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Abstract
In this study, we propose a trajectory data-driven network representation method, specifically leveraging directional statis-
tics. This approach allows us to extract major intersections and define links from observed trajectories, thereby mitigating
the reliance on existing network data and map matching. We apply Graph Convolutional Networks and Long-Short Term
Memory models to the trajectory data-driven network representation, suggesting the potential for fast and accurate traffic
state prediction. The results imply significant reduction in computational complexity while demonstrating promising predic-
tion accuracy. Our proposed method offers a valuable approach for analyzing and modeling transportation networks using
real-world trajectory data, providing insights into traffic patterns and facilitating the exploration of more efficient traffic
management strategies.
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1 Introduction

In transportation network analysis, the representation of the
network is a crucial and challenging problem. Depending
on the purpose of the analysis, such as national-level net-
work design or identification of bottlenecks in local narrow
roads, the required spatial resolution varies significantly.
Therefore, careful consideration is needed regarding the res-
olution at which calculations should be performed for each
analysis purpose. The computational cost associated with
network-based calculations fluctuates rapidly with the num-
ber of links, making it necessary to consider the feasibility
of computation when setting the resolution. However, there
are no clear rules or algorithms for appropriately represent-
ing networks for various purposes. Most studies either use
conceptual networks designed subjectively by analysts or
meticulously adjust network data obtained from detailed net-
works made for navigation systems. Decades ago, the lack
of discussion on how to place centroids and represent road
network elements in traffic assignment problems was noted,
despite the significant influence of these aspects on analytical
outcomes [1]. Thereafter, techniques to simplify the net-
work structure were proposed in the context of reducing the
computational burden of the traffic assignment problem [2–
4]. Even today, however, there are still few studies focusing
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on network representation, making it an issue that requires
active engagement.

In recent years, with the rapid advancement of obser-
vational data, the trend in network data used for analysis
is changing. In particular, with the proliferation of vehicle
trajectory data, the demand for network data containing coor-
dinate information is increasing. Trajectory data, also known
as network-free data, is originally a time series of latitude
and longitude, requiring additional processing to associate
it with a network through techniques like map-matching.
To associate vehicle observational data with a network, it
is necessary for the network data to have positional coordi-
nate information. However, network data based on position
coordinates, such as OpenStreetMap (OSM), which accu-
rately represents detailed connection structures including
narrow roads, often results in a massive number of nodes.
For example, intersections or interchanges that provide route
selection functionality are often represented by numerous
nodes, which is redundant when considering wide-area net-
work assignment problems. In such situations, the adjustment
work for network data becomes increasingly burdensome
in order to fully utilize valuable observational data that has
become available in recent years.

Network representation methods that consider the char-
acteristics of trajectory data have the potential to solve
these problems. For example, network aggregation tech-
niques based on trajectory data [5–7] objectively reconstruct
networks based on actual observations, demonstrating their
effectiveness, particularly for accelerating computational
processes for large-scale networks. However, network aggre-
gation currently relies heavily on the connection structure of
the input network data and the accuracy of pre-executedmap-
matching processes, posing significant challenges. Map-
matching is especially computationally intensive, and fre-
quent mismatches still occur in networks with parallel roads.
To address these issues, the development of new method-
ologies that reduce dependence on given network data and
map-matching processes is required.

To decrease reliance on given network data, it is neces-
sary to develop new methodologies for generating network
data based on observations. One suchmethod currently being
developed is to estimate major intersections solely from
trajectory data [8]. This method can be considered purely
observation-based as it does not use any given network data.
However, this approach assumes situations where there is
absolutely no information about spaces where roads and
intersections exist, such as in developing countries where
there is no existing map data. From a practical standpoint,
it is rational to adopt a strategy that does not rely on the
connection structure of the given network data but leverages
preliminary information such as the location and shape of
intersections.

In this study, we develop a methodology to generate
network data from trajectory data without using connec-
tion information from given network data, assuming situ-
ations where all intersection positions and degrees can be
obtained in advance frommaps or other sources. Specifically,
we utilize the direction information and arrival informa-
tion between points in trajectory data and develop major
intersection extraction technology and network generation
technology based on directional statistics. By generating net-
works from actually observed trajectory data, metrics for
each generated link, such as average speed, can be calculated
without the need for additional map-matching processes. By
representing links based on actual arrival information, errors
in link connection information and directions, which are
common in conventional network data, can be avoided. The
proposed method allows for adjusting the network resolution
by adjusting threshold values, making it easy to create a net-
work with a resolution suitable for the purpose and accuracy.
To validate the utility of the proposed method, we perform
network data generation using actual observational data and
evaluate the accuracy of traffic state prediction based on deep
learning.

2 Methodology

2.1 Trajectory Data-Driven Network Representation

We assume that information K regarding the coordinates and
degrees of all intersections within a target area is available
as prior knowledge. K is defined as follows:

K =
{
(xKi , yKi , dK

i ) | i = 1, 2, . . . , n
}

, (1)

where xKi and yKi are the coordinates of intersection i , dK
i is

the degree of intersection i , and n is the number of intersec-
tions within the target area. The proposed method generates
network data only from K and trajectory data:

T =
{
(xTj,h, y

T
j,h, c

T
j,h) | j =1, 2, . . . ,mh; h=1, 2, . . . , u

}
,

(2)

where xTj,h and yTj,h are the coordinates of a dot observed

at the j-th point of the trajectory for vehicle h, cTj,h is the
timestamp observed at the j-th point of the trajectory for
vehicle h, mh is the number of dots for vehicle h, and u is
the number of vehicles whose trajectories could be observed
in the target area.

In this study, intersections with a certain number of vehi-
cles traversing in three or more directions are considered to
play an important role as points for route choice, and the set
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of such intersections is defined as major intersections KM .
We describe how to extract major intersections kM ∈ KM

from the set of all intersections K using directional statistics.
As a preprocessing step, for each dot t j,h ∈ T , an azimuth
angle a j,h to the next dot t j+1,h is calculated. This process
is not performed for the last observed dot of each vehicle.
We extract the set Ti of dots within a distance s for each
intersection ki ∈ K . Ti is described as follows:

Ti = {ti | distance(ki , ti ) ≤ s} , (3)

where distance(ki , ti ) represents the distance between point
ki and point ti . For each ki , let Ai be the set of azimuth angles
calculated for all ti .

ai ∈ Ai can be regarded as sampled from the distribution
of azimuth angles in the direction of vehicles traversedwithin
a distance s from intersection ki . Assuming that the azimuth
angles of vehicles traversing from each intersection to the
links extending in eachdirection followanormal distribution,
ai follows a mixed normal distribution with the degree dK

i of
the corresponding intersection as the mixture number. The
mathematical expression is as follows:

ai ∼
dK
i∑

g=1

πi,gN
(
μi,g, σ

2
)
,

dK
i∑

g=1

πi,g = 1, (4)

where μi,g is the mean of each normal distribution included
in the mixed normal distribution, and πi,g is the weight of
each normal distribution. For simplicity, in this study, the
variance of each normal distribution is assumed to be a fixed
value σ 2. If we can estimate πi,g , the number of vehicles
traveling in each direction can be calculated by multiplying
it by the total number of vehicles |Ti | that passed near each
intersection ki . In this study, these parameters Expectation-
Maximization (EM) algorithm. Using the threshold τ1 for
major node extraction, an intersection ki is considered a
major intersection kM if there are at least three πi,g values
that satisfy:

|ti | πi,g ≥ τ1. (5)

We will explain the process of defining links between
major intersections. A threshold τ2 is defined for link defini-
tion.We trace the trajectories of vehicles that traversedwithin
the target area in a specific order. When a vehicle passes
through a range within a distance s from a major intersection
and subsequently passes through a range within a distance
s from a different major intersection, we store information
about these pairs of major intersections, the order of passage,
and the timestamp.

This process is repeated for all vehicle trajectories, and for
major intersection pairs where the number of vehicle pas-

sages exceeds τ2, links are defined based on the direction
of passage. For all vehicles used in defining the links, we
calculate the average speed of the respective link by divid-
ing the total distance between the dots for the given major
intersection pair by the total travel time as defined by Edie
[9].

2.2 Evaluation for Traffic State Prediction with Deep
Learning Approach

In this study, we utilize the proposed network representa-
tion to perform traffic state prediction using a deep learning
approach and assess its accuracy. Graph Convolutional Net-
work (GCN),which iswell-suited for learning fromdatawith
graph structures, and Long-Short Term Memory (LSTM),
which is effective for capturing time-evolving patterns. We
evaluate the accuracy of traffic state prediction using this
methodology.

GCN is a method that handles the spatial correlation of
inputs by convolving only the features of neighboring nodes
for each node. By repeating this convolution operation, the
features of nodes as far apart as the number of iterations
are convolved. This convolution operation is defined as an
approximation of the graph Fourier transformusing the graph
Laplacian. The outputH(l) of the l +1th layer is represented
as follows:

H(l+1) = σ
(
D̃− 1

2 ÃD̃− 1
2H(l)W(l)

)
, (6)

whereH(l) is the output of the lth layer, Ã = A+ I is a self-
connected adjacency matrix, D̃ = D + I is a self-connected
degree matrix, A is the adjacency matrix, D is the degree
matrix, W(l) is the weight matrix of the lth layer, and σ is
the activation function.

LSTM is a type of recurrent neural network that can cap-
ture long-term dependencies and is well-suited for sequential
data. It consists of input, forget, and output gates, as well as
a memory cell. The equations for LSTM are as follows:

f t = σ
(
Wf [xt , ht−1] + b f

)
(7)

i t = σ
(
Wi[xt , ht−1] + bi

)
(8)

gt = tanh
(
Wg[xt , ht−1] + bg

)
(9)

ct = f t � ct−1 + i t � gt (10)

ot = σ
(
Wo[xt , ht−1] + bo

)
(11)

ht = ot � tanh
(
ct

)
, (12)

where the input at the t − 1th step is ht−1, the weight matrix
is W∗, the bias is b∗, and the adamantine product is �,
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Fig. 1 The architecture of GCN-LSTM.We obtain the prediction result
after P time steps based on inputs from time step 1 to T

f t , i t , gt , ct , ot are output of the gates and the concatenation
of matrices is [·, ·].

In this study, the output goes through the GCN layer twice
at each time step, followed by two LSTM layers, and finally a
fully connected layer to obtain the prediction result (Fig. 1).
This model is based on the Temporal Graph Convolutional

Network (T-GCN) [10], which replaces the Gated Recurrent
Unit (GRU) in T-GCNwith LSTM. A dropout layer is added
before the fully connected layer to mitigate overfitting.

3 Empirical Validation

3.1 Target and Dataset

We conducted empirical validation using actual observation
data in Kobe area of Japan (mesh code 523502). The traffic
observation data used in this study consisted of Electronic
Toll Collection System (ETC) 2.0 data, which is vehicle tra-
jectory data collected by theMinistry of Land, Infrastructure,
Transport and Tourism of Japan, and detector data from the
HanshinExpresswayCompany. In addition,we compared the
characteristics of the network data constructed in this vali-
dation with those of commonly used network data by using
OSM data.

The ETC 2.0 data consisted of dot data observed from
00:00, November 1, 2020, to 23:59, November 30, 2020. The
detector data focused on one upstream and one downstream
detector between interchanges on the Hanshin Expressway.
In cases where multiple lanes had detectors, the leftmost lane
was selected for analysis. The OSM data within the target
area was obtained using the Overpass API. We extracted the
road segments that were accessible to automobiles and used
them as our target network. The traffic state data were aggre-
gated at 15-minute intervals. For the aggregation, the speed
was calculated using the harmonic mean with traffic vol-
ume as weights, while traffic volume and occupancy were
averaged. After the aggregation, we performed linear inter-
polation in the temporal direction for each detector and road

Fig. 2 Original OSM Data
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Fig. 3 Trajectory Data-Driven
Network Data (τ1 = 50)

link. For missing values at the edges, we replaced them with
the nearest non-missing value at the edge. In this validation,
the prediction target is the occupancy of each detector.

3.2 Parameters

We will explain the parameters used for validation. The
parameter τ1 for extracting major nodes was set at 50, 100,
200, and 500 (veh/day) in a stepwise manner, and the net-
work generation results and traffic state prediction results
were compared for each value. The parameter τ2 for link
definition was fixed at 50 (veh/day). The distance s used
for determining the passage of trajectories near intersections
was set to 30 (m). The variance σ 2 of each normal distri-

bution within the mixture normal distribution was fixed at
15. The parameters P = 4 and T = 10 mean that the fore-
cast was made on a 4-step time scale based on the last 10
steps of observed data. The training period was from 00:00
on November 1, 2020, to 23:59 on November 23, 2020, and
the validation period was from 00:00 on November 24, 2020,
to 23:59 on November 30, 2020.

3.3 Result of Network representation

Weshow the results of the trajectory data-driven network data
generated for each value of τ1 compared with the original
OSM data. Figures 2, 3, 4, 5, and 6 show the visualization
of OSM network data and the trajectory data-driven network

Fig. 4 Trajectory Data-Driven
Network Data (τ1 = 100)
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Fig. 5 Trajectory Data-Driven
Network Data (τ1 = 200)

Fig. 6 Trajectory Data-Driven
Network Data (τ1 = 500)

Table 1 Number of Nodes and Links for Each Result

τ1 nodes edges

50 1975 6949

100 1693 6874

200 999 3033

500 692 4566

data. Table 1 shows the number of nodes and links for each
dataset.

The results demonstrate the ability to adjust the resolution
of the network appropriately by tuning the threshold value,

Table 2 Accuracy of occupancy prediction

τ1 50 100 200 500

MAE 2.003 2.167 2.231 2.016

RMSE 3.503 3.662 3.712 3.420

MAPE 20.598 22.184 21.690 22.101

τ1. In comparison to the originalOSMdata, significant reduc-
tions in the number of links and nodes have been achieved.
By carefully selecting τ1 during the major node extrac-
tion process, the network can be simplified while retaining
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Fig. 7 Occupancy Prediction Results (τ1 = 50)

the essential connectivity and structural characteristics. This
reduction in links and nodes provides computational ben-
efits, as it reduces the complexity and computational cost
associated with network-based calculations. The trajectory
data-driven network representation offers amore streamlined
and efficient network representation compared to the origi-
nal OSM data, without sacrificing the essential information
required for transportation analysis.

3.4 Result of Traffic State Prediction

We present the results of traffic state prediction using the
trajectory data-driven network generated in this validation.
Table 2 shows the accuracy of the occupancy projections.
Mean Absolute Error (MAE) is the average of the absolute

Fig. 8 Occupancy Prediction Results (τ1 = 100)

Fig. 9 Occupancy Prediction Results (τ1 = 200)

differences between predictions and observed values,making
it a measure of the average magnitude of the model’s errors
that is not highly sensitive to outliers. Root Mean Squared
Error (RMSE) is the square root of the average of squared
differences between predictions and observed values, penal-
izing large errors, thus making it sensitive to outliers.
Absolute Percentage Error (MAPE) calculates the average
of the absolute percentage differences between predictions
and actual observations, offering a scale-independent mea-
sure of relative error. Comparing these results, it is evident
that adjusting the value of τ1 to coarsen the network resolu-
tion does not lead to significant changes in accuracy for both
MAE,MAPE, and RMSE. This underscores the notion that a
higher resolution network representation does not necessarily
result in a substantial improvement in prediction accuracy. It

Fig. 10 Occupancy Prediction Results (τ1 = 500)
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Fig. 11 Occupancy Prediction Results (Detector on 1st lane between Nishisenba JCT and Tosabori IC)

Fig. 12 Occupancy Prediction Results (Detector on 4th lane between Nishisenba JCT and Tosabori IC)
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Fig. 13 Occupancy Prediction Results (Detector on 2nd lane between Tosabori IC and Nakanoshima JCT)

suggests the importance of adopting a flexible network repre-
sentation tailored to the specific context and objectives rather
than uniformly pursuing higher resolutions.

Figures 7, 8, 9, and 10 show the prediction accuracy of
occupancy for τ1=50,100,200,500. Figures 11, 12, and 13
show the observed and predicted occupancy for each detec-
tor for one day on November 24, 2020, when τ1=50, 100,
200, and 500. These results show that the proposed method
is promising in terms of accuracy aswell as significant reduc-
tion in computational speed in traffic condition prediction.

4 Discussion and Conclusion

In this study, we proposed a methodology for generating net-
work data from trajectory data and demonstrated its utility
for traffic state prediction. By leveraging trajectory data and
directional statistics, we were able to extract major intersec-
tions and define linkswithout relying on pre-existing network
data. This approach has several advantages over traditional
methods that heavily depend on given network data andmap-
matching processes.

One of the key contributions of this study is the abil-
ity to generate network data with a resolution suitable for
specific analysis purposes based on actual observation data.

By adjusting the threshold values, we were able to control
the level of aggregation in the network representation. This
flexibility allows researchers and practitioners to tailor the
network resolution to the specific needs of their analysis,
whether it is national-level network design or identifying
local bottlenecks. The ability to adjust the resolution also
reduces the computational burden associated with network-
based calculations.

Furthermore, the trajectory data-driven network represen-
tation demonstrated promising results in traffic state predic-
tion using deep learning. This representation eliminates the
requirement for additional map-matching processes, simpli-
fying the data processing pipeline. The empirical validation
results showcased themethod’s potential in terms of accuracy
and significant reduction in computational speed for traffic
condition prediction.
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