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Abstract
This study aims to evaluate the performance of an extended floating car data (xFCD)-based traffic state estimation method 
proposed by Seo et al. (2015), which does not rely on any strong assumptions such as Fundamental Diagram, using high-
resolution complete trajectory data, viz. Zen Traffic Data (ZTD). Traffic state estimated by this method, considering randomly 
sampled trajectories of ZTD as those of probe vehicles with known penetration rates, are compared with ones obtained by 
complete ZTD by applying Edie’s generalized definitions. The variation in estimation errors and covering percentages are 
analyzed for varying settings: spatiotemporal resolution and probe penetration rates.

Keywords  Traffic states estimation · Vehicle trajectory data · Big data and naturalistic datasets · Probe penetration rate · 
Statistical and theoretical analysis · Spatiotemporal resolution

1  Introduction

Traffic engineering studies differ from other studies in that 
they require extensive data from the field, which cannot be 
accurately generated in a laboratory. They pertain to the 
analysis of the traffic behavior to design facilities for safe, 
smooth, and economical traffic operations. Density, flow, 
and average speed (or simply speed, also known as velocity) 
are the three fundamental parameters of traffic flow. They 
provide information regarding the nature of traffic on a link 
at a macroscopic level and aid analysts in detecting any vari-
ation in the flow characteristics, which in turn aids in traffic 
operations and planning. However, obtaining these param-
eters simultaneously is difficult.

The flow (q), also known as the flow rate or volume by 
practitioners, is the number of vehicles that pass a given 
point per unit time. The density (k) is the number of vehicles 
per unit space at a given instance of time. The average speed 
(v) is the mean of the instantaneous speeds of the vehicles. 

Edie [1] proposed a generalized definition of traffic states in 
a time-space region A, defined as follows:

where,
d(A) : total distance traveled by all the vehicles in region 

A(vehm),
t(A) : total time all the vehicles spent in region A(vehs),
|A| : time-space area of region A(ms).
This definition can be applied to either a single lane or 

multiple lanes in a link. The process of the inference of 
traffic state variables or road segments with high spati-
otemporal resolution using partially observed traffic data 
is referred to as Traffic State Estimation (TSE), which 
depends on the estimation approach, traffic flow model, 
and input data [2]. The estimation approach can be model-
driven, data-driven or streaming-data-driven based on the 
input data and the assumptions made by the method on 
traffic dynamics. The physics-based mathematical models 
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d(A)
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t(A)
,

 *	 Garima Dahiya 
	 g.dahiya@plan.cv.titech.ac.jp

	 Yasuo Asakura 
	 asakura@plan.cv.titech.ac.jp

1	 Department of Civil and Environmental Engineering, 
Tokyo Institute of Technology, 2‑12‑1‑M1‑20, O‑okayama, 
Meguro, Tokyo 152‑8552, Japan

/ Published online: 16 July 2021

International Journal of Intelligent Transportation Systems Research (2021) 19:572–586

http://orcid.org/0000-0001-5116-0598
http://crossmark.crossref.org/dialog/?doi=10.1007/s13177-021-00263-4&domain=pdf


of traffic flow, utilized by the model-driven estimation 
approach, describe the physical and theoretical aspects of 
traffic dynamics. TSE methods based on models devel-
oped using empirical observations are considered to have 
‘strong’ assumptions because these methods rely on an 
explicit a priori knowledge of traffic dynamics and can 
be vulnerable under uncertain phenomena. Although they 
have high explanatory power and can be integrated with 
traffic control operations directly, a poor physical model 
or poor calibration of the model may lead to poor TSE. 
Moreover, they are not always consistent with the detailed 
disaggregated mobile datasets that are recently garnering 
significant attention owing to recent advancements in 
information & communication technology. Solving bound-
ary value problems (BVPs) can be regarded as model-
driven TSE, where the boundary conditions and models 
are assumed to be correct. Several methods have been 
developed to combine mobile data with stationary data 
using first- or second-order models and filtering techniques 
such as Kalman filtering techniques (KFTs) for TSE.

This requires either an improvement of these theoretical 
models or the utilization of data-driven or streaming-data-
driven estimation approaches [2]. Now, even though the 
data-driven approaches do not rely on physical traffic flow 
models, they rely extensively on historical data to find 
dependence using statistical methods or machine learning 
(ML). Although ML is capable of efficiently predicting non-
linear phenomena often found in the transportation field, 
the computation costs for training and learning can be high. 
Moreover, the methods can be considered black boxes, and 
it is difficult to obtain deductive insights. Additionally, they 
may fail if irregular events or long-term trends occur. Impu-
tation methods have been developed to complement missing 
data and techniques such as kernel regression (KR), fuzzy 
c-means (FCM), k-nearest neighbors (kNN) etc., and have 
been used to incorporate more spatial-temporal information. 
Traffic flow models and the use of (statistical) dependency 
on historical data are considered ‘strong’ assumptions.

The streaming-data-driven approaches rely on streaming 
data and use ‘weaker’ assumptions such as conservation law 
(CL). They require less a priori knowledge and no historical 
data. They can be robust against uncertain phenomena and 
unpredictable incidents. The moving observer method and 
its variants have been used for TSE with only a random sam-
pling assumption. In a few studies, extended floating car data 
(x-FCD) were used with and without the conservation law. 
In general, it is preferable for practical applications if accu-
rate TSE is achievable based on ‘weaker’ assumptions [2].

The objective of this study is to analyze the performance 
of an xFCD-based traffic state estimation method [3] using 
high-resolution complete trajectory data: Zen Traffic Data 
(ZTD). The estimation method is discussed in Section 1.1. 
Section 2 describes the data and methodology employed 

in the estimation of traffic states using ZTD. Section 3 
describes the empirical analysis.

1.1 � Research Objectives and the Estimation Method 
(Seo et al., 2015)

The estimation of high-resolution traffic states is mainly ben-
eficial for traffic control to mitigate congestion. Over the past 
decade, researchers have contributed to the methodologies 
for estimating traffic state, i.e., the density, flow, and veloc-
ity, from traffic data without any exogenous assumptions on 
traffic flow characteristics, such as Fundamental Diagram 
(FD), which renders the estimation methods robust against 
unpredictable or uncertain traffic phenomena. Seo et al. [3] 
proposed a streaming-data-driven estimation method for 
obtaining volume-related variables in predetermined time-
space regions, which employed probe vehicles that could 
measure their positions and the distances to their leading 
vehicle (space headway between the probe vehicle and its 
leading vehicle in the same lane). The estimators for the 
flow, density and velocity, are formulated (using Edie’s defi-
nitions in (1) – (3)) as follows:

where in 
∑

n∈N(A)�an(A)� , an(A) represents the time-space 
region between vehicle n and its leading vehicle in a spa-
tiotemporal cell, A, of a meshed spatiotemporal region, R, 
and,

N(A): the set of all vehicles in the cell A,
dn(A) : total distance traveled by vehicle n in cell A,
tn(A) : total time spent by vehicle n in cell A.
When estimating traffic states using probe vehicles, N(A) 

is replaced by P(A), which depicts the set of all probe vehi-
cles in region A, as illustrated in Fig. 1. Furthermore, the 
spatiotemporal area between a probe vehicle and its leading 
vehicle was computed by using approximations based on the 
spacing measured by the probe vehicle. This method was 
previously verified by comparing traffic states estimated by 
the method, using the data obtained from the employed 20 
probes equipped with mono-eye cameras and GPS loggers 
that drove multiple laps, and those observed by detectors at 
certain settings that involved two probe vehicle penetration 
rates and two spatiotemporal resolutions. The TSE method 
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under consideration relies on ‘weaker’ assumptions of ‘error 
free assumption’ (measurements by probes have no error and 
the driving route is identified without error) and ‘random 
sampling assumption’ (probes are randomly distributed in 
traffic with unknown penetration rates during estimation and 
the driving behavior of probes and non-probes are similar). 
However, the study stated that the data acquired from the 
probe vehicle that was used contained biases (i.e., the ran-
dom sampling assumption was not satisfied) such as differ-
ences between the driving behavior of probes and differences 
between the spacing measurements. It suggests that without 
such biases, the estimation accuracy may be improved. The 
spacing measurement method involved the identification of 
leading vehicles in the images (captured by probes), from 
which their apparent sizes were measured. The spacing was 
calculated based on the apparent size, assumed actual size, 
angle of view of the camera, etc. The actual body length was 
assumed to be the same as that of the probe vehicles (5 m). 
Other variables were manually measured using the images. 
If the assumed or measured variables contained errors, the 
estimated spacing contained errors, which in turn affected 
the calculation of an(A) . Although the assumed variables 
were based on common knowledge of statistics and regula-
tions and detector data, the amount of the errors could not 
be determined because there is no ground truth data for the 
vehicle size during the experiment.

The objective of this study is to analyze the validity of 
the discussed probe vehicle-based traffic states estimation 
method using the high-resolution Zen Traffic Data (hereaf-
ter, ZTD) for different settings: spatial resolution (hereafter, 
�x ), temporal resolution (hereafter, �t ), and probe vehicle 
penetration rate (hereafter, p% ). The ZTD contains com-
prehensive trajectory details of 100% vehicles, which aids 
in identifying the leading vehicle to each vehicle in every 
lane. The spatiotemporal resolution considered in this analy-
sis was not coarse; therefore, for the sake of analyzing the 
accuracy of the method, exact spatiotemporal coordinates 
of a vehicle and its leading vehicle were used to calculate a 
nearly accurate value of the spatiotemporal area between a 

vehicle and its leading vehicle ( an(A) ) without any approxi-
mation. With the advancement in data acquisition technolo-
gies and the advent of connected vehicles in the near future, 
it is expected that probe vehicles with advanced driver assis-
tance system (ADAS), potentially capable of recording the 
exact spatiotemporal coordinates of the leading vehicle too, 
will be used to obtain data similar to ZTD. The proposed 
method relied on assumptions that may not always be satis-
fied in the real world, namely the error free and random sam-
pling assumptions. In this study, p% vehicles are randomly 
selected from 100% vehicles driving on a lane for a fixed 
distance and time, instead of employing probe drivers, to 
evaluate the estimation capability of the TSE method. This 
satisfied the random sampling assumption of the estimation 
method, where the possibility of bias in the driving charac-
teristics of the selected probes to the rest is absent.

2 � Data and Methodology

Stationary data (or Eulerian data) and mobile data are two 
major categories of empirical traffic data available presently 
based on the measurement methodology [2]. Fixed sensors, 
such as inductive loop detectors, ultrasonic detectors, and 
closed circuit television cameras, can be considered as con-
ventional that collect stationary data. Their accuracy and 
precision may not be reliable, for instance, because of fre-
quent misses and/or double counting by loop detectors. The 
problem of missing data arises mainly because of the sparse 
sensor installation owing to the impracticality of installing 
detectors everywhere and the generally high operational 
costs of roadside sensors. Therefore, the limitation to them 
is that the amount of data they provide is not always suf-
ficient for traffic control. Owing to recent advancements in 
information and communication technologies (ICTs), mobile 
sensors, such as on-vehicle GPS devices, call detail records 
(CDRs), and second generation on-board diagnostics sys-
tems (OBD-II), are relatively new. As a result of emerg-
ing connected and automated vehicles, these sensors are 

Fig. 1   Illustration of formulation of considered streaming-data-driven TSE method
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increasingly used as sources of data. Vehicles with such 
sensors, often referred to as probe vehicles or floating cars, 
are a cost-effective way to collect data. The penetration rate 
and temporal sampling rate are two important characteris-
tics of the probe vehicle data. Probe vehicles are capable of 
collecting mobile data from a wider spatiotemporal domain 
as compared to stationary sensors [4, 5]. The new type of 
mobile data, collected by probes that are equipped with 
advanced on-vehicle sensors, consists of more than just the 
positioning and speed of the vehicle trajectory; thus, it has 
been named extended floating car data (xFCD) [6]. However, 
the probe vehicle data may contain biases based on sampling 
and differences in the driving behavior of the probes. For 
instance, if the probe vehicles belong to a logistic fleet, they 
may travel at slower than average speeds. In addition, vehi-
cles with recent advanced driving technologies (e.g., ADAS 
and connected vehicles), which may be used as probe vehi-
cles, may exhibit different driving characteristics compared 
to completely manually operated vehicles and progressively 
change driving and traffic patterns.

Seo et al. [3] proposed a streaming-data-driven estimation 
method using only mobile data: xFCD, where each probe 
vehicle could measure the spacing between it and its leading 
vehicle (cf., Section 1.1). With continuous advancements 
in autonomous technologies and the massive emergence of 
connected vehicles, this approach may become prevalent 
in the near future, provided it can estimate nearly accurate 
traffic state. However, currently, only a few percentages of 
probes are expected on the highways of Japan, where the 
maximum size of the spatiotemporal cell can be 200 m 
x 300 s. Additionally, ramp metering and signal control 
require spatiotemporally detailed information for the target 
road sections. This study aims to analyze the performance of 
the estimation method discussed earlier at different settings, 
viz. probe penetration rate, spatial resolution, and tempo-
ral resolution. In other words, how much accuracy can be 

expected under finer spatiotemporal resolution and fewer 
probe penetration rates.

For doing so, complete and high-tech data with a high 
temporal sampling rate of 0.1 s, developed using image sens-
ing technology, have been utilized, namely the Zen Traffic 
Data [7]. Consequently, the in-depth details of each vehicle 
in real complicated traffic phenomena, which has been chal-
lenging to comprehend so far, have been digitalized. It is a 
large-scale trajectory dataset developed by Hanshin Express-
way Co. Ltd. for Ikeda Route 11, around Tsukamoto Junc-
tion (5.0 − 3.0 kp), in the inbound direction, in Japan. The 
section is initially an ‘S’-shaped curve, which subsequently 
becomes a simple straight line, as shown in Fig. 2. It consists 
of two lanes, a merging section with a major on-ramp, two 
slightly curved sections, and a sag section.

It includes continuous trajectory information (and any 
other data affecting traffic events) of all the vehicles as 
described by parameters, viz. vehicle_id (vehicle ID), date-
time (time with 0.1 s precision), vehicle_type (normal or 
large vehicle), velocity, traffic_lane (driving, passing or 
entrance), kilopost (distance from the starting point of the 
expressway route), vehicle_length (estimated vehicle length 
obtained from image recognition), latitude, longitude, etc. 
for each vehicle. For analysis, the traffic data L001_F001, 
which contained the details of 3,375 vehicles with vehicle 
IDs ranging from 0 to 3,734 from 7:00 a.m. to 8:00 a.m. for 
a distance of 2 km (5 kilopost to 3 kilopost) is considered. 
The ZTD can be considered equivalent to data obtained from 
all vehicles equipped with advanced driving assistance sys-
tems (ADAS), which can be utilized as a source of data for 
volume-related information and to verify traffic state estima-
tion (TSE) methods.

The ZTD data is massive and can be considered appropri-
ate for traffic studies, including traffic state estimation [8]. 
It can provide meaning to the validation of physical mod-
els, which are not solely data driven, and data-driven and 

Fig. 2   Ikeda Route 11, around Tsukamoto entrance (5 − 3 kp). Source: https://​zen-​traff​ic-​data.​net/​engli​sh/​outli​ne/
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streaming-data-driven estimation models. The accuracy of 
the ZTD was evaluated by Seo et al. [9] concluding the recall 
rate and the precision rate to be 96.8 and 97.1%, respectively. 
It was observed that the detection performance was almost 
insensitive to traffic conditions, weather conditions, and the 
time of day [9]. The problems of data delay, data loss, inac-
curate data, and inconsistent data, which are usually present 
even in data obtained from recently developed conventional 
vehicle-to-everything (V2X) technologies, as stated by Sun 
et al. [10], are non-existent in ZTD to a great extent.

2.1 � Data Preparation

On the distance of 2 km (5 kilopost to 3 kilopost i.e., 5000 to 
3000 m) lane changing is prohibited for the distance between 
4200 and 3400 m, and a merging to the driving lane from 
outside the entrance lane occurs at 3.8 kilopost (Tsukamoto 
junction) as depicted in Fig. 3. The color bar in the figure 
aids in understanding the speed profiles of all the vehicles at 
all space-time locations for both, the driving and the passing 
lanes for 1 h (7:00 a.m. to 8:00 a.m.) on the said 2 km dis-
tance. In this lane change prohibited distance, two sections: 
4250 to 3850 m (400 m long section) and 3750 to 3450 m 
(300 m long section) are specifically considered for this anal-
ysis that have minimum lane-changing behavior and main-
tain the conservation of vehicles throughout each section. 

However, from 7:00 a.m. to 8:00 a.m., some lane changing 
behavior was still observed in both these sections: 106 out 
of 3405 vehicles (3.1%) changed lanes on the 300 m section 
and 389 out of 3391 vehicles (11.5%) changed lanes on the 
400 m section. The percentage of vehicles showing differ-
ences in driving behavior was not high; therefore, these were 
excluded from the analysis to assume homogenous driving 
behavior among drivers. Resultingly, the number of con-
sidered vehicles that drove on 300 m section (lane 1) (R1), 
300 m section (lane 2) (R2), 400 m section (lane 1) (R3) and 
400 m section (lane 2) (R4) for one hour (7:00 a.m. to 8:00 
a.m.) without changing lanes were 1400, 1735, 1182 and 
1715 respectively. Using voluminous ZTD, it was possible 
to identify the sequential order of vehicles driving in each 
lane of each section for one morning peak hour for 2 kms 
and which was maintained throughout the section. Hence, 
the leading vehicle to each vehicle was identified along with 
their trajectories in their respective time-space regions (Ri). 
This serves as an essential ingredient in estimating traffic 
states by the estimation method using ZTD.

Each time-space area is divided into meshes of varying 
spatiotemporal resolutions i.e., each time-space region (Ri) 
subject to the traffic state estimation is divided into multiple 
discrete, identical, and rectangular time-space regions that 
can be horizontal or vertical depending on the combination 
of spatial and temporal resolutions as per Fig. 4. Any rule 

Fig. 3   Time-space diagram per lane (Hanshin Expressway Route 11 Ikeda Line (Osaka Bound)).  Source: https://​zen-​traff​ic-​data.​net/​engli​sh/​outli​
ne/
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can be used to divide the time-space region of the traffic 
flow. The simplest rules are employed in this study, where 
the traffic flow is divided into Eulerian rectangles of identi-
cal sizes. These are familiar coordinates in current traffic 
flow data, where fixed-point detectors are installed at a cer-
tain time and space resolution or interval. The coordinates 
can be represented as follows:

where,
i , j : non-negative indices for time and space,
(t0, x0) : coordinates of the predetermined origin,
(ti, xj) : coordinates of the upper-left corner of region Aj

i
,

�t  :  p r e d e t e r m i n e d  t i m e  r e s o l u t i o n  i . e . , 
�t = {15s, 30s, 60s, 120s, 300s},

�x  :  p rede te r mined  space  re so lu t ion  i . e . , 
�x = {25m, 50m, 100m, 150m, 300m} for R1 and R2, and 
�x = {25m, 50m, 100m, 200m, 400m} for R3 and R4,

The value of x varies as 3450 ≤ x ≤ 3750 for R1 and 
R2 and 3850 ≤ x ≤ 4250 for R3 and R4, and t  varies as 
25, 200, 000ms ≤ t ≤ 28, 800, 000ms (7:00 a.m. to 8:00 
a.m.). Corresponding to each Ri, there are 25 combinations 
of �t and �x (25 meshes), where each cell of each mesh is 
identified by cell Aj

i
 (hereafter, A).

2.2 � Traffic States Estimation Using Zen Traffic Data

First, the traffic state, which at a macroscopic level is a set 
of the following variables: flow q , density k , and average 

(7)A
j

i
=
{
(t, x)|ti ≤ t ≤ ti+1, xj ≤ x ≤ xj+1

}
i ≥ 0, j ≥ 0 ,

(8)ti+1 = ti + �t,

(9)xj+1 = xj + �x,

speed v , is computed using Edie’s definitions for each cell 
(A) of each mesh (for every combination of �x and �t ) cor-
responding to every Ri. Under every setting, the trajectory 
information from the ZTD of all vehicles driving through 
a cell is used to compute q (veh/s), k (veh/m), and v (m/s). 
Assuming the ZTD as a source of ground truth, these values 
are used to make comparison with the traffic state computed 
using the estimation method. Using the described methodol-
ogy, Fig. 5 shows the traffic flow computed for �x = 25m and 
�t = 30s on R1 (for instance). For all time-space regions Ri, 
the traffic flow ranges from 0.3 to 0.5 veh/s (18–30 veh/min) 
in a majority of the meshed cells (A), and at a few positions 
and times on the sections the traffic flow is over 0.6 veh/s (36 
veh/min) (reaching values of flow at critical density), which 
mostly occurs on lane 2 and before 7:20 a.m.

Estimating the traffic state using the estimation method 
requires random sampling of p% vehicles (hereafter referred 
to as probe vehicles) from the total number of vehicles driv-
ing through each time-space region Ri. Each vehicle (with its 
trajectory data) is chosen entirely by chance by utilizing the 
pseudo-random decimal numbers (real numbers between 0 
and 1) generated by the RAND function in MS Excel and has 
an equal probability of being selected as an element of the 
random sample, in alignment to the probability theory and 
statistics. The selection isn’t based on any uniform pattern, 
such as the selection of a vehicle after every fixed number 
of vehicles or in every fixed unit of time. These p% selected 
vehicles are a part of the actual traffic and not deployed for 
analysis. For instance, Fig. 6 depicts the traffic trajectories 
of 5% randomly selected vehicles from 100% of vehicles 
driving in region R1 (1400).

For varying p% values, the traffic states are estimated 
using the Eqs. (5) – (7) (right) for each cell (A) of each 
mesh (for every combination of �x and �t ) corresponding 
to every Ri, through which at least one probe vehicles pass. 

Fig. 4   Time-space area divided 
into Eulerian rectangles
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The topmost rows in Fig. 7(a), (b) & (c) correspond to the 
traffic state, k (veh/m), q (veh/s), and v (m/s), respectively, 
estimated using Edie’s definitions and the ZTD of 100 % 

vehicles for R1 ( �x = 50m,�t = 60s ). The following rows 
in Fig. 7(a), (b) & (c) illustrate the traffic states, k (veh/m), 
q (veh/s) and v (m/s), respectively, estimated from the 

Fig. 5   Traffic flow in R1 from Edie’s definitions and the 100% ZTD ( �x = 25m,�t = 30s)

Fig. 6   Traffic trajectories of randomly selected 5% probe vehicles from 100 % vehicles on R1: Lane 1, 300 m Sec. (7:00–8:00 am) using ZTD

Fig. 7   (a) (left) Density (veh/m), (b) (middle) Flow (veh/s), (c) (right) Speed (m/s) estimated from Edie’s definitions (topmost rows) and estima-
tion method for R1 ( Δx = 50 m, Δt = 60 s, p% varying from 5% to 0.5% ) (bottom four rows in order)
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estimation method for p% = 5%, 3%, 1% and 0.5% , in 
this order for R1 ( �x = 50m,�t = 60s ). For computing 
the spatiotemporal area ( an(A) ) between a probe vehicle 
(n) and its leading vehicle in the same lane, identified 
using the ZTD, the exact spatiotemporal coordinates 
of their trajectories at a 0.1 s pitch are used. For doing 
so, Gauss’s area formula, described by Meister [11] 
and by Carl Friedrich Gauss in 1795 was implemented 
in Python. It is also known as the Surveyor’s formula 
[12] and is considered as a special case of Green’s 
theorem (first presented by Cauchy [13]). Let the set of 
spatiotemporal coordinates of vehicle n and its leading 
vehicle enclosed within the time-space region of cell A, 
which form a polygon in the clockwise or anticlockwise 
direction in the spatiotemporal plane, be represented as 
{
(
t1, x1

)
,
(
t2, x2

)
,… ,

(
tN , xN

)
} . The area an(A) is derived 

as follows:

Alternatively,

For any cell through which no probe vehicle passes, the 
values of the allocated traffic state equal zero, as illustrated 
in Fig. 8. This is a type of missing data that is differ-
ent from missing data caused by randomness, attrition, or 

(10)an(A) =
1

2

||||||

N−1∑

i=1

tixi+1 + tNx1 −

N−1∑

i=1

ti+1xi + t1xN

||||||
.

(11)an(A) =
1

2

||||||

N∑

i=1

ti(xi+1 − xi−1)

||||||
=

1

2

||||||

N∑

i=1

xi(ti+1 − ti−1)

||||||
,

(12)an(A) =
1

2

||||||

N∑

i=1

(tixi+1 − ti+1xi)

||||||
,

(13)

an(A) =
1

2

||||||

N∑

i=1

(ti+1 + ti)(xi+1 − xi)

||||||
=

1

2

||||||

N∑

i=1

det

(
ti ti+1
xi xi+1

)||||||

unobserved original data; rather, it is an intentional miss-
ing as part of extracting only p% data for this analysis.

3 � Empirical Analysis

A fixed combination of �x , �t and p% is referred to as a 
setting. The total number of such settings equals 100 (ref. 
Section 3.1). The traffic states obtained under each setting, 
for each cell A of all spatiotemporal regions Ri, using the 
estimation method are compared with traffic state obtained 
using ZTD of all the vehicles driving through cell A on a 
one-to-one basis. To yield the least biased comparison for 
cells through which no probe passed, the analysis strategy 
used is a direct approach: Deletion Method (Listwise Dele-
tion). It is a complete-case analysis, where only the cells 
with observed probes are considered from both datasets. 
The p% probe vehicles are selected randomly; therefore, the 
cells with no probes do not occur in any systematic order, 
which could lead to a bias. Its advantages are simplicity and 
comparability across analyses. The reasons for not consid-
ering value-allocating methods for assigning values to the 
cells through which no probe drives (such as the mean impu-
tation method, using information from related cells, or a 
hybrid of both methods) are discussed. The objective of this 
analysis is to study the accuracy of the estimation method 
for different p% values. For this method to be applicable in 
actual scenario, it is important to check the accuracy by not 
deliberately adding any biases. When p% is very less then 
technique-filled cells, for higher spatiotemporal resolutions, 
will be much larger than the cells with method-estimated 
data. This would not reflect true errors during comparison. 
When we fill the empty cells with values from other settings, 
it will give an amalgamation of values and it will not reflect 
the true variation in error over spatiotemporal resolutions 
and p%.

To visualize the performance of the estimation method, 
flow-density (q-k) diagrams were plotted for all combina-
tions of spatiotemporal resolutions and probe vehicle pen-
etration rates combined for all four regions Ri. A few of them 

Fig. 8   Observed cells: via 
which at least 1 probe vehicle 
passes
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are illustrated in Fig. 9. The q-k plots suggest that the estima-
tion method is able to capture the robust behavior of actual 
traffic dynamics when the traffic is in the free flow regime. 
However, for densities beyond the density around critical 
density the performance of the estimation method appears 
degraded. Although there exists a cloud of incorrect estima-
tions beyond the critical density, it coexists with the correct 
estimations to some extent. This implies that existence of a 
density greater than the critical density in a spatiotemporal 
cell A is not the sole reason for the diversion of predictions 

made by the estimation method from actual traffic states in 
that cell A. For an extensive evaluation, statistical analysis 
was conducted as discussed in the following section.

3.1 � Statistical Error Analysis

To analyze the numeric differences in the traffic states esti-
mated by the probe vehicle-based estimation method ( Ei) 
and those obtained from the ZTD of 100% vehicles ( Oi ) 
driving in a spatiotemporal cell A of region Ri, the percent 

Fig. 9   q-k plot for traffic state estimated from Edie’s definitions using the ZTD of 100% vehicles (Blue) and from the estimation method (Red) 
for a few different settings 
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error is calculated for each considered cell A under all 100 
settings as per (14). Furthermore, the mean absolute percent-
age errors (MAPEs) and root mean square errors (RMSEs) 
are also calculated (n: number of cells considered) as per 
(15) and (16).

Additionally, the number of probes driving through each 
spatiotemporal cell was recorded for all combinations of 
considered spatial resolution, temporal resolution, and probe 
vehicle penetration rate. Intuitively, as the spatial resolution 
and/or temporal resolution becomes more coarser, or the 
probe vehicle penetration rate increases, the average num-
ber of probes in each cell is expected to increase. However, 
to determine the precise numerical value, Table 1 details 
the average number of probes observed in the cells through 
which at least one probe vehicle passed under a few of the 
different settings, averaged over all four regions (Ri). Under 
the considered settings, the higher values of the average 
number of probes observed in the cells ranges from 6.22 
to 6.75 for �t = 300s and p% = 5% . The value of �x is not 
influencing the averages as such. The second reason that can 
be considered for the deviation of estimated traffic states 
from the actual ones is the average number of probe vehicles 
in the spatiotemporal area under consideration. Figure 10 (a) 
illustrates that with an increase in average number of probe 
vehicles in a spatiotemporal area results in a drastic decrease 
in the MAPE in the estimated density and flow. When the 
average number of probes is 1 in a cell A, the MAPE in the 
estimated density and flow is as high as around 140%. At 
the same time number of probes in a cell is not influenc-
ing the errors in the estimated speed very much. Similarly, 
Fig. 10 (b), (c) and (d) show the depletion in RMSE in esti-
mated k, q, and v with an increase in the average number of 
probe vehicles in the spatiotemporal area. When the average 
number of probes is as high as around 6 or 7, the MAPE in 
estimated k, q and v are as low as around 20% for k and q 
and less than 10% for v. Also, the RMSE in k, q and v will 
be around 0.01 veh/m, 0.09 veh/s (5.4 veh/min) and 0.75 to 
1.25 m/s, when the average number of probe vehicles in a 
spatiotemporal region is around 6 or 7.

Primarily, high vehicular density and/or low availabil-
ity of probes driving through a spatiotemporal region leads 
to a substandard performance of the estimation method in 

(14)Percent error(�) =
||||
Ei − Oi

Oi

||||
.100%

(15)

Mean absolute percentage error =
100%

n

n∑

i=1
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(16)Root mean square error =
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replicating the actual behavior of traffic flow and estimating 
traffic state. When the probe penetration rate drops below 
3% and the temporal resolution becomes finer than 2 min, 
the average number of probe vehicles in the considered 
spatiotemporal regions falls below 2 and the MAPE in the 
estimated density and flow rises over 40%. The variation in 
MAPE under all the different settings can be more clearly 
visualized in Fig. 11. Under all settings, the MAPE for k, q, 
and v went as low as around 20%, 18%, and 4.5%, respec-
tively. The variation in �x did not significantly affect the 
average number of probe vehicles that drove through the 
considered spatiotemporal cells of fixed �t and p% and in 
turn did not affect much the variation in MAPE in k, q, and v. 
However, for a fixed �x and p% , �t exhibits a monotonically 
increasing non-linear relationship with the average number 
of probes observed driving through the cells of the spati-
otemporal mesh. This implies that as �t becomes coarser, 
the MAPE is expected to decrease. Likewise, to �t , a drop 
in p% leads to a decrease in the average number of probes; 
however, this drop is gradual for a �t and steep when �t is 
greater than 120s. This, by its nature, has a direct effect on 
the propagation of MAPE i.e., for a fixed �x and �t , a drop 
in p% results in an escalation in MAPE. A similar trend was 
observed with the variation in RMSE of the estimated traffic 
state being predominantly affected by �t and p% (Table 2). 
The method estimates v with much lower MAPE and RMSE, 
as compared to the k and q, irrespective of the observation 
settings and the average number of probe vehicles in the 
spatiotemporal cell. To analyze the effect of the employed 
random sampling method on the stability of estimation, 
the estimation method was evaluated for different series of 

randomly sampled probe vehicles from the complete ZTD 
at the same settings. It implied that the variation in MAPE 
in k, q, and v at different settings was similar, except for a 
very fine temporal resolution (say �t=15s) and a low probe 
percentage (such as 1%). Under such settings, the estimation 
performance was unstable but definitively poor. This insta-
bility in estimation using the TSE method can be lessened 
by considering relatively larger p% or setting the temporal 
resolution to be coarser than 15s. Overall, this justifies the 
reliability of the employed random sampling procedure for 
evaluating the estimation capability of the considered esti-
mation method.

The selection of the p% of probes is random; therefore, 
it is possible that a probe belongs to a logistic fleet, which 
may lead to a slower than average traveling speed. This 
will lead to a biased traffic state estimation in the time-
space cells via which such a probe vehicle passes. This 
bias, in general, can be ignored for this analysis when p% 
is not very small; however, when p% is very small such 
as 1 or 0.5%, the MAPE and RMSE, calculated between 
traffic states obtained from Edie’s generalized definitions 
and the estimation method, may be affected. In such a case, 
the differences between the individual sampled probe and 
others in a particular cell, that could be due to driver’s 
and/or vehicular condition, may lead to a lower accuracy. 
Additionally, certain vehicle_ids that were changing lanes 
in the ‘lane change prohibited’ area were excluded before-
hand from the ZTD, which could have led to a false recog-
nition of the leading vehicle to a probe vehicle. The accu-
racy of the estimation method in estimating traffic states 
positively correlates with the number of probe vehicles 

Fig. 10   Variation in (a) 
MAPE,(b) RMSE in Density 
(veh/m), (c) RMSE in Flow 
(veh/s), and (d) RMSE in 
Speed(m/s), with the variation 
in the average number of probes 
in A 
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in the time-space region. According to the available p% 
or the required accuracy, the practitioners can choose the 
desired spatiotemporal resolution settings. The accuracy 
depends on the settings: mainly, temporal resolution ( �t ), 
and probe penetration rate ( p% ), but indirectly. This analy-
sis provides an insight into various combinations of set-
tings, expected probe vehicles in spatiotemporal cells, and 
the corresponding expected accuracy. Another important 
factor to be considered when employing a set of settings 
in estimating traffic states is the covering percentage ( c% ), 
which is discussed in the following section.

3.2 � Covering Percentage

The covering percentage ( c% ) is the percentage of cells 
through which probe vehicles pass given a fixed setting 
over a region Ri. It is intuitive that the c% has a positive 
correlation with the probe vehicle penetration rate i.e., 
the number of probes and the size of the cell in Ri, which 
was corroborated by the inferences from the analysis. 
Unlike the accuracy of the estimation method on which 
�x has a low to negligible effect, �x has a positive cor-
relation with the c% . In fact, in terms of the difference in 

Fig. 11   Variation in MAPEs in Density (veh/m) (left), Flow (veh/s) (middle) and Velocity (or speed) (m/s) (right) over varying settings for R1, 
R2, R3 and R4 combined
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c% brought about by unit change in a setting, the factors 
that affect the c% in order of decreasing dominance are 
p% , �t , and �x . The variation in c% over different set-
tings for R1 (for instance) is shown in Fig. 12. However, 
to be able to retrieve the estimates of traffic states in 
complete spatiotemporal domain is always desirable i.e., 
to have a higher c% . The c% is positively related to the 
p% , implying that the c% increases as the average num-
ber of probe vehicles driving through the spatiotemporal 
cells in the mesh of the time-space region Ri increases. 
However, a higher covering percentage does not imply 
a high accuracy by an estimation method for obtaining 
traffic states. For instance, the traffic states of a very 
large spatiotemporal area estimated using trajectory data 
from a single probe may lead to a high covering percent-
age, but with lower accuracy. Hence, for a combination 
of finer �t (finer than 2 min) and a lower p% i.e., below 
3%, a compromise is made with both accuracy and the c%.

4 � Conclusions and Scope for Future 
Research

This study aimed to evaluate the performance of an xFCD-
based traffic state estimation method, unconfined by any 
exogenous assumptions such as FD, proposed by Seo et al. 
[3]. This was conducted at finer spatiotemporal resolutions 
and varying probe vehicle penetration rates using high reso-
lution complete trajectory data, viz. the Zen Traffic Data. 
The initial challenge in validating this estimation method 
lies in the identification of the leading vehicle to a probe 
vehicle. This was meticulously performed with the aid of 
the ZTD, which enabled the identification of the exact tra-
jectories of the leading and the probe vehicles. The detailed 
resolution of the ZTD played a critical role in evaluating 
the actual performance without any approximations based 
on the spacing measurements calculated using assumptions. 
The exact spatiotemporal coordinates of vehicles were uti-
lized in reckoning the spatiotemporal area between a probe 
vehicle and its leading vehicle. In spite that currently probe 

Table 2   RMSE obtained by 
comparing traffic state estimated 
using the estimation method and 
from the ZTD of 100% vehicles 
for a fewdifferent settings 

Spatiotem-
poral resolu-
tion

RMSE in Density (veh/m) RMSE in Flow (veh/s) RMSE in Speed (m/s)

Probe penetration rate (p%)

Δx Δt 5% 3% 1% 0.50% 5% 3% 1% 0.50% 5% 3% 1% 0.50%

25m 15s 0.114 0.123 0.124 0.152 1.119 1.232 1.323 1.657 1.672 1.720 1.608 1.326
30s 0.084 0.086 0.085 0.104 0.819 0.816 0.848 0.827 1.351 1.468 1.382 1.498
60s 0.052 0.049 0.040 0.044 0.459 0.434 0.446 0.387 1.350 1.409 1.437 1.521
120s 0.029 0.025 0.024 0.031 0.259 0.223 0.277 0.302 1.269 1.478 1.654 1.857
300s 0.009 0.013 0.022 0.023 0.087 0.153 0.249 0.233 1.224 1.351 1.772 2.272

100m 15s 0.096 0.104 0.104 0.130 1.029 1.020 0.913 1.322 1.555 1.573 1.245 1.262
30s 0.092 0.087 0.101 0.130 0.985 0.772 0.761 0.817 1.203 1.179 1.163 1.264
60s 0.037 0.042 0.038 0.035 0.392 0.475 0.513 0.326 1.095 1.079 1.158 1.208
120s 0.018 0.017 0.028 0.035 0.181 0.207 0.340 0.325 1.008 1.234 1.434 1.615
300s 0.010 0.013 0.025 0.023 0.098 0.148 0.302 0.234 1.080 1.176 1.589 2.074

Fig. 12   Variation in covering percentage in R1 over varying settings 
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vehicles (even with ADAS) are impotent in collecting data 
comparable to that of the ZTD yet inspecting the estima-
tion method using the ZTD elucidated the application of 
the estimation method at desired settings using probe vehi-
cles that are proficient at providing information regarding 
the spacing between it and its leading vehicle. The impor-
tance of this result lies in the utilization of detailed ZTD in 
estimating the traffic state using the discussed estimation 
method, while using other conventional datasets failed to 
provide the same degree of accuracy. The ZTD is more reli-
able than other conventional datasets in deducing inferences 
from the performance or accuracy evaluation of estimation 
methods. This is because reactive traffic controls such as 
ramp metering and signal control require spatiotemporally 
detailed information (e.g., on the speed, flow, and queue 
length) at target road sections [14]. A unique vehicle ID has 
been allocated to each vehicle that traveled on the express-
way, which is observed and maintained throughout a target 
section and target time duration. There is a continuity of data 
at 0.1 s time step with no loss. This complete information 
for 100% vehicles is impossible to be acquired with con-
ventional datasets such as loop detectors or probe vehicles, 
such as a GPS-equipped probe vehicle or moving observer 
methods. Moreover, the ZTD is more advantageous than the 
currently popular NGSIM dataset because the latter can only 
cover smaller segments of the highway and is limited in both 
spatial and temporal terms.

The q-k plots for the estimated traffic states along with the 
actual traffic states suggested that in the free-flow regime, 
the estimation method was able to reproduce the scatter, 
present in the q-k plots of the actual traffic states, in the 
estimated states without the assumption of stationarity. As 
the density increases further, the performance of the estima-
tion method deteriorates. The statistical analysis suggested 
that the MAPE and RMSE scores for the estimated density 
and flow are inversely related to the number of probes in a 
spatiotemporal region, which is predominantly affected by 
only the temporal resolution and the probe vehicle penetra-
tion rate. Specifically, the MAPE for q and k can be as high 
as 140% for the finest spatiotemporal resolution among the 
considered settings if the average number of probes in the 
cells of a spatiotemporal mesh is 1. Whereas, when the aver-
age number of probes in the cells of a spatiotemporal mesh 
is around 6 or 7 the MAPE values can be lower than 20% for 
k and q and around 10% for v. Concurrently, the RMSE in 
k, q, and v curtails to 0.01 veh/m, 0.09 veh/s (5.4 veh/min), 
and 0.75 to 1.25 m/s, respectively. When the probe penetra-
tion rate falls below 3% and the temporal resolution is finer 
than 2 min, the MAPE in estimated k and q rises over 40%. 
Nevertheless, under all the settings considered for this analy-
sis, the MAPE for k, q, and v went as low as around 20%, 
18%, and 4.5%, respectively. The method estimates v with 
much lower MAPE and RMSE values, irrespective of the 

observation settings, as compared to k and q. The accuracy 
of the estimates depends on two settings: temporal resolution 
( �t ), and probe penetration rate ( p% ), but indirectly. This 
analysis provides an insight into the various combinations 
of settings, expected probe vehicles in spatiotemporal cells, 
the corresponding covering percentage, and the expected 
accuracy. It is always desirable to be able to retrieve the esti-
mates of traffic states in a complete spatiotemporal domain 
i.e., to have a higher c% . However, for a combination of a 
finer �t i.e., finer than 2 min and a lower p% i.e., below 3%, 
a compromise is made with both accuracy and the c% . Addi-
tionally, the consideration of appropriate value of �x may 
be ignored in terms of accuracy yet �x has a positive cor-
relation with the c% . Thus, according to the available p% or 
the required accuracy and c% , practitioners could select the 
desired and appropriate spatiotemporal resolution settings. 
In actual, few percentage of GPS probes are expected in the 
actual highways of Japan (where the maximum cell size for 
traffic control is �x =200 m and �t =300 s), and the settings 
considered in this analysis aided in visualizing expected 
errors in the estimation results using this method at finer 
�x and �t and a lower p% . With few percentages of prove 
vehicles, the method can estimate traffic states at coarser 
resolutions with 100% coverage when the expressway is not 
in the congested state. This low resolution is sometimes use-
ful for planning purposes and for potential area-wide traffic 
management.

Scope for future research includes the furtherance of the 
estimation method, keeping in mind the scope of improve-
ment required for spatiotemporal regions with a higher 
vehicular density. Furthermore, at an age of near ubiquitous 
sensor (e.g., cell phone) penetration, and with the massive 
emergence of connected vehicles, the validation result sug-
gests that the approach might become prevalent in the near 
future for transportation planning purposes with a probe 
vehicle penetration rate of several percentages. Namely, 
for traffic management and control purposes, the proposed 
method may require a higher penetration rate; considering 
the possible widespread implementation of ADAS in the 
future, such a high penetration rate might be realized.
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