
ance

• How skid resistance varies for patterned tyres and smooth 
tyre



263International Journal of Intelligent Transportation Systems Research (2024) 22:259–281 

• The effect of various pavement cross slopes on wet skid 
resistance

• The effect of tyre-related characteristics such as inflation 
pressure, slip ratio and speed on skid resistance.

After the above was quantified, a reliable tool for evalu-
ating skid resistance during rainfall was developed. The 
tool was then incorporated into pavement management 
systems so as to monitor highway traffic safety more accu-
rately. Similarly, in [21] the variation of pavement fric-
tion during snowstorms in urban areas was investigated 
to determine its influence on traffic safety. Using weather 

data collected hourly and road surface conditions infor-
mation, negative binomial safety performance functions 
were created. It was found using statistics that the relation-
ship between pavement friction level and traffic safety was 
considerable. Collisions occurred more frequently when 
the pavement friction was below 0.35 and less frequently 
when the pavement friction was above 0.6. The increase in 
collisions during snowstorms was attributed to the accu-
mulation of snow and ice which degrades the road quality.

It is noted that previous works did not consider the inte-
gration of rainfall prediction in the determination of braking 
distance and optimal driving speed in real-time conditions.

Fig. 3  Framework for unsafe 
driving behaviours detection
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3  System Model and Algorithms for Traffic 
Alerts

In this section, the complete system model which con-
sists of a local server and mobile application is described. 
The algorithms used to perform pothole, speed bump and 
unsafe driving behaviours detection will be elaborated. 
The method for estimating braking distance and recom-
mended speed during rainy weather will also be discussed. 
Finally, the calculations of road and driver rating for the 
driver’s journey will be discussed.

3.1  Complete System Model

Figure 4 shows a detailed diagram illustrating the com-
ponents present in the system model and the interaction 
between each component.

The three main components present in the system are 
the local server, a mobile application and a local database. 
The local server performs weather predictions for the loca-
tion of the user as detected by the smartphone and sends it 
to the mobile application when requested. It also performs 
classification for potholes, speed bumps and unsafe driving 
behaviours using the sensor data collected from the mobile 

Fig. 4  Complete system model
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application. A map is displayed for monitoring the geoloca-
tion of each connected device. The database is used to store 
weather data which is obtained from the OpenWeather API 
and sensor and location data sent by the smartphone. The 
mobile application receives the classification and weather 
forecasting results from the local server. A map is displayed 
so that the driver’s position is indicated on a map. At the 
end of the driver’s journey, ratings on the safety level of the 
journey are displayed on the mobile application.

3.1.1  Local Server

The local server is a desktop application created using the 
Java programming language. It accepts incoming connec-
tions from mobile client devices using a Server Socket con-
nection. The functions of the local server are as follows:

• Accept incoming sensor and location data of the client 
devices and store them in a local SQL database.

• Monitor the current weather conditions at 16 different 
regions and store the data in a local SQL database. It is 
to be noted that 16 locations have been chosen as it is the 
maximum number of locations covered by the Weather 
API without exceeding the number of request limits per 

day and hence the maximum coverage it can provide for 
the northern part of Mauritius.

• Display a live map with markers indicating the geo-
graphic location of each client device.

• Perform real-time weather forecasting and relay the 
results to the client devices

• Determine the presence of potholes, and speed bumps 
and detect unsafe driving behaviours based on the sensor 
data before returning the results to the client devices.

• Estimate a safe driving speed and braking distance during 
rainfall and return the results to the client devices.

• Determine safety ratings of the driver’s journey.
• Download requested weather, location or sensor data 

from the local SQL database.

The program structure of the local server consists of three 
distinct packages with a collection of Java classes. Figure 5 
shows how the packages are organized with their corre-
sponding classes.

The Default package contains the GUI.java class. The 
class is responsible for rendering all the components on the 
screen and has a container for displaying a map. It defines 
the logic when interacting with the GUI interface. It also 
handles all operations between clients and the server.

Fig. 5  Local server program 
structure
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The Tools package contains three classes namely Data-
base.java, User.java and Region.java. The Database.java 
class is used for writing and reading data from the local 
database. The User.java class is used to create an object 
which keeps track of all information pertaining to a user. 
The Region.java class initialized the 16 regions considered 
in Mauritius and holds their geographic location. Details 
about the selected locations are shown in Table 1. The 
weather conditions monitored were the cloudiness, temper-
ature, humidity, pressure, wind speed, wind direction and 
amount of rainfall. An interval of 1 min was used between 
the recorded samples.

The prediction package consists of the Weather.java class 
and the RoadCondition.java class. Weather.java class is used 
to obtain weather predictions using MLR and collaborative 
regression. RoadCondition.java is used to detect potholes, 
speed bumps and unsafe driving behaviour using KNN and 
MLP classification algorithms. The class also estimates 
the braking distance and recommended speed based on the 
intensity of rainfall and the speed of the vehicle.

The weather prediction is implemented using MLR and 
collaborative regression. Pothole, speed bump and driv-
ing event detection are implemented using KNN and MLP 
algorithms. As for the braking distance and recommended 
speed, a mathematical model based on the adherence of the 
vehicle’s tires to the road is used. The safety ratings give a 
subjective description of the road quality and the behaviour 
of the driver. The algorithms mentioned above are discussed 
in more detail in the upcoming sections. Figure 6 shows the 
layout of the desktop server application.

Figures 7 and 8 show the components present in the desk-
top application.

3.1.2  Mobile Application

It is the end-user Android application that connects to the 
local server. The tasks performed by the application are as 
follows:

• Send real-time location and sensor information to the 
server

• Display the geographic position of the user on a map
• Request weather predictions
• Receive from the server a recommended driving speed 

and estimated braking distance based on weather and 
sensor data.

• Receive results of pothole and speed bump detection 
from the server.

• Get notified of unsafe driving behaviours from the server.
• Receive driver and road safety ratings of the journey.

The program structure of the mobile application consists 
of three Java classes. Figure 9 shows the Java classes present 
in the program structure.

The Connection.java class defines the actions performed 
in the connection Activity. The user enters a username and 
the IP address of the local server. The monitoring activity 
starts using an intent. A socket connection is then estab-
lished between the mobile client device and the local server.

The Monitoring.java class is used to define all the func-
tionalities of the monitoring activity. In this activity, the sen-
sor data which includes the accelerometer and gyroscope 
values in the x, y, and z directions are continuously sent to 
the server via the established socket connection. The loca-
tion data of the user which includes the speed, latitude, lon-
gitude, and bearing are also sent to the server via the same 
socket. The user can request the current weather conditions 
or weather predictions for the next 15 or 30 min by sending 
a request to the local server using the refresh button. The 
activity also contains text views for displaying the current 
speed, recommended speed during rainfall, and estimated 
braking distance. Furthermore, the presence of potholes, 
speed bumps, and unsafe driving behaviours are displayed 
to the user. The user can request ratings of the journey using 
the rating button.

The Map.java class defines the actions performed in the 
map activity It shows the location of the user on a Google 
map as a blue dot using the current latitude and longitude 
values. The LocationListener interface is used to obtain 
location updates either through the network provider or the 
GPS provider. The location updates are then used to dynami-
cally change the position of the user on the map as the user 
move. The map contains other functionalities such as zoom-
ing, panning, and tilting.

Figures 10 and 11 show the layout of the Connection 
activity and Monitoring activity respectively.

Table 1  Details of selected locations

Location Latitude Longitude

Goodlands −20.035 57.643
Cap Malheureux −19.984 57.641
Triolet −20.055 57.545
Terre Rouge −20.126 57.524
Riviere Du Rempart −20.103 57.685
Grand Bay −20.018 57.580
Plaine Des Papayes −20.065 57.572
Port Louis −20.162 57.499
Roches Noire −20.111 57.712
Petit Raffray −20.013 57.612
Laventure −20.146 57.677
Long Mountain −20.143 57.562
Pointe Aux Piments −20.063 57.513
Grand Gaube −20.006 57.661
Piton −20.090 57.630
Pamplemousses −20.104 57.570
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3.1.3  SQL Database

To store all the collected data, the SQL database provi-
sioned by WampServer was used. It comes with a user-
friendly environment called PhpMyAdmin which makes 
managing databases easy. The SQL database was chosen 
as it provides a tabular structure for storing data.

3.2  Data Collection Process

To be able to make predictions, machine learning algo-
rithms need to have access to training data. For this pro-
ject, data is obtained from three different sources. Firstly, 
weather data is obtained using the openWeather API. The 
second source of data is from the inbuilt sensors present 

Fig. 6  Layout of desktop server application
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Fig. 7  Sub Layout 1 of desktop 
server application

Fig. 8  Sub Layout 2 of desktop 
server application

Fig. 9  Program structure of 
mobile application
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in smartphones. Sensors that are used include the acceler-
ometer and the gyroscope. To train some of the machine 
learning algorithms, pre-existing datasets were used. These 
datasets can be obtained from open-source websites such as 
Google Dataset Search, Kaggle, Hugging Face, and so on.

3.3  Weather Data

The weather conditions in the regions considered are 
obtained by calling the openWeather API every minute 
and storing it in the database. This process is executed on 
a separate thread for each region. An HTTP GET request 
with the necessary parameters in the URL is sent to the 
API endpoint. The parameters include the city name, API 
key, response type, and measurement units. In this case, 
the JSON format and metric units were used. The JSOUP 
library provides a convenient way for handling HTTP 
GET requests and extracting data from the response. The 
response is returned in a Document Object from which 
the data in JSON format is extracted. The weather condi-
tions which are monitored are shown in Table 2.

Figure 12 shows a flowchart illustrating the weather 
data collection process.

3.3.1  Sensor Data

The Android application captures sensor data at a frequency 
of 0.2 s and transmits it to a local server for storage in a 
database. The process begins by creating a sensor manager, 
from which the Sensor objects for the accelerometer and 
gyroscope are obtained. These sensors are registered with 
a normal delay. In the onSensorChanged () method, the 
acceleration and gyroscope values are extracted. The sensor 
values are encapsulated in a JSON object which is subse-
quently sent to the local server via a socket connection. On 
the server side, the sensor values and the timestamp it was 
received are uploaded to the database. Figure 13 shows a 
flowchart of the sensor data collection process.

3.3.2  Existing Datasets

The dataset used for pothole detection was obtained from 
the Kaggle website [22]. It is a collection of several road 
trips which were carried out in the USA. Each road trip 
has a CSV file with the actual sensor values recorded. It 
also contains the timestamps that potholes were detected 
in a separate CSV file. A pre-processing was performed 
to combine the CSV files into a single file. The fields pre-
sent in the combined CSV file are the acceleration and 
gyroscope values in the x, y, and z directions and the class 
which is either 0 or 1 meaning a pothole is present or not. 
The number of samples in the dataset is 9860. A section of 
the dataset is shown in Table 3.

The dataset used for determining unsafe driving behav-
iours was also obtained from the Kaggle website [23]. It 
models behaviours such as sudden acceleration, braking, 
left turns, and right turns. The dataset was collected for 
three drivers at the ages of 27, 28, and 37. The sampling 
rate was two samples per second and fields that are pre-
sent in the dataset are mean, standard deviation, minimum, 
maximum, and current values of acceleration and gyro-
scope giving a total of 30 parameters. It was recommended 
to use a window size of 14 s. The number of samples is 
2301. A section of the dataset is shown in Table 4.

As for the speed bumps, there were no datasets available 
online. So, a dataset was created by performing drive tests 
on the roads of Mauritius itself. The drive tests made use of 
an application for collecting sensor values when the vehicle 
went over the speed bumps. The sensor values were saved 
in a CSV file. The class is either 0 or 1 meaning a speed 

Fig. 10  Connection activity
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bump is present or not. The number of samples is 660. A 
section of the speed bump dataset is shown in Table 5.

3.4  Machine Learning Algorithms for Traffic Safety

3.4.1  KNN Algorithm for Pothole, Speed Bump and Unsafe 
Driving Behaviours Detection

The K-Nearest Neighbours algorithm is a type of super-
vised machine learning algorithm that performs prediction 
or classification based on the closeness of data points. The 

distance between the test instance and all the data points is 
calculated. Some of the distance measures are the Euclidean 
distance, Manhattan distance, and Minkowski distance. The 
K-nearest data points to the test data point is selected. The 
mode is chosen as the output when performing classification 
while the mean is calculated when performing regression 
[24, 25]. In this paper, the Euclidean distance was selected 
to implement the KNN algorithm. The expression for cal-
culating Euclidean distance is shown in Eq. (1).

where,

• n is the number of features or dimensions
• xi is the ith attribute of the data point
• yi is the ith attribute of the test data point

The features used for pothole and speed bump detection 
were acceleration and gyroscope values in the x, y and, z 
directions resulting in a total of 6 features. For unsafety 

(1)d(x, y) =

√√√
√

n∑

i=1

(yi − xi)
2

Fig. 11  Monitoring activity

Table 2  Weather conditions

Weather condition Unit

Cloudiness %
Temperature Degree Celsius
Humidity %
Rainfall mm/hr
Pressure Pa
Wind Speed m/s
Wind Direction Degree
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driving behaviours detection additional features were used 
namely the mean, minimum, maximum, and standard devi-
ation of the acceleration and gyroscope values. A total of 
30 features were then obtained.

3.4.2  MLP Algorithm for Pothole, Speed Bump and Unsafe 
Driving Behaviours Detection

The most widely adopted type of neural network model in 
deep learning is the Multi-layered Perceptron (MLP). It was 
originally designed for image recognition but is now also 
used to solve complex problems including classification and 
regression. The multilayer perceptron is an artificial neural 
network that follows a feed-forward architecture, comprising 
three essential layers: the input layer, the hidden layer(s), and 
the output layer. The input layer is the starting layer of the 
network and takes in an input which is then used to produce 

an output. The network has at least one hidden layer and its 
function is to perform all the computations and process the 
input data to produce meaningful results. The output layer 
displays the meaningful results [26].

The layers are interconnected and these connections are 
assigned weights which determine the importance of the con-
nections. The weights are optimized through a process called 
backpropagation. Firstly, random values between -1 and 1 are 
given to the weights and the output is observed. The error 
which is the difference between the output and the expected 
output is propagated back through the network causing the 
weights to be readjusted. This process is repeated until the 
correct output is obtained. At this stage, the weights are the 
one that works correctly for the neural network.

In this paper, the gyroscope and accelerometer values 
were the inputs to the neural network. The number of input 
layers was six for pothole and speed bump detection and 

Fig. 12  Weather data collection 
flowchart
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30 for unsafe driving behaviours. The number of hidden 
layers was obtained by trying different values and select-
ing the optimal one. Figure 14 shows an illustration of the 
backpropagation process in MLP.

In Fig. 14, the accelerometer and gyroscope values in 
the x, y, and z directions are set as inputs to the input layer. 
These values are denoted by acc-x, acc-y, acc-z, gyro-x, 
gyro-y, and gyro-z. Between the input layer and the hidden 
layer are the weights denoted by W. During the training of 
the model, an estimate of the output is obtained denoted 
by ŷ. It is compared with the expected output denoted by y 

Fig. 13  Sensor data collection 
flowchart

Table 3  Section of pothole dataset

accx accy … gyroz Class

0.0170 0.2039 … 0.007 0
0.0508 0.1940 … 0.009 0
0.0374 0.1912 … 0.009 0
0.0538 0.2777 … 0.002 0

Table 4  Section of unsafe driving behaviours dataset

accx accy … stdgyroz Class

6.435 2.158 … 1.091 0
6.389 1.359 … 1.248 0
6.294 3.132 … 1.231 0
6.160 0.837 … 0.669 0

Table 5  Section of speed bump dataset

accx accy … gyroz Class

−0.592 2.053 … −0.057 0
1.108 1.921 … −0.093 0
0.261 2.286 … −0.083 0
0.492 2.088 … −0.061 0
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to calculate the error. The error is propagated back to the 
network to obtain the updated weights denoted by W*.

3.4.3  Algorithms for Estimating Braking Distance 
and Recommended Speed Using Predicted Rainfall

To estimate braking distance and recommended speed, the 
following steps were carried out:

• Predict rainfall intensity using MLR.
• Estimate the skid coefficient from the predicted rainfall 

intensity and speed of the vehicle using the Lagrange 
interpolation formula.

• Calculate braking distance using the braking distance 
formula which is based on the contact of the vehicle’s 
tyre with the pavement.

• Calculate recommended speed using a derived formula 
based on the road speed limit and skid coefficient.

The above procedures are explained in the following sections.

MLR Algorithm for Rainfall Forecasting Multiple linear 
regression is a type of predictive analysis used to find the 
relationship between a continuous dependent variable and 
several independent variables. It assumes the variables are 
linearly related and the independent variables have low cor-
relation. In this paper, MLR was used to predict rainfall 
using a window size of 15 min [15]. The dependent variable 
is rainfall intensity and the independent variables are rainfall 

intensity and cloudiness. The expression for predicting rain-
fall is modelled by Eq. (2)

where,

• Rt+1 is the predicted rainfall at time t + 1
• β0 , �1, �2 are the regression coefficients
• Rt is the rainfall at time t
• Ct is the cloudiness at time t
• ε is the standard error

The rainfall prediction was utilized to estimate braking 
distance and recommended speed.

Rt which is the previous rainfall value at time t has the 
highest incidence in determining the rainfall at time Rt+1. 
Moreover, the cloudiness, Ct, as per the work carried out in 
[15], has shown to be another highly correlated parameter 
in determining the rainfall at time t + 1.

Lagrange Interpolation Formula The Lagrange interpolation 
formula is a method used to determine a polynomial that accu-
rately passes through a given set of data points. The function 
obtained is an  nth-degree polynomial approximation to f(x). It is 
useful for estimating new data points that falls within the range 
of a given group of data points [27]. The Lagrange interpola-
tion formula for the  nth-degree polynomial is given in Eq. (3).

(2)Rt+1 = �0 + �1Rt + �2Ct + �

Fig. 14  Illustration of backprop-
agation process in MLP
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To estimate the skid coefficient, the Lagrange interpola-
tion formula was applied twice times on a set of data points 
containing values of skid coefficients at various rainfall 
intensities and vehicle speeds. The values of rainfall inten-
sities were scaled down to better represent rainfall measure-
ments in Mauritius. Table 6 shows the values of the skid 
coefficient at different rainfall intensities and vehicle speeds 
which were obtained from [17].

The Lagrange formula was first applied to obtain the pol-
ynomial expressions which approximate the data points of 
the skid coefficient against the speed of each value of rainfall 
intensity as shown in Table 6. The approximated expressions 
are shown as follows:

(3)

f (x) =
(x−x1)(x−x2)…(x−xn)
(x0−x1)(x0−x2)…(x0−xn)

f0

+
(x−x0)(x−x2)…(x−xn)
(x1−x0)(x1−x2)…(x1−xn)

f1

+…

+
(x−x0)(x−x1)…(x−xn−1)
(xn−x0)(xn−x1)…(xn−xn−1)

fn

(4)μ(v)1 = 0.401v5 + 0.473v4 + 0.535v3

+0.587v2 + 0.629v + 0.661

(5)μ(v)2 = 0.379v5 + 0.451v4 + 0.513v3

+0.566v2 + 0.607v + 0.640

(6)μ(v)3 = 0.362v5 + 0.434v4 + 0.496v3

+0.548v2 + 0.590v + 0.622

(7)μ(v)4 = 0.346v5 + 0.412v4 + 0.480v3

+0.532v2 + 0.574v + 0.606

(8)μ(v)5 = 0.331v5 + 0.403v4 + 0.465v3

+0.518v2 + 0.560v + 0.592

where,

• μ (v)1 , �(v)2,… ,�(v)6 are the expressions for skid coeffi-
cient at 5 mm/hr, 10 mm/hr, …, 30 mm/hr rainfall intensi-
ties.

• v is the speed of the vehicle

To find the skid coefficient at a particular speed and rain-
fall intensity, the value of speed was replaced in the approxi-
mated expressions to obtain another set of data points. The 
data points obtained are shown in Table 7.

The Lagrange formula was then applied a second time 
on the set of data points to obtain a polynomial approxima-
tion of the skid coefficient against rainfall intensity at that 
particular speed. The approximated expression is shown in 
Eq. (10).

The value of rainfall intensity is replaced in the approxi-
mated expression to obtain the value of skid coefficient.

Skid Resistance Skid resistance is the force induced when 
a tyre is stopped from rotating and instead slides along the 
pavement surface. Skid resistance is dependent on several 
factors such speed of the wheel, pavement wetness, tem-
perature, tire wear, etc. Figure 15 illustrates the concept of 

(9)μ(v)6 = 0.321v5 + 0.393v4 + 0.456v3

+0.507v2 + 0.549v + 0.581

(10)

μ(r, v) =
(r−10)(r−15)(r−20)(r−25)(r−30)

(r−10)(5−15)(5−20)(5−25)(5−30)
μ(v)1

+
(r−5)(r−15)(r−20)(r−25)(r−30)

(10−5)(10−15)(10−20)(10−25)(10−30)
μ(v)2

+
(r−5)(r−10)(r−20)(r−25)(r−30)

(15−5)(15−10)(15−20)(15−25)(15−30)
μ(v)3

+
(r−5)(r−10)(r−25)(r−25)(r−30)

(20−5)(20−10)(20−15)(20−25)(20−30)
μ(v)4

+
(r−5)(r−10)(r−15)(r−20)(r−30)

(25−5)(25−10)(25−15)(25−20)(20−30)
μ(v)5

+
(r−5)(r−10)(r−15)(r−20)(r−25)

(30−5)(30−10)(30−15)(30−20)(30−25)
μ(v)6

Table 6  Data points of skid 
coefficient at different vehicle 
speeds and rainfall intensities

Speed (km/hr) 20 40 60 80 100 120
R.I (mm/hr)

5 0.6608 0.6287 0.5868 0.5346 0.4725 0.4007
10 0.6396 0.6075 0.5656 0.5133 0.4513 0.3789
15 0.6222 0.5901 0.5482 0.4959 0.4339 0.3620
20 0.6059 0.5737 0.5318 0.4801 0.4176 0.3457
25 0.5917 0.5596 0.5177 0.4654 0.4034 0.3310
30 0.5814 0.5493 0.5073 0.4556 0.3931 0.3212

Table 7  Data points of skid 
coefficient at different rainfall 
intensities

R.I (mm/hr) 5 10 15 20 25 30

Skid Coefficient �(v)1 �(v)2 �(v)3 �(v)4 �(v)5 �(v)6
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skid resistance at the contact area between the tyre and the 
pavement.

Skid resistance is of prime importance for road agencies 
and institutions as it has a direct effect on the number of road 
accidents especially during wet weather conditions. Dur-
ing such conditions, the presence of water on road surfaces 
reduces the grip between the tires and the pavement which 
results in less contact area at the tyre-pavement interface. 
Consequently, skid resistance decreases and the risk of road 
accidents on wet pavements is greater as compared to dry 
pavements [17]. In this paper, skid coefficient is used to 
determine the braking distance of a vehicle under wet con-
ditions. Skid coefficient is a measure of the skid resistance 
and is a number between 0 and 1.

When a vehicle is moving at a specific speed and the 
brakes are suddenly applied, the vehicle will eventually 
come at rest after travelling a certain distance. This distance 
is called the braking distance. It is dependent on several fac-
tor such as the vehicle speed, the driver’s reaction time and 
the road surface condition. Equation (11) shows the formula 
used for calculating the braking distance.

where,

• d is the braking distance in metres
• v is the speed of the vehicle in Kmhr.−1

• τ is average reaction time of a driver in seconds
• g is the acceleration due to gravity in ms.−2

• μ is the skid coefficient calculated using Eq. (10)

(11)d = v� +
v2

2g�

An expression for calculating a safe recommended speed 
is derived as follows:

1. The maximum braking distance that a vehicle can have 
on a particular road is calculated. It is assumed that the 
maximum braking distance occurs when the speed of 
the vehicle is equal to the road speed limit and there is 
no rainfall. The following expression is obtained when 
replacing in Eq. (11):

 where, �0 is obtained by replacing r = 0 and v = vmax in 
Eq. (10) and vmax is the road speed limit.

2. To get the recommended speed during rainfall, dmax and 
the value of skid coefficient during rainfall is replaced 
in Eq. (10). The following expression is obtained:

 where, �r is obtained by replacing r = predictedrain and 
v = vmax in Eq. (10) and vrec is the recommended speed.

3. Solving for vrec using the quadratic formula, the follow-
ing expression for the recommended speed is obtained:

3.4.4  Calculation of Road and Driver Ratings

The driver rating provides an objective assessment of the per-
son’s driving performance during their journey and is based 
on the fraction of time the person exceeds the recommended 
speed. On the other hand, the road rating indicates the con-
dition and quality of the road itself and takes into account 
the number of road events such as potholes and speed bumps 
which were encountered during the driver’s journey. Equa-
tions (15) and (16) shows the formulae used to calculate the 
driver’s speed deviation and number of road events during a 
driver’s journey respectively. The basis for allocating the driver 
rating is that the driver is rewarded for keeping a speed below 
the recommended speed and is penalised for going above the 
recommended speed. For the road rating, it is allocated based 
on the number of potholes and speed bumps present on the 
road indicating that the road is poorly maintained if there are 
too many potholes and speed bumps.

(12)dmax = vmaxτ +
vmax

2

2gμ0

(13)dmax = vrecτ +
vrec

2

2gμr

(14)vrec =
−2τgμr +

√(
2τgμr

)2
+ 8dmax

2

(15)SD =
1

N

N∑

s=1

(vs − vrec) × 100%

Fig. 15  Illustration of skid resistance
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where,

• SD is the speed deviation in percentage
• vs is the actual speed at sampling instance s
• vrec is the recommended speed
• N is the number of sampling instances
• E is the Nº of road events per Km
• d is the distance travelled in Km

Table 8 shows how the driver rating is allocated based on 
the speed deviation.

Table 9 shows how the road rating is allocated based on 
the Nº of road events per Km.

4  Performance of Machine Learning 
Algorithms

In this section, the performance of the MLR algorithm used 
in this application for rainfall prediction will be analysed. 
Performance analysis of KNN and MLP algorithms will 
be carried out to evaluate their effectiveness in detecting 
potholes, unsafe driving behaviours and speed bumps. The 
analysis consists of a cross-validation test where the dataset 
used to train the models is evaluated and a real-time test 
where test drives were carried out. Finally, the algorithms 
used for estimating braking distance and recommended 
speed will be analysed.

Some of the performance parameters used to evaluate the 
algorithms are expressed as follows:

(16)E =
N◦ of Potholes + N◦ of Speed bumps

d

where,

• MAPE is the Mean Absolute Percentage Error
• MSE is the Mean Square Error
• RMSE is the Root Mean Square Error
• MAE is the Mean Absolute Error
• Aj is the actual value
• Pj is the predicted value
• N is the number of data samples

4.1  Performance of MLR for Rainfall Prediction

To evaluate the performance of the MLR algorithm for rain-
fall prediction, data was collected for a period of eight hours 
for five different locations under moderate rainfall condi-
tions. Rainfall is predicted using the weather parameters 
given in Table 10.

The prediction was carried out for the next 15 min by 
inputting the collected data in Eq. (2). Table 11 summarizes 
the data collected for the locations considered.

Table 12 shows the experimental results when evaluating 
the MLR algorithm for rainfall prediction.

The MLR algorithm was chosen as it is an algorithm 
which is computationally efficient compared to other algo-
rithms such as polynomial regression and neural networks 
which may not necessarily provide better results. The MAPE 
will be used to interpret the results obtained in Table 12. 
MAPE gives a more intuitive understanding of the perfor-
mance of the forecasting model.

(17)MAPE =
1

N

N∑

j=1

||
|
Aj − Pj

||
|

|
|
|
Aj
|
|
|

× 100%

Table 8  Driver rating allocation Speed deviation 
(%)

Driver rating

0–4 5
4–8 4
8–12 3
12–16 2
16 + 1

Table 9  Road rating allocation Nº of road events/
Km

Road rating

0–2 5
3–5 4
6–8 3
9–11 2
12 + 1

Table 10  Weather parameters used for rainfall prediction

Dependent variable Independent variables

Rainfall • Rainfall
• Cloudiness

Table 11  Summary of weather data collected

Observation Period 8 h
Nº of Samples 931
Weather parameters 1. Rainfall –  (mmhr−1)

2. Cloudiness – (%)
Location Names • Goodlands

• Pamplemousses
• Port Louis
• Grand Bay
• Piton



277International Journal of Intelligent Transportation Systems Research (2024) 22:259–281 

From the results obtained in Table 12, it can be seen that 
the errors obtained for rainfall prediction are significant but 
not too high ranging from 5.672% to 16.89% with an average 
of 12.10% for the five locations. The high error can be attrib-
uted to the fact that rainfall patterns can vary over a short 
time frame and can be localized to affect only certain areas.

It can be deduced that MLR is an algorithm which per-
forms reasonably well in predicting rainfall when referred 
to previous works. In [28], it is observed that MLR provides 
better accuracy than other existing algorithms. However, in 
[29], where the capability of linear and nonlinear regression 
techniques was analysed, it was found that MLR gave poorer 
results as rainfall has a nonlinear dependence on variables 
such as temperature and humidity. Although the errors were 
high, this doesn’t indicate that the MLR algorithm couldn’t 
accurately model the data. This is because rainfall is a 
parameter which is challenging to predict in nature.

4.2  Performance of KNN and MLP for Pothole, 
Speed Bump and Unsafe Driving Behaviours 
Detection

To evaluate the performance of KNN and MLP algorithms 
for pothole, speed bump and unsafe driving behaviours 
detection, two different methods were used. In the first 
method, the datasets used to train the models were tested 
using a cross-validation technique. In the second method, 
real-time drive tests were carried out to determine the 
accuracy of the algorithms. The datasets for potholes and 
unsafe driving behaviours were both obtained from the 
Kaggle website [22, 23]. The speed bumps dataset was 
generated by collecting data using a smartphone during 
drive tests conducted on various speed bumps.

The hyper parameters used to train the KNN and MLP 
algorithms were obtained by testing different combinations 
of values. The optimum values were then selected based 
on the highest accuracy obtained. Table 13 summarized 
the hyper parameters for the KNN and MLP algorithms 
(Table 13).

Table 12  Experimental results for evaluating MLR for rainfall predic-
tion

Location RMSE MSE MAE MAPE

Goodlands 2.931 8.592 1.108 13.38%
Pamplemousses 3.167 10.03 1.455 15.56%
Port Louis 2.532 6.409 0.899 9.002%
Grand Bay 3.544 12.56 1.825 16.89%
Piton 1.622 2.631 0.457 5.672%
Average 2.836 8.044 1.149 12.10%

Table 13  Hyper parameters of 
KNN and MLP algorithms

Algorithm Scenario Parameters

KNN Pothole detection • Nº of Neighbours = 6
• Distance Weighting = Euclidean

Speed bump detection • Nº of Neighbours = 4
• Distance Weighting = Euclidean

Unsafe driving behaviours detection • Nº of Neighbours = 6
• Distance Weighting = Euclidean

MLP Pothole detection • Nº of Input nodes = 6
• Nº of hidden nodes = 12
• Activation function = ReLU
• Learning rate = 0.1
• Max epochs = 100

Speed bump detection • Nº of Input nodes = 6
• Nº of hidden nodes = 6
• Activation function = Sigmoid
• Learning rate = 0.1
• Max epochs = 100

Unsafe driving behaviours detection • Nº of Input nodes = 30
• Nº of hidden nodes = 30
• Activation function = Sigmoid
• Learning rate = 0.1
• Max epochs = 100

Table 14  Cross-validation results for KNN algorithm

Dataset Nº of Instances Accuracy

Potholes 9859 95.34%
Speed Bumps 660 73.48%
Unsafe Driving Behaviours 2301 98.74%
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4.2.1  Cross‑Validation of Datasets

When performing the cross-validation, the datasets are 
divided into the training sets and the testing sets. The ratio 
of training sets to testing sets is set to 7:3. The training sets 
are used to build the classification models. The testing sets 
are then used to find the accuracy of the models. Tables 14 
and 15 show the cross-validation results for KNN and MLP 
algorithms respectively.

From Tables 14 and 15, the accuracy for pothole detec-
tion is high for both KNN and MLP algorithms. This can be 
attributed to the large dataset used for training the models. 
For speed bump detection, an average accuracy is observed 
and this is explained by the small dataset which was col-
lected to train the models. The accuracy for detecting unsafe 
driving behaviours is high as the number of attributes used 
to train the models is large (30). However, MLP performed 
poorly compared to KNN. MLP is an algorithm which gives 
better results when the dataset is very large.

4.2.2  Real‑Time Drive Tests

Drive tests are carried out to determine if the algorithms 
will be effective under real-world conditions. They help 
determine whether the algorithms can be generalized to 
different road surface conditions and vehicles instead of 
overfitting the particular datasets used to train the model. 

The drive tests were carried out on the roads of Mauritius 
in the region of Petit Raffray and Goodlands. A car was 
used to perform the drive tests. The speed limit for the 
routes was 60 km/hr while the car was driven at around 
40 km/hr. The drive tests were carried out at two o’clock 
in the afternoon when there was no traffic congestion. 
Figures 16 and 17 show the routes selected to carry out 
the drive tests, one for the speed bump and unsafe driv-
ing behaviours detection algorithms and the other for the 
pothole detection algorithms. A green marker in Fig. 16 

Table 15  Cross-validation results for MLP algorithm

Dataset Nº of Instances Accuracy

Potholes 9859 95.38%
Speed Bumps 660 72.27%
Unsafe Driving Behaviours 2301 89.44%

Fig. 16  Route for verifying speed bump and unsafe driving behav-
iours detection algorithms

Fig. 17  Route for verifying pothole detection algorithms

Table 16  Drive test results for KNN algorithms

Parameter Nº of Occurrences Accuracy

Potholes 21 80.9%
Speed Bumps 25 72.0%
Unsafe Driving Behaviours 34 88.2%

Table 17  Drive test results for MLP algorithms

Parameter Nº of Occurrences Accuracy

Potholes 21 80.9%
Speed Bumps 25 68.0%
Unsafe Driving Behaviours 34 82.3%
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indicates the location of a speed bump and a blue marker 
in Fig. 17 indicates the location of a pothole.

After completing the drive tests, the following results 
were obtained for KNN and MLP algorithms as shown in 
Tables 16 and 17.

From the results shown in Tables 16 and 17, it can be seen 
that both KNN and MLP algorithms performed well. The 
accuracy was lower for the drive tests but not significantly. 
For pothole detection, both algorithms have the same accu-
racy. However, for speed bump and unsafe driving behav-
iours detection, KNN gave better results.

Both the cross-validation tests and the drive tests showed 
that KNN and MLP algorithms can accurately model the 
data. The accuracy for speed bump detection is low with 
both tests. One reason to explain this is the introduction of 
human errors such as timing errors when collecting data for 
the dataset. When comparing with similar works, it can be 
argued that MLP and KNN are algorithms which perform 
well for road condition monitoring.

4.3  Performance of Braking Distance 
and Recommended Speed Estimation Algorithm

To obtain the performance of the algorithm for estimating 
braking distance and recommended speed, the values of 
braking distance and recommended speed were predicted 
after a period of 15 min at different speed limits using the 
data collected for rainfall. Equation (11) was used to obtain 
the predicted braking distance and Eq. (14) was used to 
obtain the predicted recommended speed.

Figure 18 shows the variation of braking distance with 
rainfall intensity at different vehicle speeds.

Figure 19 shows the variation of recommended speed 
with rainfall intensity at different speed limits.

The predicted values of braking distance and recom-
mended speed were then compared with the actual values 

to obtain the performance metrics. Since the algorithm relies 
on the predicted values of rainfall, the performance obtained 
is directly related to the accuracy of MLR used for rain-
fall prediction. Table 18 shows the results obtained for the 
algorithm.

From the results obtained in Table 14, it is observed that 
the error obtained for recommended speed ranges from 
0.591% to 0.987% which is very low. The explanation for 
this is that recommended speed has low variation with 
respect to rainfall. In the case of braking distance, the error 
is relatively high ranging from 11.55% to 18.13% and this 
is attributed to braking distance being proportional to the 
square of speed that is a small change in speed will result in 
a large change in braking distance. A trend is also observed 
where a low error occurs at a low-speed limit and a high 
error occurs at a high-speed limit.

4.4  Interpretation of Driver and Road ratings

By considering the drive tests which were carried out to ver-
ify the algorithms for the pothole and speed bump detection, 

Fig. 18  Variable of braking distance with rainfall intensity

Fig. 19  Variation of recommended speed with rainfall intensity

Table 18  Results of braking distance and recommended speed esti-
mation algorithm

Parameter RMSE MSE MAE MAPE

Speed limit = 110 km/hr
  Recommended speed 2.573 6.621 1.019 0.987%
  Braking distance 147.1 21,643 35.33 18.13%

Speed limit = 80 km/hr
  Recommended speed 1.323 1.750 0.483 0.628%
  Braking distance 53.86 2900 16.27 14.38%

Seed limit = 60 km/hr
  Recommended speed 0.892 0.796 0.342 0.591%
  Braking distance 26.47 700.5 10.57 11.55%
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the speed deviation obtained was 0.83% using Eq.  (15) 
and the number of events per km obtained was 10.6 using 
Eq. (16). This results in a driver rating of 5 and a road rat-
ing of 2.

5  Conclusion

In this paper, a system for monitoring road conditions and 
unsafe driving behaviours in real-time was implemented. 
Essentially the system consisted of local server and a mobile 
application. The local server is a GUI desktop application 
created using Java. The server was tasked to perform classifi-
cations for detecting potholes, speed bumps and unsafe driv-
ing behaviour using sensor data collected from the mobile 
application and then send the results to the mobile appli-
cation. The algorithms used for classification were KNN 
and MLP. The results showed an average accuracy of 80.9% 
for pothole detection, 70% for speed bump detection and 
85.3% for unsafe driving behaviours detection. In the work 
carried out in [30], an accuracy of 85% for pothole detec-
tion was obtained using deep learning method. The results 
obtained in [31] showed an accuracy of 78.39% using KNN 
and 76.69% using MLP for driving behaviour recognition. 
The low accuracy observed for speed bump detection is 
explained by the use of a relatively smaller dataset due to 
relatively shorter roads found in Mauritius. Moreover, some 
errors due to reaction time may have been introduced when 
collecting the sensor data for the dataset. The reaction time 
here refers to τ in Eq. (11) and the error due to it can be 
reduced by repeating the experiment more times or using 
a larger data set. The braking distance and recommended 
speed during rainy weather were estimated. This was done 
by first predicting rainfall intensity using MLR. The braking 
distance was then calculated based on the rainfall intensity 
and speed of the vehicle. As for the recommended speed, 
a formula was derived based on the rainfall intensity and 
road speed limit. The MAPE for the above were as follows: 
12.1% for rainfall prediction, 14.7% for braking distance, 
and 0.735% for recommended speed. Finally, a method for 
providing ratings for the driver’s journey was devised. It was 
based on the road quality and the performance of the driver. 
Future works can be explored to improve the performance of 
the system and accuracy of the algorithms selected. Firstly, 
by making use of larger datasets, the accuracy of monitoring 
road conditions will significantly increase. Algorithms such 
as MPR and LSTM would provide better results for rainfall 
prediction as MPR takes into account the non-linear depend-
ence on predictor variables while LSTM is more suitable for 
time-series data.
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