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Abstract
To increase the profit both of taxi drivers and operators, this paper proposes an approach that efficiently collects the features 
of a customized-shape dispatch area to build the multivariate time-series prediction models for forecasting taxi demands. 
We also considered population distribution obtained from IMSI (International Mobile Subscriber Identity) data as the spa-
tial correlations feature. The predictive models are built on some neural network algorithms and analyzed statistically. The 
experiments show that the predictions of the taxi demand in the next 30 minutes are successfully achieved. It is noteworthy 
that our approach outperforms the forecasting accuracy proved by a real-world error metric.

Keywords Taxi demand prediction · Taxi dispatch area · Neural networks

1 Introduction

Artificial intelligence technologies develop vigorously in 
recent years and they are powerful and suitable tools to fore-
cast trends on interested data. In ITS (Intelligent Transporta-
tion System) industry, related resources can be allocated, if 
the trends of the road traffic, like peak hours, traffic amount 
and periodicity, are identified. Taking the taxi business as an 
example, the operator of a taxi fleet can dispatch its drivers 
with an schedule regulated according to the identified trends. 
Therefore, the fleet can be maneuvered efficiently, where 
both drivers’ and passengers’ waiting time are reduced and 
the revenue are increased [1]. To achieve precise predictions, 
a taxi-demand forecast must be considered in many different 
features, from the short-term factors (such as accidents and 

activities) to the long-term factors (such as traffic in rush 
hour, weather information, etc.) [2].

The traffic forecast is a time-series data prediction prob-
lem, where the amount of taxi demand inside a region was 
forecast by using historical taxi demand data [3]. Traditional 
methods were mostly focused on linear models, and they 
performed well under normal conditions; however, their pre-
dictions were not good enough under some extreme condi-
tions. A recent paper [4] further considered the background 
data (such as locations, weather, and events), but they still 
could not capture the complex nonlinear spatial relation 
and the temporal sequential relation. Some researches [5, 
6] pointed out that the prediction of taxi demand was still a 
great challenge affected by multiple types of dependencies, 
such as the characteristics of locations. Inspired by previous 
works, we analyze the taxi demand in dispatch areas with 
different location characteristics:

1) Geographical area dependence:

The taxi demand is highly related to locations. For exam-
ple, in Fig. 1, the number of taxi demand in the area around 
MRT (Mass Rapid Transit) station is much higher than that 
in the hospital area.

2) Time period dependence:

In general, the road traffic of a certain place has a fixed 
pattern, where peaks occur at a certain timing periodically. 
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Fig. 1  Taxi demand patterns in 
various geographical positions
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Similarly, the time period dependence takes place in the taxi 
demand trend, as depicted in Fig. 1. Though the numbers of 
taxi demand vary around the clock, they show strong regular 
patterns for weekdays and weekends.

Because the functionality of the district dominates the 
people’s activities taking place on it, both factors will affect 
the results of prediction enormously.

Deep learning can not only learn automatically from vari-
ous data, but perform well in sequential prediction based on 
data with drastic changes. De Brébisson et al. adopted RNN 
(Recurrent Neural Network) for taxi destination prediction 
based on the GPS trajectory of the taxi, and the results 
showed the outstanding prediction performance of RNN 
than linear models [7]. Other special forms of RNN: LSTM 
(Long Short Term Memory networks) [8] and GRU (Gated 
Recurrent Unit) [9] were widely used. While containing 
more gating mechanisms to properly preserve the correla-
tion in the sequence and learning long-term dependencies, 
these two approaches have achieved great success in learning 
traffic patterns through capturing the sequential dependency 
for the taxi demand service forecasting.

Although CNN (Convolutional Neural Network) is com-
monly used for image processing tasks, it was adopted in 
some related researches [10, 11]. In our experiments, the 
training convergence of CNN is faster than RNN more than 
5 times, therefore we can utilize the CNN model to initially 
verify the impact of input features and improve the feature 
selection. Among those existing methods on traffic pre-
diction, while some researches considered spatial relation 
(e.g., using CNN) or temporal relation (e.g., using LSTM) 
alone, some researches [12] considered both characteristics 
and proposed the CNN with a long short-term memory net-
work, named “CNN-LSTM” herein for short. This architec-
ture uses CNN as a front-end layer for feature extraction on 
input data and passes the features information to LSTM for 
sequence learning and prediction.

While existed methods made some great progress in 
forecasting the taxi demand, they missed some important 
features to make the forecast better. This research will 
take them into account. First, a customized-shape dispatch 
area. In reality, the shape of a dispatch area is designed to 
cover the most population around a certain spot such as an 
MRT station, and a customized shape does a better job. For 
instance, taxi operators in Kaohsiung City, Taiwan, may 
build dispatch areas along the crowd gathering spots to 
match the rides efficiently. Because the crowd population 
is not distributed uniformly, the range of dispatch area may 
be defined as customized-shape, such as polygons, to cover 
the concerned area, where passengers’ demands for taxi ser-
vices can be satisfied in that area within a reasonable waiting 
time. By Chunghwa Telecom’s Taxi Dispatching System, 
the taxi companies can define their own dispatch areas by 
themselves. For instance, in the neighborhood of Formosa 

Boulevard of Kaohsiung, three areas are circled for taxi dis-
patch areas as depicted in Fig. 2, where Area 1 is a tourist 
attraction area of Pier-2 Center, Area 2 is for Liuhe Night 
Market, and Area 3 is Sanduo Shopping District.

Second, the locations of vehicles. Since the time, how 
long a passenger will wait for a taxi, is an important factor, 
the location of the taxi is highly related and is provided by 
the global positioning systems (GPS) in this paper. Third, 
the weather condition. While in bad weather, the population 
may consider a more convenient way to leave. Therefore, 
the weather condition could be an incentive factor. Last, 
the population information, based on cell phones in the 
demand area is also considered. The International Mobile 
Subscriber Identity (IMSI), a number to uniquely identify 
a user in the cellular network, is used in this paper. As the 
largest telecom company in Taiwan, Chunghwa Telecom has 
about 11 million mobile users, which stands for over 1/3 
of the population in Taiwan. Therefore, the collected IMSI 
data are representative of the population distribution in the 
Kaohsiung area. In this paper, we only consider the IMSI 
located outdoors related to the demand for taxis, and the 
IMSI data are partitioned by grid-cells, where the grid-cell 
size is designed as 500 m × 500 m and we partitioned the 
Kaohsiung into equal regions of 500 m × 500 m to follow 
with the geographical property.

The rest of the paper is organized as follows. In Section 2, 
we will introduce how to combine scattered GPS informa-
tion of passengers’ pick-up event, and weather information 
into the corresponding dispatch area data. In Section 3, we 
briefly explain how to build predictive models with mul-
tivariate and multi-step time series, and then forecast the 
taxi demand for the next 30 min. In this paper, the time-step 
of demand prediction is set as 30 minutes according to the 
experience of the taxi administrator. The reason we have dis-
cussed that 30 minutes is available for the response time of 
the taxi center and drivers. In Section 4, we show the experi-
mental setup and forecasting results with different regions 
and input features. Lastly, a summary is given in Section 5.

2  Data Preparation of Dispatch Areas

The trend of taxi demands in downtown Kaohsiung dur-
ing 2019 is proposed in this paper. The data is mainly 
obtained from Chunghwa Telecom and the Central Weather 
Bureau of Taiwan, where personal or client-related informa-
tion is excluded from the data. The taxi demand dataset is 
obtained from Chunghwa Telecom Taxi Dispatching Sys-
tem and comprises timestamps of passenger demand and 
actual GPS data of passengers’ pick-up points, where the 
dataset is real-world data generated by about 1,700 taxis. 
Information on the weather is included in the paper since 
weather conditions can affect the taxi demand. We obtain 
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the weather information of Kaohsiung from the open data 
website of the Central Weather Bureau, Taiwan. The weather 
conditions with an hourly sampling rate are provided on the 
website. The weather conditions include rain, temperature, 
clouds, and humidity. We select hourly rain and temperature. 
Besides, the outdoor IMSI volume in the dispatch area is 
also evaluated. According to our data, the higher the number 
of outdoor IMSI in the dispatch area, the higher is the taxi 
demand. The IMSI volume in this paper is obtained from the 
IMSI which is a signaling data of mobile collected at cell 
sites constructed by Chunghwa Telecom Company.

2.1  Forecasting the Taxi Demand in Dispatch Areas

The dataset contains both the GPS location and the times-
tamp for each taxi demand event. To analyze the trend of 
taxi demand by using time steps and dispatch areas, the taxi 
demand for each time step and dispatch area must be sum-
marized. Because a dispatch area is often a customized poly-
gon, we reconstruct a polygon dispatch area into a mosaic 
area comprising multiple smaller square grid regions. The 
approach is proposed as follows.

Step 1. Partition the city map to equal regions:

The map of Kaohsiung is divided into many equal regions 
based on the approach proposed in [13, 14]. The region size 
is set as 500 m × 500 m. This process allows us to paper 
various relative geographical positions.

Step 2. Map the data to partition regions:

The location of a taxi demand event is distributed to a 
partition region if the GPS information of the demand event 
is within the range of that partition region.

Step 3. Count the taxi demand at each time step:

To construct time-series data, half an hour is assumed as 
one time step, that is, 48 pieces of time-step data are col-
lected in a day.

Step 4. Group partition regions into the dispatch area:

Fig. 2  Example of dispatch areas in Kaohsiung based on Chunghwa Telecom Taxi Dispatching System
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Through steps 1–3, Kaohsiung is partitioned into multiple 
regions, and each partition region had its taxi demand in 
time steps. Fig. 3 displays the downtown area of Kaohsiung. 
The map containing three dispatch areas is partitioned into 
equal regions of 500 m × 500 m.

In this manner, we group the partition regions. 
According to the taxi dispatching system, the range of 
each dispatch area are predefined and each partition 
region is tagged and mapped to one dispatch area. When 
a region partly or fully overlaps with a dispatch area, the 
region belongs to the dispatch area. For each time step, 
the demands on all regions of the same dispatch area 
group are summarized.

2.2  Dispatch Area Selection

Because each dispatch area has its taxi demand pattern, we 
develop models according to various regional characteris-
tics to achieve accurate predictions. We select the following 
dispatch areas as targets to evaluate the model performance:

1) Night market
2) Mass rapid transport transfer station (MRT transfer sta-

tion)
3) Tourist attraction
4) Software park
5) Hospital area
6) Department store
7) Art centre

Among the dispatch areas, Liuhe Night Market is a 
tourist attraction and opens every day. Although night 
market culture is a special lifestyle in Taiwan, the opening 
days for different night markets vary from place to place. 
Unlike common restaurants or food courts, the peak time 
of the night market usually occurs at night. The crowds 
attracted to this lifestyle have generated a unique trend of 
taxi demand.

Fig. 3  Through steps 1–3, Kaohsiung is partitioned into multiple regions. Then we group the partition regions based on the predefined range of 
each dispatch area
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3  Taxi Demand Forecasting Model

3.1  Forecasting Model Building

In this section, we briefly explain the algorithm used in the 
paper, namely the long short-term memory (LSTM), gated 
recurrent unit (GRU), convolutional neural network (CNN) 
and CNN-LSTM algorithms.

3.1.1  LSTM

LSTM, which is a type of recurrent neural network, is com-
monly used for time-series prediction [8]. Because of the 
gating mechanism, the LSTM algorithm has achieved con-
siderable success in sequential prediction and is effective in 
learning traffic patterns [2, 6].

A typical LSTM structure is presented in Fig. 4. In the 
figure, σ is the sigmoid function, ht is the hidden state, Ct 
is the cell state at each time step t. The forget gate consid-
ers both the hidden state ht − 1 and input Xt depending on 
the information from the current cell state. The input gate 
decides what information is going to updated and stored in 
the cell state. The output gate refers to the cell state and then 
decides what should be sent to the output.

We refer to the concept of data modeling proposed by 
Uber laboratory [15] and extend for the multivariate and 
multi-step time series forecasting. Before the LSTM model 
can be used for time series forecasting, the problems must 
be re-framed as supervised learning problems, that is, time-
series data must be converted to supervised learning format. 
After the original data are converted to the time-series data 
of dispatch areas, we re-construct the supervised learning 
problem as predicting the demand in dispatch areas at the 
future time step (t+1) given the history features such as 

taxi demand data, weather conditions, etc, from the prior 
time step (t-n) to time step t, where the input time window 
length is n. We create the training input (X) from the prior 
time steps and output (Y) with different sliding window 
lengths, that is, the LSTM model predicts the data of the 
next time step according to a certain range of historical data, 
as depicted in Fig. 5. We explore the impacting of the input 
time window length on the model through the experimental 
section.

3.1.2  GRU 

The GRU algorithm, which was introduced by Cho et al. [9], 
can solve the vanishing gradient problem associated with a 
standard recurrent neural network. In [16], a clear distinc-
tion was drawn between the GRU and LSTM algorithms. 
The GRU algorithm can be considered as a variation of the 
LSTM algorithm because both are designed similarly and, 
in some cases, produce equally excellent results. We select 
the GRU algorithm to be another forecasting model in this 
paper. We design our GRU model for multivariate and multi-
step time series forecasting. The architecture of the model is 
illustrated in Fig. 5.

3.1.3  CNN

CNN was introduced in [17]. The authors of [11] mentioned 
that time-series data with multiple windows can be applied 
as the input of the convolutional hidden layer. CNN was used 
for time-series prediction of speech in [10]. Many types of 
CNN models can be used for specific purposes when solving 
the time-series prediction problem.

We design a 1-D CNN model for taxi demand forecasting 
and the model has a convolutional hidden layer that oper-
ates over a 1-D sequence. Moreover, it includes a pooling 

Fig. 4  A LSTM network 
structure
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layer that reduces the parameters and extracts the output of 
the convolutional layer to the primary elements. The con-
volutional and pooling layers are followed by a dense layer, 
which is also called the fully connected layer. This layer 
interprets the features extracted by the convolutional part of 
the model. A flatten layer is used between the convolutional 
layers and the dense layer to reduce the feature maps to a 
single 1-D vector. The CNN structure is displayed in Fig. 6.

3.1.4  CNN‑LSTM

The combination of the CNN and LSTM model can be used 
in time-series forecasting problems [12]. Liu, Lingbo, et al 
[18] propose a hybrid model that using CNN as a front-end 
layer for feature extraction of input data and followed with 
LSTM as the second layer to support sequence prediction. 
We extend the CNN-LSTM model for multivariate time-
series forecasting problems, where the input data are mul-
tiple features and time-steps. We use CNN as an "encoder" 
for feature extraction that transforming inputs into an inter-
nal matrix or vector representation. In addition, LSTM is 
adopted as a "decoder" for learning the relevant information 
in a sequence to predict particular outcomes in the future. 
The architecture of CNN and LSTM is similar to those illus-
trated in sections 3.1.1 and 3.1.3 separately.

Developing a deep network allows the hidden state at 
each level to operate at different time steps [19]. Figure 7 
illustrates the architecture of our CNN-LSTM model, this 
class of model that is both spatially and temporally deep that 

can be applied to more complicated time-series forecasting 
problems and optimize the time complexity due to the reduc-
tion of feature engineering. In our experiments, the model 
convergence of CNN-LSTM can faster than the recurrent 
neural network more than 2 times.

3.2  Each Time Step with Multiple Features

In this paper, we build the LSTM model for multivariate 
time series forecasting in each time step. Figure 8 displays 
the sequential patterns of each input feature in night market 
areas as an example. The effect of each feature on the pre-
diction results is discussed in the experimental section. The 
details of the information are as follows:

1) Taxi demand: the taxi demand over the last half hour
2) Day of the week: Day of the week represents which day 

of the week that time-step is and the range is from 1 to 
7.

3) Temperature: in Celsius
4) Hourly rain: in mm
5) Moving average of taxi demand:

Moving average is commonly used with the time-series 
data to smooth out short-term fluctuations and highlight 
longer-term trends or cycles. As mentioned in [6], we can 
add the moving average of the taxi demand as an input fea-
ture. In this paper, the moving average is the unweighted 

Fig. 5  Build a predictive model that inputted with multi-step historical data and each step has multiple inputs
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arithmetic mean of the values obtained in the first five-time 
steps.

6) IMSI volume:

The IMSI volume we use in this paper implies the number 
of population in outdoor, transformed from the International 
Mobile Subscriber Identity (IMSI) that collected at cell sites 
by Chunghwa Telecom Company. In the experimental sec-
tion, we discuss if the predicted results can be improved by 
using the IMSI volume as one training feature.

4  Experiments and Discussion

In this experimental section, the dataset in downtown Kaoh-
siung during 2019 is obtained from Chunghwa Telecom and 
the Central Weather Bureau of Taiwan. In the aforemen-
tioned section 3.1.1, time-series data must be converted to a 
supervised learning format. We re-construct the dataset into 
the input (X) and output (Y) with different sliding windows 
lengths, that is, the input (X) is a certain range of historical 
data and output (Y) is the data of next time step. There-
fore, the forecasting model predicted output (Y) according 

Fig. 6  A CNN layer architec-
ture. The dense layer is also 
called the fully connected layer

Fig. 7  The architecture of the 
CNN-LSTM model. The dense 
layer is also called the fully con-
nected layer
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to input (X). We use 80% of the supervised learning format 
data for training and keep the remaining 20% for validation. 
Moreover, we fit the models over 1000 training epochs and 
repeat 20 times, to randomize the network weights in the 
initialization. To prevent the problem of overfitting in the 
training progress, we also adopted the EarlyStopping func-
tion of Keras.

The predictive model can be trained using arbitrary 
sequence lengths. However, constrained by the model con-
vergence, we use every one-week data as a sequence and 
split it into time-steps with different lengths. For instance, 
if the time-step length is 10 min, the sequence length would 
be 24 × 7 × 6. If the time-step length is 30 min, the sequence 
length would be 24 × 7 × 2. For the 30 min case, the train-
ing input data shape is (13939, 336, n) in which 13939 is 
the total number of sequences in the training dataset, 336 
is the sequence length: 24 × 7 × 2, and n is the number of 
input features. Table 1 shows the range of the experimental 
parameters outlined.

To examine the performance of the predictive models, we 
adopt the widely used prediction error metrics: Symmetric 
Mean Absolute Percentage Error (sMAPE) [20]. The for-
mulation of the prediction error metric is given as follows:

Yk,t and Y^
k,t represent the real and the predicted values 

of the actual taxi demand for dispatch area k at time-step t, 
respectively. T is the length of training or testing data. We 
also include constant c in the denominator to avoid divi-
sion by zero where some dispatch areas the number of taxi 
demand might be zero at some time-steps.

4.1  Experimental Results

We systematically examine the performance of four predic-
tion algorithms in the aforementioned section with sMAPE 
as prediction error metrics. In addition, we evaluate the 
prediction performance of the multivariate inputs in differ-
ent models. For each experiment case, we train forecasting 
models 20 times in order to randomize the network weights 
in the initialization.

4.1.1  Performance Over Dispatch Area of the Kaohsiung

We select 7 dispatch areas with various geographical posi-
tions to illustrate the prediction error of different models 
and separate them into two groups, where one has the regu-
lar demand pattern and there are rare events frequently in 
another. Theoretically, the prediction model can learn the 
sequence correlation efficiently based on regular pattern 

(1)sMAPE
k
=

1

T

∑T

t=1

∣ Y
k,t − Y

̂

k,t
∣

Y
k,t + Y

̂

k,t
+ c

data. Therefore, we conduct the experiments separately of 
each group to demonstrate the prediction performance.

Before the experiment, we need to select the length of 
historical data for predictive models. We slightly evaluate 
the performance through the CNN-LSTM model for 5 selec-
tion: 6 hours, 12 hours, 24 hours, 36hours, and 48 hours. 
Fig. 9(a) and Fig. 9(b) show the sMAPE over different refer-
ence lengths of historical data. As we can see, the model has 
the minimum sMAPE when adopted 36 hours of historical 
data. Therefore, we set the length of the reference data as 36 
hours in the following experiments.

We conduct the experiments separately of each group 
to demonstrate the prediction performance. First, we select 
areas with regular patterns such as night market, depart-
ment store, MRT transfer station, and software park. Table 2 
(a) displays the prediction result of all models over four 
dispatch areas. The peak time of the night market usually 
occurs at night and the crowds in this lifestyle have gener-
ated a unique trend of taxi demand. At the weekend, the 
large volume of IMSI near the department store also suggest 
a large population, and the demand for taxis will gradually 
go up along with this phenomenon. For the MRT transfer 
station, demand events are concentrated during commuting 
peaks accompanied by variations in the local IMSI volume. 
The prediction result in the software park is slightly under-
performed. Although the demand pattern generally changes 
along with the commuting hours, due to crowd gathering 
in some tourist spots such as Kaohsiung 85 Building, there 
are some short-term fluctuations of taxi demand may affect 
the prediction results. The prediction result in the hospital 
areas is slightly worse than those in other areas, with the 
demand pattern that taxi demand is usually concentrated at 
the weekend.

Table 2(b) shows the results of another group with an 
unregular demand pattern. In our analysis, the trend of taxi 
demand in these areas is susceptible to festivals or occa-
sional activities, resulting in that the neural network algo-
rithm is more difficult to learn based on only the histori-
cal data. In dispatch areas such as the art centres and the 
tourist attractions, there are regular taxi demands from visi-
tors. However, the demand events in these areas prone to be 
affected by commuting peaks or holidays.

Compare to two groups of prediction results, CNN-
LSTM, LSTM and GRU can outperform the CNN model. 
These three forecasting models are close to each other but 
the result shows that CNN-LSTM still provides better pre-
diction. The average sMAPE in the areas with a regular pat-
tern is 23.23% and in another group is 36.81%, and it can 
be seen that CNN-LSTM is the best independent predictive 
model for taxi demand prediction.

CNN model underperforms in most areas because the 
CNN model considers spatial relation rather than the tempo-
ral sequential relation which makes it difficult to remember 
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Fig. 8  The sequential patterns of each feature in the night market, where a time step is 30 min
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the correlation in the sequence and learning long-term 
dependencies. However, the procedure of training time is 
faster 10 times than LSTM and 2 times than CNN-LSTM. 
By taking this advantage of faster prediction computation, 
we can determine previously the performance through dif-
ferent input features.

In the next experiment, we demonstrate the use of Analy-
sis of Variance (ANOVA) for analyzing the significance of 
performance over prediction sMAPE and prediction time of 
different forecasting models.

4.1.2  ANOVA and Post‑Hoc Test for Forecasting Models

In this paper, four forecasting models are built by using 
CNN, GRU, LSTM, and CNN-LSTM algorithms at differ-
ent dispatch areas. We build the predictive model of each 
algorithm 20 times to randomize the network weighting, 
therefore there are 20 sets of estimation values for each 
algorithm at one area.

To verify the statistically significant differences of prediction 
error and prediction time for the four models respectively shown 
in Tables 1 and 2, the one-way analysis of variance test [21] 
method is used, or ANOVA for short. The one-way ANOVA 
is a statistical test on two or more independent groups to see if 
the group means are significantly different from each other. A 
statistically significant result, when a probability (p-value) is 
less than a pre-specified threshold (significance level α), justi-
fies the rejection of the null hypothesis, but only if the a priori 
probability of the null hypothesis is not high.

Table 3 shows the means, standard derivations and the 
ANOVA tests of prediction error of the four forecasting models. 
The results of the ANOVA test for prediction error show that 
the prediction error of the four algorithms forecasting models 
is statistically significantly different at those areas based on the 
evidence that the p-value is lower than a chosen significance 
level α (α set as 0.05).

Prediction computation is crucial for a method to be 
used in a real-world setting like the large scale of models 
deployed to forecast in an instant. We compare four predic-
tive models and the mean and standard derivation of predic-
tion time generated from predictive models are shown in 
Table 4. We also perform the ANOVA tests for the predic-
tion time. The p-value of each dispatch area is also less than 
the significance level 0.05, as a result, the test verifies the 
prediction time of the four algorithms forecasting models is 
statistically significantly different.

When the result is significant from ANOVA, it illustrates 
that at least one group differs from the others. However, the 
omnibus test does not recognize the pattern of differences 
between the means. Therefore, the post-hoc test is executed 
and Tukey Honestly Significant Difference (HSD) [22] was 
chosen. We use the data groups of Night Market to illustrate 
as an example and other areas follow a similar trend. The 

boxplot of the sMAPE and the boxplot of the prediction 
time are shown independently as Fig. 10 and Fig. 11. We 
adopt the post-hoc test and the results of each comparison 
combination are shown in Table 5.

Table 5 indicates the significant differences of prediction 
error between CNN and other group. And according to the 
means of prediction error in Table 3, the recurrent network 
algorithms such as GRU, LSTM, and stacked model CNN-
LSTM significantly outperform the CNN at Night Market. 
Furthermore, the p-value between the recurrent networks 
algorithms reveal a non-significant difference.

For the aspect of the prediction time, Table 4 shows that 
the CNN model is almost 7 times faster than the LSTM 
model and 2 times faster than the stacked model. Accord-
ing to Table 6, the CNN model has a significant difference 
from other models at Night Market. Meanwhile, the stacked 
model CNN-LSTM reveals a significant difference in pre-
diction time and faster than other RNN models. Therefore, 
in the comprehensive consideration both of prediction error 
and time, the experiment shows that CNN-LSTM is more 
suitable for predicting taxi demand in the future.

4.1.3  Performance Over Specific Dispatch Areas

The comparison of prediction results over neural network 
algorithms is presented in the aforementioned experiment. In 
this experiment, we select the night market and the depart-
ment store and look further into these specific dispatch 
areas. The night market is unlike common food courts, the 
peak time of the night market usually occurs at night. In the 
department store, the IMSI volume is concentrated at the 
weekend. The higher the IMSI volume in the dispatch area, 
the higher is the taxi demand.

Figures 9 and 10 displays the comparison of one-day pre-
diction and one-week prediction of each model and illustrate 
that which forecasting models in different cases can provide 
a better prediction. The time-step length used here is 30 
min in both areas. Figures 12(a) and 13(a) are the compari-
sons of one-week prediction of each model with the actual 
demand in selected areas while Figs. 12(b) and 13(b) are the 
comparisons of one-day prediction. It can be seen that the 
CNN-LSTM model follows the trend in different areas that 
provides a better prediction overall.

4.1.4  Importance of the Input Feature

The features considered in this paper include the histori-
cal taxi demand, moving average of the taxi demand, day 
of the week, weather information, and volume of the local 
outdoor IMSI. The weather information includes tempera-
ture and hourly rain. We obtain official weather information 
for Kaohsiung from the Central Meteorological Bureau of 
Taiwan. The IMSI volume indicated the population outdoor 
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is obtained from the big data department of Chunghwa Tel-
ecom. To evaluate the prediction performance of the afore-
mentioned features, we conduct two experiments with the 
one-week data. To show the impacts of these features on 
forecasting performance, we conduct two experiments. Both 
experiments are based on the CNN-LSTM model since we 
have evaluated the forecasting performance in the aforemen-
tioned section which indicated that the CNN-LSTM model 
can achieve better prediction.

In experiment 1, we illustrate the importance of each 
impacting feature inputted with the model. We design 
six models in Table 7 to verify the performance that is 
inputted to. All the models are expected to output the taxi 
demand in the city at the next time step.

We conduct the experiments on all dispatch areas 
and select four specific areas to demonstrate the pre-
diction errors, as depicted in Fig. 14. Model 1 predicts 
the number of future demand based on the past period 
of historical data. Theoretically, the historical data 
of taxi demand is a valuable factor when forecasting 
future taxi demand. Based on our prediction results 

of all areas, taxi demand is truly the most valuable 
information in conducting the prediction. For model 
2, although there is no past taxi demand informa-
tion provided, the model tries to learn the mapping 
between the input feature to the real taxi demand at 
each time-step. It turns out that Model 2 is sometimes 
outperforming than other models, which indicates that 
the demand pattern varies with the day of the week. 
Model 3 and 4 are underperformed in the forecast-
ing. The climate of Kaohsiung is one factor behind 
this underperformance that rainfall is concentrated in 
summer and scarce in other seasons. Another prob-
lem is that climate information can be obtained only 
from the major local-based observatories, which are 
insufficient to represent the city. Prediction of the taxi 
demand is difficult for models based on weather history. 
For model 5, we use the moving average of taxi demand 
in each area as input. A moving average is commonly 

Table 1  Experimental parameters

Type Range

Map grid size 500 m × 500 m
Data of each sequence 36 hours
Time-step length 30 min
Batch size 128
Number of dispatch areas 7
Number of hidden layers 1-2
Number of hidden neurons 200
Number of convolution filters 200
Number of pooling layer 1

Fig. 9  The sMAPE results of dispatch areas over different lengths of reference data

Table 2  Average sMAPE of each model in different areas

CNN GRU LSTM CNN-LSTM

(a)
  Night market 21.41% 19.65% 19.48% 19.35%
  MRT station 22.68% 22.33% 22.03% 21.78%
  Department store 24.26% 24.67% 23.67% 22.77%
  Hospital area 27.49% 25.92% 26.09% 25.91%
  Software park 28.15% 28.05% 27.07% 26.35%
  All places 24.80% 24.12% 23.67% 23.23%

(b)
  Tourist attraction 41.29% 36.75% 36.07% 36.81%
  Art centre 43.64% 37.94% 37.42% 37.56%
  All places 41.29% 36.75% 36.07% 36.81%
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used with time-series data to highlight longer-term trends 
and smooth out short-term fluctuations. It is interesting 
to find out it can perform a prediction close to model 
1, which means that the moving average pattern has a 
relevant relationship to the demand pattern. Model 6 
considers the volume of IMSI, which is acquired using 
the distribution of mobile customers in Kaohsiung. In 

our analysis, the taxi demand pattern during commuting 
peaks or holidays is usually accompanied by variations in 
the local outdoor IMSI volume. However, the predictive 
results are worse in some areas due to the reason that the 

Table 3  ANOVA test for 
sMAPE of forecasting models

Area Mean/Std p-value

CNN GRU LSTM CNN-LSTM

Night market 0.214/0.0051 0.196/0.003 0.194/0.0017 0.193/0.0013 5.97e-17
MRT station 0.226/0.004 0.223/0.0011 0.22/0.0009 0.217/0.0024 0.000018
Department store 0.242/0.013 0.246/0.003 0.236/0.005 0.227/0.004 9.011e-09
Hospital area 0.274/0.015 0.259/0.001 0.26/0.001 0.259/0.003 0.000171
Software park 0.281/0.0105 0.28/0.002 0.27/0.004 0.263/0.0029 1.044e-07
Tourist attraction 0.459/0.034 0.391/0.003 0.387/0.002 0.383/0.004 0.000001
Art centre 0.412/0.036 0.367/0.004 0.36/0.003 0.368/0.01 4.865e-12

Table 4  ANOVA test for 
prediction time of forecasting 
models

Area Mean/Std p-value

CNN GRU LSTM CNN-LSTM

Night market 0.564/0.082 4.235/0.184 3.458/0.29 1.16/0.389 1.292e-28
MRT station 0.342/0.024 3.128/0.183 3.414/0.284 0.77/0.0484 1.759e-33
Department store 0.397/0.059 3.098/0.186 2.483/0.208 0.826/0.052 6.734e-33
Hospital area 0.525/0.0855 4.337/0.145 3.387/0.113 1.073/0.063 4.33e-43
Software park 0.561/0.083 4.321/0.171 3.329/0.106 1.181/0.366 7.811e-32
Tourist attraction 0.508/0.043 4.388/0.41 3.539/0.161 1.198/0.43 3.301e-32
Art centre 0.472/0.039 4.144/0.365 2.426/0.087 1.035/0.072 7.299e-27

Fig. 10  The sMAPE results of dispatch areas over different forecast-
ing models

Fig. 11  The prediction time of dispatch areas over different forecast-
ing models
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ISMI volume from the big data department of Chunghwa 
Telecom is not stable yet, makes the data in some periods 
may be incomplete.

In experiment 2, we set taxi demand as the default 
input feature, which is based on the prediction results in 
experiment 1, and combined with one selected impact-
ing feature as multivariate inputs. We also design five 
models and Table 8 shows the input to each model. As 

depicted in Fig. 15, the results indicated taxi demand 
combined with the feature "day of the week" as input 
features show an outstanding prediction performance in 
most areas, which implied that the trend of taxi demand 
is followed by cycle regularly. Meanwhile, taxi demand 
combined with temperature, moving average, and IMSI 
volume respectively, can improve the model forecast-
ing performance compared to the model fed with a 
single feature. In this paper, the current IMSI volume 
only indicated the population outdoor. We could extract 
more crowd information related to the taxi demand in 
the future and verify the prediction performance.

4.1.5  Performance Metrics in Practical Environment

Currently, we start to conduct the proof of concept (PoC) 
of our proposed method and builds the predictive mod-
els in the selected dispatch area. For the evaluation of 
PoC, we adopt the performance metric proposed in [23] 
by the NTT DOCOMO, Japan’s largest mobile service 
provider, where evaluates a demand forecasting service 
for each block or street. The predicted values are defined 
as a correct prediction if the error between the predicted 
and actual value is within 50 percent. The accuracy is 
defined as the number of correct predictions divided by 
the number of all forecasts. The best accuracy of our 
model achieves 92% at located MRT transfer station and 
the average accuracy in areas with the regular demand 
pattern is 89%.

To demonstrate the actual prediction results, we use 
the well-fitted CNN-LSTM model to forecast the taxi 
demand of the four selected dispatch areas. Figure 16 

Table 5  Post-hoc test for sMAPE of forecasting models at Night Mar-
ket area

Group 1 Group 2 p-value

CNN CNN-LSTM 0.001
CNN GRU 0.001
CNN LSTM 0.001
CNN-LSTM GRU 0.2469
CNN-LSTM LSTM 0.7904
GRU LSTM 0.7213

Table 6  Post-hoc test for prediction time of forecasting models at 
Night Market area

Group 1 Group 2 p-value

CNN CNN-LSTM 0.001
CNN GRU 0.001
CNN LSTM 0.001
CNN-LSTM GRU 0.001
CNN-LSTM LSTM 0.001
GRU LSTM 0.001

Fig. 12  Prediction results of models in the night market area a One-week prediction, b One-day prediction
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compares the trend of real with predicted taxi demands 
in one week over four dispatch areas. The results indicate 
the model can identify the demand patterns such as the 
periods during the commuting hours or the specific peak 
hours at night, although, the model is slightly underper-
formed for forecasting in certain large-variation periods.

Overall, the predictive model based on the area-based 
data can perform well for identifying the demand pat-
terns. One of the differences between our work and the 
previous works is that our model can consider multi-
variate feature in each time step and refer to multiple 
historical intervals to capture long term dependencies in 
a sequence. Another advantage of our model is that we 

consider different characteristics of dispatch areas with 
a local pattern such as taxi demand, IMSI volume. This 
approach gives a more realistic prediction as it takes into 
account the uncertainty while predicting.

For better prediction,, we can further improve our 
model by considering rare events such as public holidays 
and special activities. The demand pattern in rare events 
is not likely than general patterns and taxi demand in dis-
patch areas is ups and downs sharply based on different 
regional characteristics. Prediction of the taxi demand 
is difficult for a model based on only a certain range of 
historical data. Previous work proposed by Uber labora-
tory [15] investigates the importance of pre-treatment 
for special holidays, which is the concrete way for the 
improvement of predictive accuracy.

5  Conclusion and Future Work

This paper proposes a taxi-demand prediction approach 
based on deep-learning models, and the predictions on 
specific-areas in Kaohsiung, Taiwan is compared. The 
training data with a duration of 12 months include con-
cerned GPS trajectory of the taxi fleet, weather informa-
tion from Central Weather Bureau of Taiwan, and IMSI 
from Chunghwa Telecom. The training data are allocated 
to the corresponding dispatch areas with a partitioning 

Fig. 13  Prediction results of models in the department store area a One-week prediction, b One-day prediction

Table 7  Model with different input features (1)

Model inputs Model Output

Model 1 Taxi demand Next half-hour taxi demand
Model 2 Day of the week Next half-hour taxi demand
Model 3 Temperature Next half-hour taxi demand
Model 4 Hourly rain Next half-hour taxi demand
Model 5 Moving average of taxi 

demand
Next half-hour taxi demand

Model 6 IMSI volume Next half-hour taxi demand
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and grouping process. Because the characteristic of dis-
patch areas has an influence on the prediction, 7 specific 
dispatch-areas with various geographical positions are 
analyzed in our experiments.

In experiments, we build and evaluate four neural network 
algorithms to find the best predictive model over the dispatch 

area. The results show that CNN-LSTM is the most suitable 
forecasting algorithm when considering both performance and 
time comprehensively. Additionally, referring to the real-world 
performance metric on taxi demand forecasting by NTT DOC-
OMO, the proposed area-based prediction for taxi demand is 
functional. Among the concerned features, how to locate the 

Fig. 14  Prediction performance on different single input features
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passenger population is critical, and this paper utilizes out-
door IMSI. However, the IMSI data contains more informa-
tion related to personal behavior and movement; therefore, the 
IMSI will be further studied. Furthermore, rare events which 
may cause short-term fluctuations, such as peak traffic demand 
traffic jam severity, etc.

Table 8  Model with different input features (2)

Model inputs Model Output

Model 1 Taxi demand & Day of the 
week

Next half-hour taxi demand

Model 2 Taxi demand & Temperature Next half-hour taxi demand
Model 3 Taxi demand & Hourly rain Next half-hour taxi demand
Model 4 Taxi demand & Moving aver-

age of taxi demand
Next half-hour taxi demand

Model 5 Taxi demand & IMSI volume Next half-hour taxi demand

Fig. 15  Prediction performance on different input features
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