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Abstract
Road bank angle is a significant lateral disturbance that causes degradation in the performance of automatic steering control 
systems and vehicle stability control systems. Many vehicles active safety control systems require real time knowledge of the 
vehicle side slip angle, such as rollover prevention and yaw stability control. Both road bank angle and side slip angle are too 
expensive to measure in current vehicle systems. In this paper, a state and disturbance observer is designed to estimate the 
road bank angle disturbance along with the vehicle lateral state (side slip angle and yaw rate) using Extended Kalman filter. 
The observer combines the dynamical vehicle single track model in terms of side slip angle and yaw rate with two sensor 
measurements, lateral acceleration and yaw rate, taking into account the influence of road bank angle on lateral acceleration 
measurement. The performance and accuracy of the presented method is validated by experimental results.

Keywords  Extended Kalman filter · Lateral disturbance · Road bank angle · Side slip angle

1  Introduction

Vehicle automation and active safety systems have gained 
increased research interest in the last two decades. Many 
advances in advanced driver assistant systems (ADAS) and 
active safety systems have been developed and introduced 
by the automotive industry, such as lane departure warning, 
lane keeping assist, yaw stability control, adaptive cruise 
control, evasive steering assist, and much more. In real world 
applications, environmental variables and disturbances, 
such as, tire-road friction coefficient, road-bank angle, road 
slope, and wind deteriorate the performance of these control 
systems by causing inconsistent behavior and instability in 
some cases. The performance of these control systems can 
be improved significantly if they can be made “environment 
adaptive”. This can be achieved by real-time estimation of 
these environmental variables.

This paper focuses on real time estimation of road bank 
angle and side slip angle. Road bank angle can significantly 
deteriorate the behavior of automatic steering control sys-
tems, such as lane keeping assist, lane centering, and evasive 

steering assist, as well as vehicle stability control systems. 
Providing real-time information about road bank angle helps 
such control systems to maintain a consistent and stable 
behavior.

Side slip angle feedback is very important for yaw stabil-
ity control systems to control it from becoming too large, 
especially on low-friction road surfaces to prevent the vehi-
cle from skidding and spinning. Many yaw stability control 
systems depend on the yaw rate feedback only for enhanc-
ing vehicle stability. In this case, the control system ensures 
that the vehicle yaw rate does not exceed a desired value. 
However, on low surface friction roads, the yaw rate by itself 
is not sufficient to stabilize the vehicle, and it is also neces-
sary to add the side slip angle as feedback and control it to 
prevent it from becoming too large. A two large slip angle 
reduces the tire ability to generate lateral forces and signifi-
cantly degrades the Behavior of the control system and can 
cause instability. Knowledge of side slip angle is also neces-
sary for active roll stability control systems that prevent the 
vehicle from rolling over.

Global Positioning System (GPS) combined with iner-
tial measurement unit methods for estimating road bank 
angle and side slip angle are widely used, as in [1–5]. The 
limitation of GPS-based methods in general is that they 
are unreliable in urban driving environments where tall 
buildings and urban canyons can prevent access to GPS 
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satellite signals and that leads to faulty estimates, that 
could cause instability in control systems that are using 
these estimates. Another disadvantage of the GPS-inertial 
measurement unit based methods is that the inertial sensors 
often have to be of very high quality in order to obtain a 
reasonable drift-free estimates. High quality inertial meas-
urement units are extremely expensive to be used in current 
road vehicles. In [6], lateral disturbance estimator for side 
wind force and road bank angle is developed using the 
linear Kalman Filter (KF). The two degrees of freedom 
linear bicycle vehicle model is used. This model is linear 
assuming the longitudinal speed of the vehicle is constant, 
but in reality, it is constantly changing in highway driving, 
which requires tuning KF separately for each speed in the 
speed range (usually 0-130kph) and then construct look 
up tables for Kalman gains based on speed, which is a 
time-consuming process. In our method, we are also using 
the same model, but we are assuming that the longitudi-
nal speed is varying and we treat it as a third state, which 
makes the model no longer linear. We linearize the model 
using Taylor series expansion and then we use extended 
Kalman filter (EKF) instead of Kalman filter. This avoids 
the time-consuming tuning process of the Kalman gains 
for different speeds, and eliminates the need for look up 
tables. Also, in [6], the measurement model consists of 
the self-aligning torque estimate with the yaw rate meas-
urement. An accurate estimate of self-aligning torque 
requires estimating lateral forces, normal forces, tire slip 
angle, mechanical trail, and pneumatic trail first. Also, self-
aligning torque estimation is tire parameters dependent, 
which means that if we change the tire type in the vehicle, 
we have to change the parameters in the estimator, which 
is impractical. In our approach, we are fusing the lateral 
acceleration measurement with the yaw rate measurement. 
Both measurements can be easily obtained from onboard 
vehicle inexpensive sensors. In [7, 8], the recursive least 
squares (RLS) method is used to estimate the road bank 
angle with other variables. The disadvantage of RLS is 
its reliance on a persistent excitation input signal, if the 
input signals to the estimator are not dynamically persistent 
enough, the estimate will diverge. In [9], a plant-inverse 
based technique to estimate and compensate for the lateral 
disturbances is developed. This method treats the lateral 
disturbance as indeterministic, which means that the dis-
turbance can be coming from any source, it does not dis-
tinguish what the disturbance is, which means there is no 
explicit estimate of road bank, which makes this method 
less versatile than methods that treat the disturbance as 
deterministic. In [10], A constrained dual Kalman filter 
based on pdf truncation for estimation of vehicle param-
eters and road bank angle is developed. In [11], yaw rate 
and roll rate are fused to estimate the bank angle and road 
grade. In [12], a proportional–integral H∞ filter based on 

the game theory approach is developed for bank angle esti-
mation. In [13], a multiple Model filter with two modes 
is introduced for estimating the vehicle yaw-rate, lateral 
velocity, road bank angle and crosswind force. In [14], the 
average lumped LuGre tire model is used to estimate the 
road bank angle. In [15], the road bank angle is computed 
from the IMU using three axles acceleration measurements 
lateral acceleration, longitudinal acceleration, and vertical 
acceleration. The road bank is computed directly from a 
kinematic relationship that combines these three measure-
ments. In [16], vehicle roll angle is estimated taking the 
road bank angle effect in consideration. The bank angle is 
treated as a general unknown input disturbance term that 
is rejected by the roll bank angle observer, but not explic-
itly estimated. Deep Nueral Networks (DNN) for side slip 
angle estimation were investigated in [17–19]. DNN based 
methods may raise computational complexity problems. In 
[20], a Factor-Graph-Based approach to estimate vehicle 
sideslip angle is used.

This paper develops an approach to estimate road-bank 
angle and side slip angle in real time by combining lateral 
acceleration and yaw rate measurements from IMU with 
the dynamical single track model. The single track model is 
considered linear based on the assumption that the longitu-
dinal speed is constant. In our method, we assume that the 
longitudinal speed is varying, not constant, which makes 
the model no longer linear because its equations are divided 
by longitudinal speed. The speed is considered as a third 
state that is updated at every time step. We linearize the 
model using Taylor series expansion and we use EKF for 
the estimation. This way, we avoid the time consuming tun-
ing process to come up with look up tables based on speed 
that has to be done if we assume the longitudinal speed is 
constant and use the linear Kalman filter. The developed 
estimation algorithm was validated by experimental results 
on a test vehicle. It was verified that the algorithm provides 
reliable road bank angle and slip angle estimation that can 
be be potentially used in vehicle stability controllers.

The paper is organized as follows, the vehicle model is 
explained in Section 2, followed by the observer design in 
Section 3, and then experimental results in Section 4.

2 � Vehicle Model

The single track model for lateral vehicle is considered for the 
observer design. In this model, the left and right front tires are 
represented in one single front tire and similarly the left and 
right rear tires are represented by one central rear tire. The 
model has two degrees of freedom, vehicle sideslip angle � , 
which is defined as the angle between the longitudinal axis 
of the vehicle and the orientation of the vehicle longitudi-
nal velocity vector v at the center of gravity (CG), and the 
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vehicle yaw rate 𝜓̇ , which is defined as the rate of change 
of the vehicle yaw angle. The vehicle yaw angle � is meas-
ured with respect to the global X axis. The longitudinal speed 
is assumed to be constant in the single track model, which 
makes the model linear The model is illustrated in Fig. 1, 
taken from [21].

The lateral dynamics of the vehicle can be well repre-
sented using the side slip angle and the yaw rate of the vehicle, 
described by the differential equations below [21, 22]

where, 

where lf , lr are the distances from CG to front and rear tires, 
respectively and Iz is the vehicle moment of inertia about the 
Z axis. Cf ,Cr are the cornering stiffnesses at the front and 
rear tires, respectively. m is the mass of the vehicle.

The state space representation of the model is given by,

where [𝛽 𝜓̇]� is the state vector and � is the control input.
Considering the influence of road bank force, (1) becomes,

where, Fb = mg sin(�) is the road bank force, and � is the 
road bank angle as illustrated in Fig. 2, taken from the web, 
where FN = mg is the normal force.
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The vehicle yaw dynamics are not influenced by the road 
bank force, hence (2) stays the same even in the presence of 
road bank force.

The resulting state space representation of the model with 
road bank angle consideration is given by,

The model is discretized for the EKF implementation using 
euler discretization method as,

where �
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]� is the state vector after 
discretization.
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Fig. 1   Single track model

Fig. 2   Illustration of road bank angle effect
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3 � Observer Design

In this section, we are going to design an observer to 
estimate the lateral vehicle state, body side slip angle and 
yaw rate, and the disturbance caused by road bank forces 
using EKF. Since we are not assuming that the longitu-
dinal speed v is constant, this makes the model no longer 
linear and has to be linearized.

The model is linearized using the first order Taylor series 
expansion as given below,

The resulting process jacobian matrix is given below,
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Two sensor measurements are used in the observer 
design, lateral acceleration and yaw rate.

The measured lateral acceleration with influence from 
road bank force is given by,

The lateral acceleration is related to the single track 
model states as,

Substituting (4) in (9), and then (9) in (8) yields,

The resulting linearized measurement model is given 
below,

The road bank force is estimated from the observer and 
then we obtain the road bank angle � by,
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After discretizing and linearizing the model, it is now 
possible to implement EKF algorithm to estimate the side 
slip angle and yaw rate using the standard EKF equations.
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diagonal elements in the matrix represent the variance of the 
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installed in the vehicle to be used for the algorithm valida-
tion, but was not used in the algorithm itself. The values 
of the parameters of the test vehicle that was used in the 
experiment are listed in Table 1 below.

The state vector was initialized to zero,

The error covariance matrix �k is usually initialized to 
the identity matrix,

The � and � matricies were calibrated as,

As can be seen from the process covariance matrix above, 
the variance term that corresponds to the road bank angle 
was chosen to be a very large value qFb2 = 100000  because 
of the high uncertainty in the road bank angle, while the 
covariance terms that correspond to the vehicle states were 
chosen to small values becaue they have more certainty.

The road bank angle is validated by driving on roads 
with previously known bank angles, and in both curved and 
straight roads. For example, in Fig. 4, there are two sections 
of curved roads with bank angles, the first one is 13degrees 
and the second one is 19 degrees, and there is a straight sec-
tion in between with very little bank angle. In this scenario, 
we started recording right before we entered the first bank, 
until we exited the second bank. As can be seen in Fig. 4(a), 
the estimator worked reasonably well in estimating the two 
large banks, and the little bank in the straight section, with 
smooth transitioning between the three different sections. 
Figure 4(b) shows the vehicle speed during the maneuver. 
The side slip angle and the yaw rate were validated with 
measurements from the GPS/INS system, as can be seen 
in Fig. 4(c), which shows the side slip angle estimate, and 
Fig. 4(d), which shows the yaw rate estimate.

Figure 5 demonstrates driving on a test track with 6 
lanes road with different known banks. The bank starts 
in lane 6 with 38 degrees and then decreases gradually as 
we transition from lane 6 to lane 1. Figures 5(a), (b), (c), 
(d), (e), (f) show the bank angle estimation results on a 38 
degrees, 18 degrees, 8 degrees, 2.5 degrees, 1.5 degrees, 
1 degrees. It is worth mentioning that the speeds chosen 
reflect the speed limit for each lane but not necessarily the 
vehicle speed. We drove on all 6 lanes and took separate 
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Fig. 3   Flowchart of the implemented observer

Table 1   Vehicle parameters Parameter Value

m 2000 kg
I
z

5152 Kgm^2
l
f

1.354 m
l
r

1.745 m
C
f

143,000 N/rad
C
r

206,000 N/rad

� =

[
r𝜓̇

2 0

0 raymeas
2

]
 is the measurement covariance, which 

is a design diagonal matrix, calibrated by the designer to 
obtain the desired performance of the filter, where the diago-
nal elements in the matrix represent the variance of the cor-
responding measurements.

�k is the error covariance matrix, which is typically set to the 
identity matrix. In this case, since we have a 4th order system, it 
is set to the the identity 4 × 4 matrix. �k is the process Jacobian 

matrix as computed above. �k =

[
0 1 0 0

a11
a12

vk

a12𝜓̇

vk
2

1

m

]
 is the meas-

urement Jacobian matrix, and uk = � is the control input. The only 
difference between linear KF and EKF is that in the EKF case the 
process Jacobian �k and the measurement Jacobian �k are 
updated at every time step, while they are constant in the KF case.

Figure 3. demonstrates the flowchart of the implemented 
observer.

4 � Experimental Results

The algorithm was validated on a test vehicle equipped with 
dSPACE AutoBox, and other sensors such as IMU steer-
ing angle sensor, and wheel speed sensor. The GPS/INS is 
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Fig. 4   a Estimated road bank 
angle. b Vehicle longitudinal 
speed during the maneuver. c 
Estimated side slip angle com-
pared with the side slip angle 
from GPS/INS measurement d 
Estimated yaw rate compared 
with the yaw rate from GPS/
INS measurement
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recording on each lane. As can be seen from the recorded 
data in Fig. 4, our road bank angle estimate started with 
about 38 degrees and decreased as expected as we transi-
tioned to the lanes with less bank.

5 � Conclusion and Future Work

This paper developed a real-time observer for estimation 
of road bank angle and side slip angle using inexpensive 
on board vehicle sensors. The algorithm utilizes a combi-
nation of yaw rate and lateral acceleration measurements 
from IMU and a vehicle model that describes the vehicle 
lateral motion in terms of side slip angle and yaw rate. The 
developed algorithm was evaluated through experimental 
tests on a prototype vehicle on a test track with previously 
known bank angles. The results of the side slip angle and 
yaw rate angle were compared with the estimate from a GPS/

INS system installed in the vehicle. The experimental results 
show that the algorithm provides estimates with reasonable 
accuracy for the vehicle side slip angel and road bank angle 
in various manauvers.

The limitation of this approach is that it does not work 
at very low speeds below 10 mps because at such speeds, 
there isn’t enough lateral forces to generate slip. To over-
come this limitation, we are currently working on combin-
ing this model with a kinematic model. We switch to the 
Kinematic model only at the speed threshold mentioned 
above because kinematic models works only at very low 
speeds.
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Fig. 5   Driving on a 6 lanes road. a Lane 6, 38 degrees. b Lane 5, 18 
degrees. c Lane 4, 8 degrees. d Lane 3, 2.5 degrees. e Lane 2, 1.5 
degrees. f Lane 1, 1 degrees. The titles of all graphs indicate the lane 

number and the speed limit as indicated by the test track and not nec-
essarily the speed of the test vehicle during the maneuver
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