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Abstract
High computational cost and low tracking stability make it still a challenging task to acquire nonmotorized traffic parameters 
at intersections via vision-based method. In order to address the above issues, our study improves a cooperative tracking and 
classification method, and proposes a vision-based data collection system to monitor nonmotorized traffic at intersections. 
The system utilizes the combination of two tracking algorithms, Kernelized Correlation Filter and Kalman filter, to ensure 
the continuous tracking. Based on multivariate feature, K-means clustering and Support Vector Machine are implemented to 
classify nonmotorized traffic according to the motion and appearance feature respectively. As a result, the proposed system 
can acquire trajectories of pedestrians and cyclists and extract traffic parameters, including flow and velocity. Our method 
performs well in both efficiency and accuracy by fusing simple but effective algorithms and is robust in the complex scenario 
especially at large-scale intersections with limited training samples. The experimental results show that it can extract more 
trajectories with low computational lost. Moreover, the error of flow and velocity result is controlled within acceptable limits, 
which directly proves it feasible to collect field data in project applications.
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1 Introduction

Nonmotorized traffic plays an important role in the whole 
traffic system. More and more people choose to walk or bike 
to their destination, especially for a short distance travel or 
the connection to other traffic modes. Nonmotorized road 
users are more vulnerable to injuries than other due to their 
labile velocity and direction [1]. Some research has proved 
that higher nonmotorized traffic rates lead to safer road, 
but the pedestrian and bicycle fatalities increase, both in 
absolute numbers and the proportion of all traffic [2]. Fur-
thermore, intersections are among the most dangerous loca-
tions of a roadway network due to complex traffic conflicting 

movements. In order to ensure an efficient and safe opera-
tion at intersections, nonmotorized traffic parameters are 
indispensable.

Computer vision provides a good way to obtain traffic 
parameters from video. There are also some other meth-
ods, such as infrared detectors, pneumatic tube, radio beam, 
inductive loop, piezoelectric strip, radar, thermal imaging 
sensors, etc. Compared with them, vision-based method is 
easy to operate and the cost is low. It can obtain a variety of 
traffic data in higher dimensions. Therefore, this method has 
received widespread attention in recent years. FHWA and 
the NHTSA initiated Bicycle-Pedestrian Count Technology 
Pilot Project to collect more accurate data on pedestrian and 
bicyclist behavior in 2015 [3].

In general, a successful vision-based system needs mul-
tiple technologies naturally incorporated, one of which is 
target tracking. Tracking models are mainly divided into two 
types, generative models and discriminative models. Gen-
erative models use the target information in current frame 
to model and find the most model-conforming region as the 
target in the next frame. The representative generative mod-
els include Kalman Filter (KF) [4], mean shift [5], etc. Dis-
criminative models make full use of background information 
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to train a detector, which detects the target in each frame. 
The representative discriminative models include correla-
tion filter [6, 7], convolutional neural network (CNN) based 
models [8], etc. Another key technology is traffic objects 
classification. It is to determine the type of nonmotorized 
traffic. At present, deep learning has been used widely for 
vehicle classification [9, 10].

As the technology improved, some achievements have 
been made in the field of traffic data acquisition. Com-
pared with nonmotorized traffic, technology of obtaining 
vehicle data is more mature. Currently, vehicles on the 
road can be detected and tracked to monitor their behavior 
precisely [11, 12]. Compared with vehicle, nonmotorized 
traffic objects are small and morphologically transformed, 
which increases tracking difficulty and has limitations on 
applicable scenarios. Many researches were devoted on the 
detection and tracking technologies for pedestrian [13–15]. 
Zhao et al. investigated deep learning to track pedestrians at 
construction sites [16]. For the application in intersections, 
Li et al. used KF to track nonmotorized targets and chose 
backpropagation neural network to identify pedestrians and 
bicycles [17]. Zhu et al. used the Kernelized Correlation 
Filter (KCF) to track and simulate pedestrian movements at 
intersections [18]. Guo et al. analysed the pedestrian walk-
ing behaviour and walking mechanism represented by gait 
parameters acquired from video [19]. Shirazi used contex-
tual fusion of motion and appearance cues to more reliably 
track pedestrians during stop-and-go movements at intersec-
tions [20]. Although some progress has been made in the 
existing researches, there is still great potential in acquir-
ing nonmotorized traffic data at intersections through video 
processing.

• Currently, nonmotorized traffic tracking performs well in 
small-scale scenarios , such as intersection approach. For 
large-scale scenarios such as a large intersection, non-
motorized traffic targets are small and blurred, causing 
tracking easy to lose.

• Some processing algorithms need high computational 
cost, which is limited by the hardware and hard to get the 
real-time data. It is unfeasible to apply into the project.

• Many researches concentrate on the pedestrian detection 
and tracking algorithms. Various traffic parameters need 
to be acquired accurately and data reliability needs to 
be verified. Additionally, few studies have verified the 
reliability of velocity and cyclist should be paid more 
attention.

Therefore, this study presents an effort to address the 
aforementioned issues. A vision-based system is organ-
ized to automatically complete nonmotorized traffic param-
eters collection. To improve the tracking continuity of 
nonmotorized traffic at large intersections, generative and 

discriminative algorithms are integrated, where KCF is the 
major tracking algorithm and KF is cooperated to predict 
the possible position of missing target. Prediction with KF 
relies on the trajectory before tracking is lost. This system 
also benefits from a simple but effective classification meth-
ods. Specifically, K-means clustering and Support Vector 
Machine (SVM) can take advantage of motion and appear-
ance differences between pedestrians and cyclists to clas-
sify them. Ultimately, complete trajectories can be extracted 
within acceptable computational cost. More importantly, the 
extraction traffic parameters are based on trajectories, which 
ensures the accuracy and high-dimension of the data.

The remainder of this paper is organized as follows: The 
second part introduces the framework of our data collection 
system and the tracking and classification algorithms. The 
third part presents the experimental results and compares 
with other algorithms. The fourth part discusses the potential 
problems in the system and outlooks on future research. The 
last part concludes the paper.

2  Methodology

This section presents the framework of nonmotorized traffic 
data collection system and describes the improved tracking 
and classification methods.

2.1  Framework of Data Collection System

This system consists of several basic functional parts: target 
detection, target tracking, target classification and trajectory 
processing. Figure 1 presents the whole framework of the 
system. This subsection will introduce the preparation and 
detection stage and explain how to acquire traffic parameters 
from trajectories. Tracking and classification stage will be 
emphatically illustrated in the next subsections.

1) Preparation Stage

As the video pre-processing stage, preparation stage 
needs to provide the ideal state for video processing.

• Nonmotorized traffic waiting area is defined to account 
for regions where the nonmotorized traffic waits to pass 
at intersections. Drawing the waiting area can concen-
trate the processing area and prevent extra motor vehicle 
detection, which will significantly reduce the computa-
tional cost.

• Target detection is affected by shooting condition. Spe-
cifically, if the video is taken by a moving camera, slight 
jitter will produce many false positive detections. With 
the principle of affine transformation, slight jitter can be 
eliminated. Affine transformation used 2*3 matrix trans-
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formation to transform an image from two-dimensional 
coordinates to another. Therefore, three key points were 
found in the video starting frame, and the corresponding 
points would be found in each subsequent frame by key 
point tracking. Jitter will be removed based on the paral-
lelogram relationship constructed by the three points.

2) Detection Stage

Target detection aims to find out complete nonmotorized 
traffic target contours, so as to provide them for tracker in 
the follow-up process.

• Background subtraction was used to filter the foreground. 
This method uses a reference image as the background 
model and subtracts the pixel value of the current 
frame image from the corresponding point of the refer-
ence image, which can adapt to the videos from differ-

ent shooting angles and heights. Gauss Mixture Model 
worked to construct background model for accurately 
segmenting foreground target [21]. Once the nonmotor-
ized targets moved, they can be detected immediately.

• The detected foreground contains part of shadow, which 
causes some problems like adhesion. With the feature 
that shadow in Hue-Saturation-Value color space has 
lower value and almost no change in hue compared with 
the background, shadow can be well detected and elimi-
nated.

• Morphological methods like corrosion and expansion 
were implemented in final to obtain the complete counter.

Figure 2 shows the effect change in detection stage. The 
final effect in Fig. 2(c) meets the detection request, where 
traffic objects are emerged with complete counter.

3) Traffic Parameters Acquisition

Fig. 1  Framework of nonmotor-
ized traffic parameters collec-
tion system at intersections Input frame 

sequence

Drawing nonmotorized 

traffic waiting area
Jitter correction

Background subtraction
Shadow detection and 

elimination
Morphological processing

 Tracking with Kernelized 

Correlation Filter
Retracking with Kalman Filter

Classification with 

motion feature

Classification with 

appearance feature

Acquire traffic parameters

Camera is fixed

Target is lost
YES

NO

Trajectory

K-means cluster
Velocity HOG

SVM

YES

NO

Preparation Stage

Detection Stage

Tracking Stage

Classification Stage

Trajectory

(a) (b) (c)

Fig. 2  Detection result a Background subtraction, b Shadow detection, c Morphological reconstruction
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Traffic parameters acquisition requires attaching space-
time dimension to trajectory. Time dimension can be easily 
established by recording frame sequence in video process-
ing, while space dimension must be established by coordi-
nate transformation. Eventually, a variety of traffic param-
eters comes from these proceeded trajectories.

2.2  Tracking Algorithm

It is necessary to track the detected nonmotorized traffic 
objects to get their position at each moment, and then draw 
their trajectories at intersections. KCF tracking algorithm 
worked as the major tracking algorithm, with KF as the 
auxiliary tracking algorithms to retrack lost targets. This 
combination is extremely synergistic, taking into account 
both efficiency and accuracy, and obtains as many complete 
trajectories as possible in acceptable time.

2.2.1  KCF Tracking Algorithm

KCF is a typical algorithm in correlation filter class [6]. The 
basic idea of KCF is to construct a large number of train-
ing and test samples by cyclic shifting, selecting the target 
region image as positive sample, and the surrounding envi-
ronment images as negative samples. The sample is mapped 
to a linearly separable space by a kernel function, in which 
the target detector is trained by ridge regression. An out-
standing contribution of KCF algorithm is that all the sam-
ples acquired by cyclic shift are diagonalized in the Fourier 
space using the discrete Fourier matrix, which reduces the 
amount of data stored and computation and greatly improvs 
the tracking speed.

For each frame of video, the response value of test sam-
ples is calculated by the trained detector, and the sample with 
the largest response value is selected as the new tracking tar-
get. Then, the training set is updated by the new detection 

results, and the target detector is updated correspondingly. 
Tracking is thus established and the tracking effect is shown 
in Fig. 3. The red box is the previously drawn nonmotorized 
traffic waiting area, and only the targets passing through this 
area have possibility to be identified as nonmotorized traffic 
targets. The blue boxes indicate that nonmotorized traffic 
targets are being tracked.

2.2.2  KF for Tracking

Although KCF algorithm is a well-behaved tracking algo-
rithm, tracking lost will appear in some cases. Thus, KF 
is used to retrieve lost targets. Because the time interval 
between the adjacent trajectory points is very short, the state 
can be approximately represented by a linear system, which 
is suitable for KF to predict the possible location of missing 
targets and rebuild tracking.

KF is an optimized autoregressive data processing algo-
rithm. It uses a linear stochastic differential equation to 
calculate the current optimal value based on the current 
measured value, previous predicted value and error, and can 
predict the value at the next moment.

The application of KF in tracking is to predict the pos-
sible position of the missing target according to its previ-
ous trajectory. If there is an object around the prediction 
point, the object is identified as the missing target and the 
tracking is rebuilt. The system state can be represented as a 
4×1 matrix, which stores the target horizontal and vertical 
coordinates and the change in the horizontal and vertical 
coordinates. The measured value is a 2×1 matrix, which 
stores the target horizontal and vertical coordinates. Figure 4 
shows the retracking effect. The blue box attached the man 
on the right insinuates that he will lose tracking due to the 
white car shadow, while the green box shows that tracking 
is retrieved.

Fig. 3  Tracking effect
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2.3  Classification Algorithm

The category of each target trajectory acquired by track-
ing can’t be distinguished whether it belongs to cyclist or 
pedestrian. Multivariate feature can efficiently complete 
classification from multiple perspectives. The category of 
nonmotorized targets can be determined quickly based on 
motion and appearance feature.

2.3.1  Classification with Motion Feature

There are obvious differences in velocity between pedestrian 
and cyclist. Walking velocity is about one meter per second, 
cyclist velocity is about four to five meters per second, or 
even higher. We selected mean velocity as the motion feature 
delivering to K-means clustering algorithm for preliminary 
classification.

K-means clustering is an unsupervised learning method, 
which attempts to find the category of data. K-means clus-
tering was used instead of delineating the velocity range 
for classification, because if the relevant information is not 
available, the pixel coordinates cannot be converted to actual 
coordinates, and the velocity range cannot be known. With 
the increase of computer computing speed, selecting differ-
ent starting points as clustering centers and clustering for 
many times to select the result with the least variance can 
get good classification results in a few seconds.

Although velocity performs well in classification as a kind 
of motion feature, some cases which are hard to classify cor-
rectly also exist. Great differences in vehicle condition and 
driving habit result in the velocity changing in a wide range. 
Some pedestrians choose to run through intersections at the 
end of green light, whose velocity is close to biking, form-
ing the velocity dispute area which is hard to classify. After 

multiple experiments, it can be proved that nonmotorized traf-
fic can be divided into four categories with K-means cluster-
ing. The category with the lowest velocity can be identified 
as pedestrians, the category with the highest velocity and the 
second-highest velocity can be identified as cyclists, while the 
remaining sub-low-velocity category contains some pedestri-
ans with fast velocity and cyclists with slow velocity. Nonmo-
torized traffic in this category can be regarded as outliers and 
needs to be further classified to obtain more accurate results.

2.3.2  Classification with Appearance Feature

For targets in the sub-low-velocity category, appearance fea-
ture can assist in more accurate judging. Appearance feature 
adopted the aspect ratio of the circumscribed target rectangle 
and Histogram of Oriented Gradient (HOG). HOG took the 
lead, combined with aspect ratio to make the final judgement.

HOG feature is proposed as an image feature descrip-
tor based on gradient direction [22]. It calculates the histo-
gram of the oriented gradient in local image patches and can 
describe the appearance and shape of the target well, which 
can be calculated as follows.

where f(x, y) is the pixel value. Gx(x, y) and Gy(x, y) denote 
gradients in the vertical and horizontal directions of (x, y). 

(1)
{

Gx(x, y) = f (x + 1, y) − f (x − 1, y)

Gy(x, y) = f (x, y + 1) − f (x, y − 1)

(2)M(x, y) =

√

Gx(x, y)
2 + Gy(x, y)

2

(3)�(x, y) = arctan(
Gx(x, y)

Gy(x, y)
)

Fig. 4  Retracking effect of lost 
target
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M(x, y) and θ(x, y) are the gradient magnitude and direction 
of (x, y).

Gradient direction is divided into several intervals, which 
are called bins. The measured region is segmented into small 
regions, which are called blocks. Block is segmented into 
small regions, which are called cells. The gradients of all 
the cells in the block are concatenated to obtain the feature 
vector of the block.

In this study, the nonmotorized traffic sample size was 
uniformly normalized to 48×48 for HOG feature extraction. 
Block size was set to 16×16, block moving step size was set 
to 8×8, cell size was set to 8×8, and gradient direction was 
divided into nine bins in [0, π]. Through the size setting, the 
dimension of feature vector is 900.

HOG feature needs to be conveyed to SVM to achieve 
classification. SVM is a classification algorithm, which 
needs training based on a given set of known samples. SVM 
uses kernels to map the data points in particular dimensions 
into a space of much higher dimension, where a linear clas-
sifier can often be found to separate the two classes. When 
the number of samples is limited, SVM can achieve good 
results.

In this study, cyclists were taken as positive samples, 
pedestrians and other intersection environment were taken 
as negative samples. The training samples were captured 
from the field video. The number of positive samples in the 
training set is 1013, while the number of negative samples 
is 1181. The number of samples is slightly more than the 
feature dimension. It is suitable for classification with SVM 
classifier. The k-fold cross validation was used for training. 
The proportion of the incorrect classification in the training 
set is 9.66%, and the accuracy in the test set is 88.24%.

Because the training model has a 11.76% probability of 
false detection in the test set, so it is necessary to use the 
aspect ratio to assist the discrimination. The aspect ratio 
of cyclists is often larger than that of pedestrians. Once the 
predicted result is cyclist and the aspect ratio of tracking 
frame is larger than the set threshold, the tracking object is 
considered to be cyclist. Vice versa, if the predicted result is 
pedestrian and the aspect ratio is less than the set threshold, 
the tracking object is considered to be pedestrian. For the 
very few remaining targets that cannot be determined at last, 
a simple manual classification is needed.

3  Application and Results

3.1  Application Environment

This study chose a four-leg (Intersection 1) and a three-leg 
intersection (Intersection 2) as the experimental intersec-
tions. Figure 5 shows their location and surroundings. The 
reasons for choosing these intersections are as follows:

(1) The branches of the intersections are urban main roads, 
so the intersection size is large and the motor vehicle 
flow is high.

(2) The intersection is close to subway station and shop-
ping mall, so the nonmotorized traffic flow is sufficient. 
The average pedestrian and cyclist flow rates were 343 
persons/h and 600 vehicles/h at Intersection 1 and 465 
persons/h and 180 vehicles/h at Intersection 2.

The experiment was conducted on a sunny day, when 
there were obvious shadows interfering with the detection. 
The intersection was shot by UAV from oblique angle. The 
frame rate of the video is 25 frames per second and the reso-
lution is 1080P. In summary, it is not easy for these intersec-
tions to manage nonmotorized traffic detection and tracking.

3.2  Results

3.2.1  Flow Result

The hardware environment chose Core i7-8700 as the central 
processor unit, which is six cores and twelve threads with 
3.2GHz basic frequency. RAM capacity is 16G. Video pro-
cessing could be completed within 3.15 times as long as the 
actual video time.

The trajectory results showed that 67 trajectories were 
detected at Intersection 1, of which 59 were complete, and 
8 were lost during the tracking process. And the number 
of trajectories detected at Intersection 2 was 37, of which 
24 were complete. ‘Complete’ means that the nonmotorized 
traffic keeps in the tracking state in the process of moving 
from one waiting area to the next. The trajectories can be 
projected on the video image, as shown in Fig. 6. Green 
points are pedestrian trajectories and blue points are cyclist 
trajectories.

Flow data were obtained from trajectories. In order to bet-
ter reflect the accuracy of flow data acquisition, three indica-
tors are introduced to quantitatively evaluate the counting 
results, which are Precision, Recall and Critical Success 
Index (CSI). The indicators are defined as follows.

where TP is the true positives value, which denotes the num-
ber of correctly detected objects. FP is the false positives 
value, which denotes the number of invalid detections. FN 

(4)Precision =
TP

TP + FP

(5)Recall =
TP

TP + FN

(6)CSI =
TP

TP + FP + FN
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is the false negatives value, which denotes the number of 
missed objects. Furthermore, quality is the most important 
indicator to reflect the final accuracy, since it considers both 
correctness and completeness.

The flow results of each direction are summarized in 
Table 1. The results of video detection are compared with 
the actual flow and mark the differences with underscores. 
The flow evaluation results are summarized in Table 2. We 
can see from the table that there is one target missing in the 
cyclist test and four targets missing in the pedestrian test 
for the detection of Intersection 1. Two cyclist targets are 
false detections. Qua is more than 80% for pedestrian and 
more than 90% for cyclist. The overall Qua is nearly 90%, 
which can be accepted in application. As for Intersection 2, 
a lot of occlusions occur due to the high density of non-
motorized traffic. Qua drops to 70%. Therefore, our system 
needs to improve performance in high-density scenarios. By 

the way, the system saved the picture of tracked objects, 
finding that only 1 misclassification occurs in the whole 93 
classifications.

3.2.2  Velocity Result

Velocity data were also extracted from the trajectories at 
Intersection 1. The minimum, maximum and average values 
of mean velocity for pedestrians were 1.28, 2.12 and 1.55 
meters per second respectively. Similarly, the relative set-
tings for cyclist were 1.91, 8.88 and 4.78. Standard deviation 
was 0.21 for pedestrian and 2.05 for cyclist. Cyclists had 
greater velocity fluctuations at intersections. And the instan-
taneous velocity results are shown in Fig. 7. The points in 
the figure are trajectory points, of which the size and color 
reflect the magnitude of velocity. The darker color and the 

Fig. 5  Intersection location and 
surroundings a Intersection 1, b 
Intersection 2

(a)

(b)
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Fig. 6  Nonmotorized traffic 
trajectories distribution a Inter-
section 1, b Intersection 2

(a) 

(b)

Table 1  Summary of flow 
results

Video detection results Ground truth

Intersection Direction Nonmotorized Cyclist Pedestrian Nonmotorized Cyclist Pedestrian

1 1 to 2 11 10 1 12 10 2
1 to 3 0 0 0 0 0 0
1 to 4 6 3 3 7 3 4
2 to 1 3 0 3 3 0 3
2 to 3 8 5 3 10 5 5
2 to 4 1 1 0 1 1 0
3 to 1 1 1 0 1 1 0
3 to 2 1 1 0 2 2 0
3 to 4 11 9 2 11 9 2
4 to 1 13 8 5 13 8 5
4 to 2 1 1 0 1 1 0
4 to 3 5 2 3 5 2 3
Overall 61 41 20 66 42 24
Accuracy Rate 92.42% 97.62% 83.33% — — —

2 1 to 2 16 2 14 21 1 20
1 to 3 5 2 3 7 2 5
2 to 1 9 3 6 7 2 5
2 to 3 2 2 0 3 3 0
3 to 1 5 4 1 5 4 1
Overall 37 13 24 43 12 31
Accuracy Rate 86.05% 108.33% 77.41% — — —
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larger size of the point is, the higher the instantaneous veloc-
ity at that point is.

3.2.3  Reliability Verification of Velocity

In order to verify the accuracy of velocity data, we com-
pared the detected velocity with the velocity measured by 
GNSS-RTK (Global Navigation Satellite System Real-time 
Kinematic), whose error is within centimeter scale. Veloc-
ity was tested by a pedestrian walking separately at three 
different approach lanes. The comparison results are shown 
in Fig. 8. The orange line represents the velocity detected 

by video and the blue line represents the velocity measured 
by GNSS-RTK.

As shown in Fig. 8, due to the instability in establishing 
and releasing tracking state, the gap between the detected 
and the actual velocity is relatively large in the beginning 
and ending stages, so the velocity results in the first two sec-
onds and the last two seconds were eliminated. The reliabil-
ity verification results of velocity are shown in Table 3. Test 
mean velocity is the mean value of velocity detected from 
video, while validation mean velocity is measured by GNSS-
RTK. Max difference is the maximum difference between 
the detected and validation instantaneous velocity, and the 

Table 2  Summary of flow 
evaluation results

Type TP FP FN Precision Recall CSI

Intersection 1 Pedestrian 20 0 4 100% 83.33% 83.33%
Cyclist 39 2 1 95.12% 97.5% 92.86%
Overall 59 2 5 96.72% 92.19% 89.39%

Intersection 2 Pedestrian 23 1 8 95.83% 74.19% 71.88%
Cyclist 11 2 1 84.62% 91.67% 78.57%
Overall 34 3 9 91.89% 79.07% 73.91%

Fig. 7  Instantaneous velocity 
distribution.

Fig. 8  Comparison results for velocity reliability verification.
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definition of min and average difference is the like. Error is 
the relative error of the detected and validation mean veloc-
ity. We can see from Table 3 that average difference of all 
approaches can be controlled around 7 to 8 centimeters per 
second and error is controlled within an acceptable range.

3.2.4  Tracking Efficiency Assessment

In order to assess the improvement of the tracking algorithm 
in this paper, we compared our method with KCF and other 
classic tracking algorithms, which includes Channel and 
Spatial Reliability Tracking (CSRT) [23], Minimum Output 
Sum of Squared Error filter (MOSSE) [24] The comparison 
results are shown in Fig. 9.

MOSSE, KCF and CSRT are three tracking algorithms of 
different computational levels. MOSSE is considered to be a 
relatively fast-tracking algorithm. Although it could reduce 
the processing time by 23.71% compared with our method, 
21 trajectories couldn’t be detected, which is of less confi-
dence for the practical application. Compared with the single 
KCF algorithm, our method only took 2.72% more time to 
detect 13.56% more trajectories. With respect to CSRT, it 
could obtain as good results as our method, but it took twice 
as long, namely, more than 6 times as long as the actual 
video time to complete video processing. In consequence, 
our method could get the best results with the consideration 
of both efficiency and accuracy.

4  Discussion

Our method is suited for the videos taken at oblique angle. 
However, if the traffic flow is large and density is high, 
this shooting angle is prone to side-by-side and occlusion 
problems, affecting the accuracy of detection. Therefore, 
the accuracy of flow result at Intersection 2 dropped to 
70%, compared with 90% at Intersection 1. In order to 
solve the problem, some attribute information such as the 
aspect ratio and height of tracking frame were adopted to 
judge the number of targets in tracking box. Logical judg-
ment was added to determine whether separation behav-
ior appears during movement. Although some measures 
have been taken to improve the system robustness as far 

as possible, shooting intersections from the top view can 
solve the problems better. However, this will result in a 
new issue, that when looking down straight at intersec-
tions, particularly a large-scale intersection, pedestrian 
almost appears as a point which is hard to be tracked. An 
efficient tracking algorithm for small targets needs to be 
found. Through the experiment, recommended camera 
angle is set to 50 to 60 degrees.

Weather and accuracy of the lenses are also factors 
affecting the system performance. Shadow detection 
mechanism makes the detection effect on sunny days 
almost consistent as on cloudy days, but it needs to be 
improved for night, rain, and snow conditions. Theoreti-
cally, the camera model should be calibrated due to lens 
distortions. However, as a robust system, it is impractical 
to calibrate the model for all the videos from different lens. 
The lens in our system is not calibrated, but velocity reli-
ability verification results show that error is kept within 
acceptable limits.

As the proposed method combines KCF and KF for 
target tracking, it can meet the tracking requirements for 
nonmotorized traffic theoretically. Tracking effect depends 
partly on the effect of target detection. Although shadows 
are eliminated and relatively complete contours can be 
extracted by morphological methods, there are also a few 
incomplete or wrong detections. Some advanced detection 
algorithms may perform better, which are based on the 
deep learning. However, these methods have strict require-
ments on the sample and need to consider the impact of 
the change in shooting angle and height.

Table 3  Reliability verification results of velocity

Approach Detected mean 
velocity (m/s)

Measured 
mean velocity 
(m/s)

Standard Devia-
tion of detected 
velocity (m/s)

Standard 
Deviation 
of measured 
velocity (m/s)

Max 
difference(m/s)

Min 
difference(m/s)

Average 
difference(m/s)

Error (%)

Southbound 1.4699 1.4214 0.1160 0.0882 0.1673 0.0002 0.0722 3.41
Northbound 1.9279 1.9591 0.1004 0.1095 0.2054 0.0067 0.0723 1.59
Eastbound 1.2942 1.3676 0.0447 0.0587 0.1904 0.0176 0.0776 5.37

Fig. 9  Comparison results for 
tracking effect.
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5  Conclusions

In this paper, we develop a lost target retracking mecha-
nism for joint tracking method and propose a multivariate 
feature classification method, taking which as the core, a 
vision-based surveillance system for nonmotorized traffic 
at intersections is constructed. For tracking, since nonmo-
torized traffic tends to be small and blurred at large-scale 
intersections and tracking is easy to lose, we combine two 
different tracking strategies, using KCF as the major algo-
rithm and KF to retrieve the lost targets. Consequently, 
long-term tracking is achieved and more complete trajecto-
ries can be found relying on the retracking mechanism. In 
terms of classification, we provide a precise classification 
method with low computational cost and limited training 
samples. Therefore, multivariate feature is associated to 
classifiers. Velocity is selected as motion feature plug-
ging into K-means clustering for the first classification and 
HOG is used as the major shape feature for the further 
classification with SVM. Accordingly, the achievements 
and conclusions can be summarized:

(1) Although our method needs 2.72% more time than the 
single KCF, it detects 13.56% more trajectories. Fur-
thermore, it can achieve as good results as more com-
plex algorithm, CSRT, with only half the time cost.

(2) The accuracy of classification results reaches nearly 
100%, which means that traffic parameters for pedes-
trians and cyclists can be obtained separately.

(3) Based on the trajectory, the system extracts flow and 
velocity data. The accuracy of flow results can reach 
nearly 90%. Meanwhile, the mean velocity error is 
within 6%. The average difference is around 7 to 8 
centimeters per second compared with the actual value 
and can acquire all the data within nearly three times 
as long as the actual video time.

It is certain that the system works well in the appli-
cation of collecting field data and our method provides 
a superior solution to monitor nonmotorized traffic and 
obtain their trajectories at intersections. However, some 
problems remain and need to be solved in the future. It 
is necessary to make the system more robust for practical 
application. In future studies, the system needs to include 
efficient tracking algorithm for small targets based on 
deep learning methods that provide users with a variety of 
options which can meet both accuracy and speed demand. 
The adaptability of the system to night, rain and snow 
condition also needs to be further developed.
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