
An Algorithm based on VANET Technology to Count Vehicles
Stopped at a Traffic Light

Manuel Contreras1 & Eric Gamess2

Received: 30 January 2018 /Revised: 8 April 2019 /Accepted: 10 April 2019
Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Vehicular Ad hoc Networks (VANETs) have gained considerable attention in the past few years due to their promising applica-
bility in relation to the Intelligent Transportation Systems (ITSs). This emerging new technology will provide timely information
to develop adaptive traffic light control systems that will allow a significant optimization of the vehicular traffic flow. In this
paper, we introduce a novel algorithm for counting vehicles stopped at a traffic light using VANET technology. The algorithm is
based on the idea of the propagation of a count request message from the RSU (originating unit) toward the vehicles that are at the
end of the waiting line, and the propagation of a response message (with the number of vehicles counted) in the opposite
direction, that is, from the vehicles at the end of the line toward the RSU. For this, our algorithm uses BEACON messages
periodically to exchange the necessary information between any two 1-hop neighbors. Using the data received from BEACON
messages, each vehicle can maintain its own neighbors list. To validate and evaluate the performance of our proposal, we use
Veins (Vehicle in Network Simulation) and TraCI (Traffic Control Interface). The former is a framework that ties together a
network simulator (OMNeT++) with a road traffic simulator (SUMO), and the latter is an API for the communications between
both simulators by providing TCP connections between each other. The results of the simulations performed in different
scenarios are encouraging since they indicate that the proposed algorithm efficiently computes a number of vehicles very close
to the real one, using a few control messages.

Keywords VANETs . Vehicular networks . Vehicle counting . OMNeT++ . SUMO .Veins

1 Introduction

Vehicular Ad hoc Networks (VANETs) are aimed at commu-
nications between vehicles [1]. They are similar to Mobile Ad
hoc Networks (MANETs), where mobile units are vehicles,
but with a very dynamic topology and density, high speed, and
a mobility bounded by the road infrastructure and neighboring
vehicles [2].

According to [3], the aim of VANETs is the development of
platforms for communications between moving vehicles and

between them and the road infrastructure. In VANET, there are
two types of networking units: (1) On-Board Units (OBUs)
are placed inside vehicles for communications to make them
Bsmart objects^ rather than mere transportation tools and (2)
Road Side Units (RSUs) that are fixed and installed near the
road. A VANET allows two types of communications: (1)
communications between vehicles often referred to as
Vehicle-to-Vehicle (V2V) communications that take place be-
tween OBUs, and (2) communications between vehicles and
RSUs, known as Vehicle-to-Infrastructure (V2I). Both modes
of communications can be performed using the same wireless
communication technology, such as IEEE 802.11p [4]. Also, a
VANET-enabled vehicle should be able to receive and relay
messages to other VANET-enabled vehicles in its neighbor-
hood (also known as multi-hop relaying) [1].

VANETs used short-range wireless communications (e.g.,
IEEE 802.11p [4]). A band of frequencies has already been
reserved by the Federal Communications Commission (5.850
to 5.925 GHz), and it is generally divided into channels of
10 MHz: 6 Service CHannels (SCHs) and 1 Control
CHannel (CCH) [4, 5]. The SCHs are general purpose

* Manuel Contreras
mcontre@ula.ve

Eric Gamess
egamess@jsu.edu

1 School of Computing, Central University of Venezuela, Los
Chaguaramos, Caracas, Venezuela

2 MCIS Department, Jacksonville State University, Jacksonville, AL,
USA

https://doi.org/10.1007/s13177-019-00184-3

/Published online: 2 May 2019

International Journal of Intelligent Transportation Systems Research (2020) 18:122–139

http://crossmark.crossref.org/dialog/?doi=10.1007/s13177-019-00184-3&domain=pdf
http://orcid.org/0000-0002-4410-3373
mailto:mcontre@ula.ve

channels, that is, they can be used for safety applications or
not. The CCH is reserved for safety applications. IEEE
802.11p also permits the aggregation of two contiguous chan-
nels, to form a wider channel with a bandwidth of 20 MHz. In
the specialized literature, this band of frequencies designated
by the Federal Communications Commission (FCC) is also
known as Dedicated Short Range Communication (DSRC).

Wireless Access in Vehicular Environments (WAVE) has
been proposed by the IEEE to specify the architecture for
VANETs. It is based on several documents for standardization.
The Physical (PHY) and the Medium Access Control (MAC)
layers of WAVE are presented in the IEEE 802.11p standard.
In the network layer, WAVE promotes the usage of two pro-
tocols: (1) Internet Protocol version 6 (IPv6) and (2) WAVE
Short Message Protocol (WSMP). As known, IPv6 is the suc-
cessor of IPv4, and it can be used for most of the applications.
Unlike IPv6, WAVE is a very fast and light protocol, focused
on supporting safety applications. To manage the seven chan-
nels that are not overlapped, IEEE 1609.4 [6] introduces the
multi-channel operations.

VANETs support a large number of Intelligent Transportation
System (ITS) applications, that will allow in the not too distant
future, the increase of the physical safety of drivers and passen-
gers, the optimization of daily traffic, the notification of real-time
road congestions, the propagation of alerts of accidents or obsta-
cles on the road, the distribution of useful information for drivers
(e.g., nearby restaurants, hotels, gas stations), the access to social
networks, file-sharing services, or chats, as well as the connec-
tion to external networks such as Internet.

The growing of traffic density on the roads of most towns
and cities around the world is becoming a problem. This
growing brings traffic congestion on the roads, resulting in
negative effects on traveling time, traffic safety, air pollution,
noise disturbance, and energy consumption. Therefore, the
task of controlling and optimizing the vehicular flows, in ag-
glomerations and their outskirts, is one of the main activities
of traffic engineering, seeking to benefit the communities.
Before tackling such a complex problem as the optimization
of vehicular traffic, the main point is to know how that traffic
behaves, i.e., to obtain reliable models of the same. Howmany
vehicles use a road section? Something as simple as that is
hard and expensive to know in most of our main cities. If we
lack the number of vehicles on a road, we cannot know or
estimate the occupation in a certain road section, or propose a
dynamic schedule for the traffic lights at an intersection, etc.
However, the actual ATCSs (Adaptive Traffic Control
Systems) have been using basic Bin situ^ technologies (e.g.,
inductive loops, digital cameras, video cameras, thermal cam-
eras, pneumatic road tubes, magnetic sensors, radars, piezo-
electric sensors, infrared beams) to reduce road accidents and
optimize traffic flows, which could be dramatically improved
with the integration of emerging technologies such as
VANET.

As stated before, in BTraffic Engineering^, a specific prob-
lem to be solved is the development of algorithms to optimize
the cycles of traffic lights of a set of intersections and thus
achieve a greater vehicular flow with fairer waiting times for
all vehicles. Therefore, much research has been done in the
field of ATCSs [7] and traffic congestion detection [8–10] to
improve the flow of vehicles. As we have seen, there is no
single solution to solve the above problem. The range of ini-
tiatives is wide, and many of them must be applied together to
get tangible results. However, to improve existing solutions or
to propose new ones, basic algorithms and tools must be de-
veloped. An example of such tools is the counting of vehicles
with a specific characteristic or within a specified geographi-
cal area. According to [11–13], there are some alternatives or
proposals for counting vehicles based primarily on Bin situ^
technologies. These Bin situ^ technologies are complex to
install, and they suffer a high economic cost caused by both,
installation and recurring maintenance. Due to the huge num-
ber of roads worldwide, alternatives to Bin situ^ technologies
must be considered. The VANET technology seems to be a
good option for vehicle counting and should become ubiqui-
tous promptly since it is estimated that all vehicles will be
equipped with a WAVE device within the next 15 years [14].
In addition, in the case of WAVE, the costs of installing and
maintaining the technology are shared between the owners of
the vehicles and the organization that maintains the roads
(town hall, city hall, county administration, state government,
highway administration, etc.) That is, the owner of a vehicle
will have to buy an RSU for his/her car, and will have to pay
the charges related to its maintenance. Local, national, or in-
ternational establishments will install and maintain RSUs on
the road infrastructure.

In this research work, we propose a novel algorithm to
count vehicles that are stopped at a traffic light based on
VANET technology, as a basic and integral tool for the devel-
opment of applications for the ITS. With the aim of validating
the proposed algorithm, we use a discrete event network sim-
ulator called OMNeT++ in conjunction with a road traffic
simulator known as SUMO (Simulation of Urban Mobility),
and the Veins (Vehicle in Network Simulation) framework
that bidirectionally couples the previously mentioned simula-
tors. We test and analyze our proposal in diverse scenarios,
where we vary some parameters such as the number of vehi-
cles, the signal propagation range, the number of lanes, the
penetration rate, etc. The simulation results show that our
novel algorithm performs an efficient vehicle counting very
close to the real one, with a short response time and a small
number of control messages.

We have structured the rest of this paper in the following
way. First, we review the previous work in Section 2. Then, in
section 3, we introduce in details our novel algorithm to count
vehicles that are stopped at a traffic light using WAVE tech-
nologies. Section 4 justifies our selection of the used

Int. J. ITS Res. (2020) 18:122–139 123

simulation tools and briefly describes the testbeds for the val-
idation of the proposed algorithm. A discussion of the results
obtained by our simulations is done in Section 5. In the last
section, we conclude and give directions for future work.

2 Related Work

Vehicle counting represents a tool that has numerous applica-
tions, and due to its usefulness, it has been done in various
ways or disciplines with several technologies that makes it
applicable to diverse situations. Up to now, most of the pro-
posals to count vehicles, with greater or lesser accuracy, are
based mainly on methods or techniques supported by conven-
tional Bin-situ^ technologies (e.g., inductive loops, digital
cameras, video cameras, thermal cameras, pneumatic road
tubes, magnetic sensors, radars, piezoelectric sensors, infrared
beams) [15].

In the specialized literature, there are many methods, tech-
niques, and algorithms based on the Bin situ^ technologies
mentioned above. For example, there is a lot of work done
with images or recordings of digital or video cameras.
Chintalacheruvu and Muthukumar [16] proposed an efficient
video-based vehicle detection system constructed on top of
Harris-Stephen corner detector algorithm [17]. The algorithm
was used to develop a standalone vehicle detection and track-
ing system that determines vehicle count and speed at arterial
roadways and freeways. The authors of [18, 19] employed
images obtained from video cameras to count vehicles in real
time. Peiris and Sonnadara [20] used a single digital camera to
extract various traffic parameters, including vehicle count,
density, and type at a three-way junction.

Sensor networks have also been used to count vehicles.
Knaian [21] developed a low-cost package, based on aniso-
tropic magnetoresistive magnetic field sensors that can count
passing vehicles. According to the author, the sensors can
operate in the roadbed for at least ten years without mainte-
nance, and do not require running wires under the road, facil-
itating a wide deployment. Litzenberger et al. [22] proposed
an embedded system based on an transient optical sensor that
is capable of detecting, counting, and measuring the velocity
of passing vehicles.

Contreras and Gamess [23] proposed an algorithm to count
objects (people, animals, devices, etc.) with wireless technol-
ogies (IEEE 802.11) in circular-bounded areas, using several
non-overlapping communication channels. In the field of
counting vehicles based on VANET technologies, just a few
efforts have been made up to today. Gamess and Mahgoub [1]
proposed a method to obtain the length of a line of vehicles
stopped at a traffic light, by using VANET technology. The
algorithm is based on an effective propagation of a request
message from the beginning of the line (started by the traffic
light) towards the end, and the transmission of the

correspondent response message from the last vehicle to the
traffic light, using multi-hop, with the expected length.
According to the authors, a possible approximation of the
number of vehicles can be obtained by dividing the resulting
length by a constant value (e.g., 7 m), where 7 m represents
the average space to accommodate a vehicle in a line. Unlike
the present work, the counting obtained in [1] is an
approximation.

Some other works do not count, but estimate the density of
vehicles in a specific region. In their work, Luo, Wei, Cheng,
and Ren [24] developed an innovative query-response frame-
work which not only enables vehicles to detect the traffic
crowdedness of their surrounding region, but also enables
vehicles to obtain the remote region traffic crowdedness by
sending query messages and fusing reply messages.

Generally speaking, a considerable amount of work has
been done with Bin-situ^ technologies to count vehicles in
different scenarios. However, algorithms based on VANET
technologies are still very rare, and new proposals are wel-
come to consolidate this area of knowledge.

3 Algorithm to Count Vehicles that Are
Stopped at a Traffic Light, Using VANET
Technologies

In this section, we describe our novel algorithm to count ve-
hicles that are waiting for the traffic light to change from red to
green.

3.1 Requirements and Assumptions

Note that in this paper, we use the word Bunit^ interchangeably
with the word Bvehicle^. They are one and the same. Also, we
call Boriginator^ the RSU which initiates the counting process,
i.e., the entity that requires the number of vehicles around it, up
to a specified range or hop count (called Hop Limit in our
algorithm). As can be seen, the field Hop Limit delimits the
counting range, so that application developers will have to
select this parameter according to their needs. In our simula-
tions, the RSU starts counting with a value of Hop Limit equal
to 3, but any value can be used according to the type of appli-
cations where the algorithm will be used.

For the implementation of our novel algorithm, we only
require the usage of a unique channel, of the seven channels
that are available in the DSRC band (5.850–5.925 GHz) [25].
We also assume that each vehicle is capable of determining its
actual position on the road using, for example, location services
like the Global Positioning System (GPS) [26]. In our work, the
location is specified through the latitude and the longitude.
However, the same algorithm can be modified to use
Cartesian coordinates, by choosing an origin and the direction
of the axis. The vehicles that do not have a WAVE device will

Int. J. ITS Res. (2020) 18:122–139124

not be counted, since there is no way to detect them (a pene-
tration rate of 100%). Additionally, the algorithm requires sym-
metric radio ranges, i.e., there is no one-way communication
between two vehicles (if vehicle V1 can communicate with
vehicle V2, a transmission from V2 will also reach V1).

3.2 Structure of Unicast COUNT_REQUEST
and COUNT_REPLY Messages

The COUNT_REQUEST and COUNT_REPLY messages are
unicast messages propagated by the RSU and the vehicles in
the process of counting vehicles stopped at a traffic light. When
starting the counting, the RSU will send a unicast
COUNT_REQUEST message toward the last vehicle in the
line of waiting vehicles, and later this last vehicle will respond
with a unicast COUNT_REPLY message that will be transmit-
ted toward the RSU. Both messages have the same Protocol
Data Unit (PDU) and are composed of 10 fields (see Fig. 1).

The fieldUnit ID represents the identification of the sender
vehicle or RSU. The value of Unit ID must be unique.
Message Type can be either 0 or 1 and is used to identify the
t y p e o f m e s s a g e . A v a l u e o f 0 i d e n t i f i e s a
COUNT_REQUEST, while 1 is for a COUNT_REPLY.
Sequence Number is used tomatch COUNT_REQUESTmes-
sages with COUNT_REPLY messages and to distinguish be-
tween different requests. The RSU and the vehicles transmit
COUNT_REQUEST messages along with the argument Hop
Away which represents the number of hops-away the receiver
of the message is from the RSU. The RSU is the unit that
initiates the process of counting specifying a value of Hop
Away equal to 1. Each vehicle that retransmits the
COUNT_REQUEST message shall increment this value by
1. The units will discard the message when the value of Hop
Away is greater than Hop Limit. The field Hop Limit is a way
to control how far away COUNT_REQUEST messages can
be forwarded. It delimits the counting range. Timestamp is set
by the RSU when it sends the COUNT_REQUEST message.
It is a timestamp taken by the RSU at the moment of sending
the COUNT_REQUESTmessage and is aimed to control out-
of-date messages and replay attacks. Message Direction indi-
cates in which direction the message must be transmitted. For
this, the four least significant bits of the Message Direction
field are used to indicate one of four possible directions
(North, South, East, and West). For example, if the message
must be transmitted in all directions, then all lowest four bits
of the field Message Direction must be set to 1 (1111). RSU
Position is the position (latitude and longitude) of the RSU,
and is set by the RSU when sending the COUNT_REQUEST

message. Farthest Position is the location (latitude and longi-
tude) of the actual known unit that is farthest away from the
RSU in the line of vehicles. Number Vehicles is set with the
number of vehicles counted up to now during the transmission
of the COUNT_REQUEST message. In other words, before the
retransmission of a COUNT_REQUEST, a unit must update the
value of this field by adding the number of valid neighbors stored
on its neighbors list. In the forwarding of COUNT_REPLY
messages back to the RSU, its value is not altered.

3.3 Structure of BEACON Messages

The PDU of BEACON messages is composed of 4 fields as
depicted in Fig. 2.

Unit ID refers to the sender identification. Timestamp is the
actual time set by the unit when it sends a BEACONmessage.
The synchronization of time between the different units is
solved with the time received from the GPS satellites.
Sender Position and Sender Speed represent the actual posi-
tion (latitude and longitude) and speed of the unit when it
sends the BEACON message, respectively.

3.4 Discovery Protocol for Neighboring Vehicles

As stated before, we propose a discovery protocol of 1-hop
neighbors that helps in the transmission of both the
COUNT_REQUEST messages started by the RSU and the
COUNT_REPLY messages started by the last vehicle, in the
opposite direction.

Our algorithm uses BEACON messages to periodically
exchange the necessary information between any two in-
range neighbors to maintain a list of 1-hop neighbors. The
number of neighboring vehicles around one unit can be easily
obtained from its neighbors list. Every unit periodically broad-
casts BEACON messages that include its Unit ID, a
timestamp, and its actual position and speed (see Fig. 2), so
that, 1-hop neighbors are aware of its presence, position, and
speed. Position and speed are obtained by units from their
GPS receivers. When a vehicle receives a BEACONmessage,
it first checks the Timestamp field (see Fig. 2) to validate that
the BEACONmessage is current and not a copy of a previous
message injected by a replay attack. If the Timestamp is valid,
then the unit checks whether or not theUnit ID exists in its list
of 1-hop neighbors. If the Unit ID does not exist, a new entry
is created and the information of this neighbor is stored.
Otherwise, the information of the fields Sender Position and
Sender Speed for the sending vehicle are just updated as well
as the associated timer. With this information, the unit can

Sequence

Number

Message

Type

Hop

Away

Hop

Limit
Timestamp

RSU

Position

2 bytes 2 bytes 4 bytes 2 bytes 2 bytes 4 bytes 1 byte 8 bytes

Message

Direction
Unit ID

Farthest

Position

Number

Vehicles

8 bytes 4 bytes

Fig. 1 COUNT_REQUEST and COUNT_REPLY messages

Int. J. ITS Res. (2020) 18:122–139 125

interpolate the actual position of its 1-hop neighbors at any
time. Moreover, entries in the neighbors list that are not up-
dated during a certain period of time will be considered stale
and then removed. The flow diagram for creating a 1-hop
neighbors list using BEACON messages is given in Fig. 3.
The BEACON interval is set to 1 s to ensure that the informa-
tion in the neighbors list is always up-to-date.

3.5 Algorithm

Beside of the neighbor discovery protocol described before,
the basic approach of the algorithm is:

1) Propagate a unicast COUNT_REQUEST, from the RSU
toward the vehicle that is farther away in the line of vehi-
cles, with the total number of vehicles counted up to now
(called Number Vehicles in our algorithm)

2) Propagate a unicast COUNT_REPLY in the opposite direc-
tion, i.e., from the last vehicle in the line toward the RSU,
with the total number of vehicles calculated according to
the propagation of the previous COUNT_REQUEST
message.

Figure 4 depicts a simplified flow diagram for the proce-
dure followed by the RSU in the counting algorithm. The

RSU starts the vehicle counting by sending a unicast
COUNT_REQUEST message (see Fig. 1) with its own geo-
graphic location in the field RSU Position, toward the last unit
in the line of waiting vehicles. For this, the RSU will deter-
mine and put in the Farthest Position field the location (lati-
tude and longitude) of the vehicle that is farther away from it
in the line and within its propagation range. The RSUwill also
set in the field Number Vehicles the result of computing the
total number of vehicles in its neighbors list, that are waiting
in the line. Additionally, the RSU will specify a value of Hop
Away equal to 1 and put a time sample in the Timestamp field.

Now, when the RSU receives a COUNT_REPLYmessage,
it will first validate its Timestamp field. If the timestamp is not
within the expected interval of time, the COUNT_REPLY is
discarded. Otherwise, the RSU will obtain the total number of
vehicles in the field Number Vehicles.

It is worth to point out that not all the entries that are in the
neighbors list of the RSU are valid for the counting. That is,
the neighbors list also includes vehicles that are moving in the
opposite direction and vehicles that have already passed the
traffic light. However, the vehicles in the reverse direction can
be easily discarded in accordance with their speed. Also, the
actual location can be used to distinguish vehicles that have
already passed the traffic light.

Figure 5 depicts a simplified flow diagram for the proce-
dure followed by the vehicles in the counting algorithm.
When a vehicle receives a COUNT_REQUEST message, it
will first validate the fields Timestamp and Hop Away. If the
timestamp is not within the expected interval of time or the
number of hops has been exceeded, the COUNT_REQUEST
is discarded. Otherwise, the behavior of the vehicle will

Idle

Timer for periodic BEACON
message has expired

Timer for an entry in the

Neighbors List has expired

Remove entry from the

Neighbors List

BEACON
message arrived

Yes

abs(TS(Local) -TS(Received))
‹

Delta?

No

Discard BEACON

Does Sender ID exist

in the Neighbors List?

No

Yes

Send a BEACON message

as a broadcast

Initialize timer for a new

periodic BEACON

Create a new entry in

the Neighbors List

Initialize timer

for the new entry

Update the entry in

the Neighbors List

Reset timer

for this entry

Fig. 3 Flow diagram for updating
the neighbors list

Sender PositionTimestamp Sender Speed

2 bytes 4 bytes 8 bytes 8 bytes

Unit ID

Fig. 2 Structure of a BEACON message

Int. J. ITS Res. (2020) 18:122–139126

depend on whether or not it is the last unit of the line, or
whether or not the field Hop Away is equal to the field Hop
Limit. If so, the vehicle will start to send a unicast
COUNT_REPLYmessage back to the RSU. As can be appre-
ciated, only this Blast unit^ in the line is responsible for elim-
inating the COUNT_REQUEST and replacing it by a
COUNT_REPLY that moves in the opposite direction. It is a
copy of the COUNT_REQUESTmessage withMessage Type
equal to 1 (to indicate a COUNT_REPLY) and aUnit ID field
updated to the correct ID. Note that the value ofHop Away and
Farthest Position are not modified during the propagation of
the COUNT_REPLY, allowing the RSU to know how far
away (in hops and in meters), the counting was done.
Otherwise, if the vehicle is not the Blast one^ of the line, then
it will make the following modifications: (1) increment by 1
the Hop Away field, (2) update the field Number Vehicles
based on the information from its neighbors list, (3) determine

the farthest vehicle from the RSU in the line within its range,
and (4) resend the COUNT_REQUEST message to the unit
defined in the Farthest Position field.

Now, when a vehicle receives a COUNT_REPLY
message, it will first validate its Timestamp field. If the
timestamp is not within the expected interval of time, the
COUNT_REPLY is discarded. Otherwise, the vehicle
will determine from its neighbors list the closest unit to
the RSU (the next forwarder) in the line, within its prop-
agation range, and will resend the COUNT_REPLY mes-
sage to this unit. It is obvious that if the originating RSU
is within the propagation range of the vehicle, the
COUNT_REPLY message will be sent to it directly.

New units can be added in the line of waiting vehicles at
any moment. If an RSU had already made a counting before
the arrival of new vehicles, this RSU would not be informed
about the change, unless it starts a new counting. That is, the

Idle

Timer for periodic BEACON
message has expired Timer for an entry in the

Neighbors List has expired

Remove entry from the

Neighbors List

Send a BEACON message

as a broadcast

Initialize timer for a new

periodic BEACON

BEACON
message arrived

Yes

abs(TS(Local) -TS(Received))
‹

Delta?

No

Discard BEACON

Does Node ID exist

in the Neighbors List?

No

Yes

Create a new entry in

the Neighbors List

Initialize timer

for the new entry

Update the entry in

the Neighbors List

Update timer

for this entry

COUNT_REPLY
message arrived

Yes

abs(TS(Local) -TS(Received))
‹

Delta?

No

Do the

corresponding process

Discard COUNT_REPLY

Send the COUNT_REQUEST
message to Farthest Position

Determine Farthest Position from

the RSU in the Neighbors List

NumVehi NumUnits

Compute NumUnits
from the Neighbors List

The RSU needs to proceed

with a new counting

The previous sent

COUNT_REQUEST
message has timed out

Fig. 4 Flow diagram of the procedure followed by the RSU to count vehicles stopped at a traffic light

Int. J. ITS Res. (2020) 18:122–139 127

proposed algorithm is based on the request/response model,
and the counting obtained only applies for a specific time.

3.6 Example of Propagation

In this section, we present an example of the propagation of a
COUNT_REQUEST (Fig. 6) and a COUNT_REPLY (Fig. 7)
in a scenario with one lane and 18 vehicles, where V1, V2, V3,
…, V18, are the vehicles in the line that are stopped at a traffic
light waiting for the green light. Circles around the units rep-
r e s e n t t h e p r o p a g a t i o n r a n g e o f m e s s a g e s
(COUNT_REQUEST, COUNT_REPLY, and BEACON) sent
by the units. To facilitate the explanation of the example, we
will assume that the radius of the propagation range of a mes-
sage is equivalent to five vehicles. In a real scenario, it will be
bigger than five vehicles since the range of DSRC is targeted
to be up to 1 km [1]. The basic operation of the algorithm is as
follows: Before the initiation of the counting process, the RSU
will listen to BEACON messages to discover vehicles that are
within its propagation range. In this case, the RSU will detect
the presence of V1, V2, V3, V4, and V5 that are waiting for the
green light, where V5 is the farthest away vehicle from the
RSU. Therefore, the RSU will transmit a unicast
COUNT_REQUEST message to V5 (see Fig. 6) with Hop
Away equal to 1, Farthest Position with the location of V5

(the next forwarder), and Number Vehicles set to 5. Using
the information from its neighbors list, V5 determines that
there are five vehicles (V6, V7, V8, V9, and V10) that are
waiting in the line and are farther away from the position
specified in the field Farthest Position of the received
COUNT_REQUEST. So, vehic le V5 resends the
COUNT_REQUEST to V10 with the appropriate changes by
incrementing by 1 the value Hop Away (its new value is
2), setting the location of V10 in the Farthest Position
field (the farthest unit from the RSU discovered by V5),
and adding 5 to Number Vehicles (its new value is 10).
The process of counting will continue with the transmis-
sion of the COUNT_REQUEST by vehicle V10, follow-
ed by vehicle V15 (see Fig. 6). In this case, vehicle V10

will resend the COUNT_REQUEST message with Hop
Away equal to 3, Farthest Position set to the location of
vehicle V15, and Number Vehicles equal to 15, whereas
V15 will resend the COUNT_REQUEST message with
Hop Away equal to 4, Farthest Position set to the loca-
tion of vehicle V18, and Number Vehicles equal to 18.
Vehicle V18 will know that it is the last vehicle in the
line according to information from its neighbors list.
Hence, V18 will start the process of the propagation of
the COUNT_REPLY message (with Number Vehicles
equal to 18) back to the RSU (see Fig. 7).

Idle

Timer for periodic BEACON
message has expired Timer for an entry in the

Neighbors List has expired

Remove entry from the

Neighbors List

Send a BEACON message

as a broadcast

Initialize timer for a new

periodic BEACON

BEACON
message arrived

Yes

abs(TS(Local) -TS(Received))
‹

Delta?

No

Discard BEACON

Does the Node ID exist

in the Neighbors List?

No

Yes

Create a new entry in

the Neighbors List

Initialize timer

for the new entry

Update the entry in

the Neighbors List

Update timer

for this entry

COUNT_REPLY
message arrived

Yes

abs(TS(Local) -TS(Received))
‹

Delta?

No

Discard COUNT_REPLY

COUNT_REQUEST
message arrived

Yes

abs(TS(Local) -TS(Received))
‹

Delta?

No

HopAway › HopLimit

The node is the last of the line?

or

HopAway HopLimit
Discard COUNT_REQUEST

Determine the Closest Position
to the RSU in the Neighbors List

Send COUNT_REPLY
message toClosest Position

HopAway HopAway + 1

ComputeNumUnits from the

Neighbors List

NumVehi NumVehi+NumUnits

Determine the Farthest
Position from the RSU in the

Neighbors List

Update Farthest Position in the

COUNT_REQUEST message

Send COUNT_REQUEST
message to Farthest Position

Yes No

Yes

No

Determine the Closest Position
from RSU in Neighbors List

Send COUNT_REPLY
message toClosest Position

Fig. 5 Flow Diagram of the procedure executed by vehicles to count units stopped at a traffic light

Int. J. ITS Res. (2020) 18:122–139128

We can observe in Fig. 7 that vehicle V18 initiates
the process of the propagat ion of the unicast
COUNT_REPLY message back to the RSU, by sending
it to V13, the closest unit to the RSU discovered by
V 1 8 . T h i s m e s s a g e i s a c o p y o f t h e
COUNT_REQUEST received with small changes (Unit
ID and Message Type are the only modified fields).
That is, the following important fields will be kept un-
changed: Hop Away equal to 4, Farthest Position set to
the location of vehicle V18, and Number Vehicles equal
to 18. When vehicle V13 receives the COUNT_REPLY,
it will resent it to V8 according to the result of the
selection of the closest unit to the RSU from its neigh-
bors list. The above process will continue in sequence
with the retransmission of the COUNT_REPLY message
by vehicles V8 and V3, up to the RSU. Finally, when
the RSU receives the COUNT_REPLY from V3, it sim-
ply processes the results obtained in the PDU.

4 Environments and Scenarios for Simulation

To evaluate the accuracy and performance of our novel algo-
rithm, we carried out extensive simulation experiments with
different sets of parameters. This section aims to present the
selected simulation tools and common parameters for this
evaluation.

4.1 Simulation Tools

Nowadays, there are numerous simulation tools ranging from
open source to commercial products. In any research work, it
is always important to choose the most appropriate. A com-
prehensive study about current simulators, their characteris-
tics, capabilities, and approaches is provided in [27].

Up to now, there are no simulation tools that cover vehicle
mobility and networking, at the same time. That is, on the one
hand, vehicle mobility simulation tools have been proposed for

Fig. 7 Propagation of the COUNT_REPLY message back to the RSU

Fig. 6 Propagation of the COUNT_REQUEST message

Int. J. ITS Res. (2020) 18:122–139 129

researchers in the field of traffic engineering. The objective of
these tools is to import road networks from well-known maps
(e.g., Google Maps or OpenStreetMap) and to generate realistic
vehicular traffic flows over the roads, by specifying some con-
straints. On the other hand, networking simulators with very
basic mobility models are used by researchers in the area of
networking. For traffic engineering, some open-source projects
have been actively used by the community, such as
VanetMobiSim and Simulation of Urban MObility (SUMO)
[28]. Unfortunately, VanetMobiSim seems to be a dead project
now. Its last version (version 1.1) was released in February
2007. SUMO is an open source, highly portable, microscopic
and continuous road traffic simulation package designed to han-
dle large road networks. For network simulation, two open-
source simulators outstand (ns-3 and OMNeT++). OMNeT++
[29] is an open-source, multiplatform (Windows, MacOS, and
Linux), C++ based discrete event simulator for networking.
Through its GUI, users can create topology files and inspect
the state of each component during simulations [30].

To bridge the gap between the two worlds, some projects
propose a way to couple a road traffic simulator with a network
simulator, which seems to be the only viable solution in the
present time to do VANET simulations. For our work, we used
an open source bidirectional simulation framework called
Vehicles in Network Simulation (Veins) [31]. Veins couples
SUMO with OMNeT++ using the Traffic Control Interface
(TraCI) [32]. Veins already implements the WAVE protocol
stacks. It is most noticeable for IEEE 802.11p, IEEE 1609.4
multi-channel operation, and comprehensive models for the
MAC and PHY layers. We implemented the algorithm on top
of WAVE Short Message Protocol (WSMP) and IEEE 802.11p.
Unlike the standard IP protocol, WSMP allows applications to
directly control the lower-layer parameters such as transmission
power, data rate, channel number, and receiver MAC addresses.

We chose the Veins framework because it includes a com-
plete suite of models to make vehicular network simulations
as realistic as possible, without sacrificing the speed of execu-
tion. Additionally, Veins offers interesting features such as
online reconfiguration and re-routing of vehicles in reaction
to the network simulator.

We simulated different scenarios where vehicles are
stopped at a traffic light. Table 1 summarizes the technical
parameters shared by all the scenarios and simulated cases
of our algorithm. For all our simulations, we selected WAVE
(IEEE 802.11p) for the wireless communication standard,
with a bitrate of 18 Mbps. The propagation model used in
the simulations was the two-ray ground model. We opted for
this model because it is suitable for predicting signal strength
over distances of several kilometers, so for a vehicular net-
work where distances can be long, it gives better results in
terms of accuracy compared with other models. It is worth
to note that the bitrate, modulation and coding were chosen
based on [33].

Another important point to consider is the definition of a
stopped vehicle at a traffic light. There is no doubt that it is a
complex topic, and it will vary from person-to-person. In our
simulations, we considered two cases. The first case is related
to vehicles that are close-by the RSU (at a distance inferior to
15 m). These vehicles are considered stopped at the traffic
light if the light has been red for at least 0.5 s, and the vehicles
are immobile. For the vehicles that are at a distance of 15 m or
more from the RSU, we considered that they were stopped if
they were at a distance of 5 m or less of another stopped
vehicle, and with a speed inferior or equal to 5 km/h.

5 Analysis of the Performance Results of our
Simulations

This section discusses the results obtained for our experiments
in different scenarios.

In order to evaluate the accuracy and performance of the
proposed algorithm, we present and analyze some of the results
of our simulations that were executed mainly in three types of
scenarios: (1) scenarios with a one-way road of a single lane,
(2) scenarios with a one-way road of two lanes, and (3) scenar-
ios with a one-way road of three lanes. The one-way road was
8000m long, and each lane was 3.6m inwidth (note that ‘m’ as
a unit notation corresponds to meters). We used SUMO [28] to
generate the vehicular movement patterns, where the vehicles
move with random speeds within the given speed limit of the
roads, and according to the vehicles ahead. We run our simu-
lations with different numbers of vehicles.

We consider scenarios where vehicles are equally injected in
time into the scenarios (entering the road every 0.5 s) in an
extremity and move toward the traffic light. The vehicles move
forward when the traffic light is green and slow down and wait
at red traffic light until the light turns green. Thus, vehicles tend

Table 1 Simulation parameters

Parameter Value

Type of roads Main roads

Length of Road Section 8 km

Wireless Standard IEEE 802.11p

Transmission Bitrate 18 Mbps

Transmission Power 20 mW (13 dBm)

Receptor Sensitivity −89 dBm

Thermal Noise −110 dBm

Message Type WSMP data

Channel Bandwidth 10 MHz

Frequency Band 5.850–5.925 GHz

Radio Propagation Model Two-ray ground

Simulation Time 120 s

Vehicle Beacon Interval 1 s

Int. J. ITS Res. (2020) 18:122–139130

to form a line of vehicles where some of them are stopped by
the red traffic light, and others are moving toward it.

We also considered a fourth scenario, where we simulate a
simple signalized intersection with two roads that cross each
other at right angles (see Fig. 14). We propose this fourth
scenario to study the impact of two-way traffic over the algo-
rithm, and see if it presents scalability issues. Finally, in the
fifth scenario, we study the impact of the penetration rate of
WAVE over the algorithm.

5.1 Scenarios with a One-Way Road of One Lane

In this section, we study the accuracy and performance of the
algorithm in terms of the number of vehicles counted, the asso-
ciated response time to count the vehicles, and the number of
control messages (COUNT_REQUEST and COUNT_REPLY)
sent by the units during the counting, when we vary the number
of units and their propagation range in a road with one lane. For
all these scenarios, the RSU initiates the counting process with a
value of Hop Limit = 3.

Table 2 shows the number of units counted by our algo-
rithm when we varied the number of units (25, 50, 75, 100,
125, 150, and 175) and their propagation range (200 m,
250 m, 300 m, 350 m, and 400 m). The results are represented
as values a/b, where a indicates the number of vehicles that are
within the scope of the RSU using multihop routing (i.e.,
vehicles that should be counted) and b the number of vehicles
actually counted by our algorithm. For these experiments, we
can see that the algorithm has a high accuracy in the vehicle
counting, specifically for values of the propagation range
equal to 300 m, 350 m, and 400 m, even in conditions of high
vehicular flow, with an effectiveness between 97% and 100%,
in the counting. For example, for a number of units equal to
175 and a propagation range of 300 m, the RSU should count
175 units. As shown in Table 2, our algorithm also counted
175 units, being 100% effective in this case. There are some
factors that can contribute to the small error observed. The
major is due to missing information in the neighbors list of
some vehicles, and can be the result of BEACON messages
that suffer collisions or BEACON messages not sent on time.

Figure 8 shows the performance of the algorithm for the
response time when we varied the number of units (25, 50, 75,
100, 125, 150, and 175) and their propagation range (200 m,
250 m, 300 m, 350 m, and 400 m). For each number of units,
the results are shown in groups of five bars according to the
propagation range value, i.e., the first blue bar corre-
sponds to 200 m, the second cyan bar to 250 m, the
third purple bar to 300 m, the fourth green bar to
350 m, and the fifth yellow bar to 400 m. Each of these
bars represents the response time in milliseconds (ms)
for the proposed algorithm. We can note that for any
number of units, the response time is much lower for
higher values of the propagation range, specifically for
values equal to 350 m and 400 m. For example, for a
number of units equal to 100, the response time is equal

Table 2 Units counted when varying the number of units and
propagation range (road with one lane)

Total number of units Propagation range values in meters

200 m 250 m 300 m 350 m 400 m

25 25/25 25/25 25/25 25/25 25/25

50 50/50 50/50 50/50 50/50 50/50

75 75/73 75/73 75/73 75/74 75/75

100 100/98 100/99 100/100 100/100 100/100

125 125/123 125/124 125/125 125/125 125/125

150 150/149 150/149 150/150 150/150 150/150

175 175/173 175/174 175/175 175/175 175/175

0

5

10

15

20

25

30

35

40

45

50

25 50 75 100 125 150 175

)sdnocesilli
m(

e
miT

esnopseR

Total Number of Vehicles Stopped at a Traffic Light

200m 250m 300m 350m 400m

Fig. 8 Response time in different scenarios during the vehicle counting (road with one lane)

Int. J. ITS Res. (2020) 18:122–139 131

to 24.98 ms and 12.65 ms for a propagation range of
250 m and 400 m, respectively.

Figure 9 illustrates the behavior of the algorithm in terms of
t h e t o t a l n umb e r o f COUNT_REQUEST and
COUNT_REPLY control messages transmitted by units during
the counting of vehicles, when we varied the number of units
(25, 50, 75, 100, 125, 150, and 175) and their propagation
range (200 m, 250 m, 300 m, 350 m, and 400 m). We can see
that for a given number of vehicles, as we increase the propa-
gation range, the total number of control messages is reduced
significantly. For example, for a number of units equal to 175,
the number of control messages transmitted is equal to 16 and
10 for a propagation range of 200 m and 400 m, respectively.

5.2 Scenarios with a One-Way Road of Two Lanes

In this section, we study the accuracy and performance of the
proposed algorithm in terms of the number of vehicles count-
ed, the response time, and the total number of control mes-
sages sent by the units during the counting, in scenarios where

the vehicles are stopped at a traffic light on a one-way road
with two lanes. At the beginning of the simulations, the vehi-
cles are distributed in both lanes with a total number of units
varying from 50 to 350. The RSU starts the counting process
with Hop Limit = 3.

Table 3 contains the results that we obtained in the simula-
tions concerning the number of units counted. The results are
presented as values a/b, where a is the number of vehicles that
are within the scope of the RSU using multihop routing (i.e.,
vehicles that should be counted), and b is the number of ve-
hicles actually counted by our novel algorithm. As it can be
inferred from Table 3, our algorithm does well in this scenario,
and has a high accuracy in the vehicles counting. For example,
for a total number of 300 units and a propagation range of
350 m, the RSU should count 300 units. In our simulations,
our proposed algorithm counted 293 units, resulting in a small
error of 2.3%.

In Figs. 10 and 11, we varied the total number of units (50,
100, 150, 200, 250, 300, and 350) and their propagation range
(200 m, 250 m, 300 m, 350 m, and 400 m) with the aim of
evaluating the behavior of the algorithm with respect to the
response time and the total number of control messages sent
by the vehicles during the counting, respectively. The RSU
started the counting process with Hop Limit = 3. According to
our simulations, the best results are obtained with
values of the propagation range of 350 m and 400 m.
For example, for 300 units, we can see that the re-
sponse time is 36.78 ms (see Fig. 10) and the total
number of control messages sent is 12 (see Fig. 11)
for a propagation range equal to 250 m; while it is
25.86 ms (see Fig. 10) and 8 messages (see Fig. 11)
for a propagation range of 350 m. This behavior can be
explained by the fact that for a bigger propagation
range and a queue length that can be totally covered
by the specified Hop Limit, the number of actual hops

0

2

4

6

8

10

12

14

16

18

25 50 75 100 125 150 175

tneS
segasse

MlortnoCfo
reb

mu
NlatoT

Total Number of Vehicles Stopped at a Traffic Light

200m 250m 300m 350m 400m

Fig. 9 Total number of Control Messages sent in different scenarios during the vehicle counting (road with one lane)

Table 3 Units counted when varying the number of units and
propagation range (road with two lanes)

Total number of units Propagation range values in meters

200 m 250 m 300 m 350 m 400 m

50 50/50 50/50 50/50 50/50 50/50

100 100/99 100/100 100/100 100/100 100/100

150 150/147 150/147 150/147 150/147 150/148

200 200/194 200/194 200/194 200/194 200/197

250 250/242 250/242 250/244 250/244 250/246

300 300/289 300/292 300/293 300/293 300/297

350 350/323 350/327 350/329 350/331 350/334

Int. J. ITS Res. (2020) 18:122–139132

to complete the counting is smaller. As a result, the
response time and the number of control messages sent
are smaller.

5.3 Scenarios with a One-Way Road of Three Lanes

In this section, we look at the behavior of the proposed algo-
rithm, in terms of the number of units counted, the response
time, and the total number of control messages sent by the units
during the counting in scenarios where the vehicles are stopped
at a traffic light on a one-way road with three lanes. At the
beginning of the simulations, the vehicles are distributed in the
three lanes with a total number of units varying from 100 to 400.
The RSU starts the counting process with Hop Limit = 3.

Table 4 shows the results of the experiments for scenarios
where we varied the total number of units (100, 150, 200, 250,
300, 350, and 400) and their propagation range (200 m,

250 m, 300 m, 350 m, and 400 m). Similarly to the experi-
ments of Tables 2 and 3, our algorithm also has a high preci-
sion in the counting of vehicles for these scenarios.

Figures 12 and 13 show the results of the simulations for
scenarios where we varied the total number of units (100, 150,
200, 250, 300, 350, and 400) and their propagation range
(200 m, 250 m, 300 m, 350 m, and 400 m) with the aim of
evaluating the behavior of the algorithm with respect to the
response time and the total number of control messages sent
by the vehicles during the counting, respectively. In all the
simulations, the RSU started the counting process with Hop
Limit = 3. Again, the results of the simulations show good
response times with a small number of control messages sent
by the units during the counting of vehicles. Also, it is impor-
tant to mention that the best results are obtained for propaga-
tion range values equal to 350 m and 400 m. For example, for
400 units, we can see that the response time is 34.57 ms (see

0

5

10

15

20

25

30

35

40

45

50 100 150 200 250 300 350

)sdnocesilli
m(

e
miT

esnopseR

Total Number of Vehicles Stopped at a Traffic Light

200m 250m 300m 350m 400m

Fig. 10 Response time in different scenarios during the vehicle counting (road with two lanes)

0

2

4

6

8

10

12

14

16

50 100 150 200 250 300 350

tneS
segasse

MlortnoCforeb
mu

NlatoT

Total Number of Vehicles Stopped at a Traffic Light

200m 250m 300m 350m 400m

Fig. 11 Total number of control messages sent in different scenarios during the vehicle counting (road with two lanes)

Int. J. ITS Res. (2020) 18:122–139 133

Fig. 12) and the number of control messages sent is 12 (see
Fig. 13) for a propagation range equal to 200 m; while it is
20.26 ms (see Fig. 12) and 6 messages (see Fig. 13) for a
propagation range of 400 m.

We can see that the results obtained by the algorithm
in terms of counting were much more accurate in the
scenarios with a one-way road of a single lane (with a
accuracy that varies from 97.3% to 100%) compared to
those obtained with two (with an accuracy of 92.3% to
100%) and three lanes (with a precision that fluctuates
from 92.9% to 100%). However, the response times and
the total number of control messages sent by the units
during the counting were lower in the scenarios with a
one-way road of three lanes.

5.4 Application of the Proposed Algorithm
in a Scenario with a Four-Way Intersection

This section deals with the importance of estimating the num-
ber of vehicles stopped at a traffic light in road intersections, to
improve vehicular traffic. For that, we study the accuracy and

performance of our algorithm using a four-way intersection
with multiple lanes on both sides (as shown in Fig. 14).

In Fig. 14, labels A, B, C, D, E, F, G, and H indi-
cate the segments of the roads. In the corners of the
intersection, there are traffic lights. These traffic lights
are denoted as S1, S2, S3, and S4. The arrows indicate
the directions that should take the vehicles when arriv-
ing at the intersection. Each traffic light cycle is com-
posed of four phases as described next:

(1) In the first phase (see Fig. 15), the traffic light S1 changes
to green and the traffic lights S2, S3, and S4 to red, so that
the vehicles of segment A can cross the intersection in
direction to G, or turn right toward H, or turn left in
direction to F.

(2) In the second phase (see Fig. 16), the traffic light
S2 changes to green and the traffic lights S1, S3,
and S4 to red, so that the vehicles of segment B
can cross the intersection in direction to H, or turn
right toward E, or turn left in direction to G.

(3) In the third phase (see Fig. 17), the traffic light S3 chang-
es to green and the traffic lights S1, S2, and S4 to red, so
that the vehicles on segment D can cross the intersection
in direction to F, or turn right toward G, or turn left in
direction to E.

(4) Finally, in the fourth phase (see Fig. 18), the traffic
light S4 changes to green and the traffic lights S1,
S2, and S3 to red, so that the vehicles of segment

Table 4 Units counted when varying the number of units and
propagation range (road with three lanes)

Total number of units Propagation range values in meters

200 m 250 m 300 m 350 m 400 m

100 100/100 100/100 100/100 100/100 100/100

150 150/147 150/147 150/147 150/150 150/150

200 200/193 200/196 200/196 200/197 200/200

250 250/236 250/242 250/243 250/244 250/246

300 300/289 300/293 300/294 300/294 300/296

350 350/325 350/327 350/330 350/330 350/341

400 400/375 400/380 400/384 400/386 400/390

0

5

10

15

20

25

30

35

40

100 150 200 250 300 350 400

)sdnocesilli
m(

e
miT

esnopseR

Total Number of Vehicles Stopped at a Traffic Light

200m 250m 300m 350m 400m

Fig. 12 Response time in different scenarios during the vehicle counting (road with three lanes)

Int. J. ITS Res. (2020) 18:122–139134

C can cross the intersection in direction to E, or
turn right toward F, or turn left in direction to H.

Additionally, we placed the RSU in the center of the inter-
section (see Fig. 14). It is worth mentioning that in any of the
phases described above (see Figs. 15, 16, 17, and 18), in those
segments where the traffic lights change to red (segments B,
C, and D in the first phase; segments A, C, and D in the second
phase; segments A, B, and C in the third phase; segments A,
B, and D in the fourth phase), the vehicles will stop and,
consequently, vehicle queues will be formed and gradually
increased in size with the arrival of more vehicles. Now, our

algorithm can count vehicles in several directions in parallel.
For that, the fieldMessage Direction (see Fig. 1) must be set in
the COUNT_REQUEST messages. In these experiments, we
counted the number of vehicles in segments B, C, and D,
respectively, at the same time, during the first phase of the
traffic light cycle. For that, the RSU sends three successive
COUNT_REQUEST messages. The first one is sent toward
the end of segment B (with a Message Direction field set to
EAST), the second one is sent toward the end of segment C
(with aMessage Direction field set to SOUTH), and the third
one is sent toward the end of segment D (with a Message
Direction field set to WEST). At the beginning of the simula-
tions, the vehicles are distributed in the different lanes of the
roads that form the intersection with a total number of units

0

2

4

6

8

10

12

14

100 150 200 250 300 350 400

tneS
segasse

MlortnoCforeb
mu

NlatoT

Total Number of Vehicles Stopped at a Traffic Light

200m 250m 300m 350m 400m

Fig. 13 Total number of control messages sent in different scenarios during the vehicle counting (road with three lanes)

E

B

A

C

D F

G

H

RSU

S1
S2

S3 S4

Fig. 14 Outline of a four-way intersection

B

D F

H

RSU

S1 S2

S3 S4

Fig. 15 First phase of the traffic light cycle at the intersection

Int. J. ITS Res. (2020) 18:122–139 135

varying from 50 to 500. The RSU starts the counting process
with Hop Limit = 3.

In Tables 5, 6, and 7, we reported results relevant for exper-
iments of the proposed algorithm associated with the number of
units counted, the response time, and the total number of con-
trol messages sent by the units during the counting, respective-
ly, in scenarios where we varied the number of vehicles (50,
100, 150, 200, 250, 300, 350, 400, 450, and 500) randomly
distributed in the three segments (B, C, and D). Additionally,
we varied their propagation range: 200 m, 300 m, and 400 m.
As already stated, the simulations were done for the first phase

of the traffic light cycle (Fig. 15), that is, when the traffic lights
S2 (segment B), S3, (segment D), and S4 (segment C) are red,
and the traffic light S1 (segment A) is green. Since the vehicles
of segments B, C, and D will stop and wait for the green light,
queues will be created in these segments, and increase in size as
the time passes with the arrival of new vehicles, while vehicles
in segment A will continue their way to segments F, G, or H
(see Fig. 19). The results shown in columns B, C, and D of
Table 5 are the number of vehicles that should be counted/the
number of vehicles actually counted by our algorithm. Table 6
represents the response time in milliseconds (ms), while
Table 7 reports the total number of control messages sent by
the units during the counting. We can observe from the results
of our experiments that our algorithm effectively performs the
counting of vehicles in segments B, C, and D, with an adequate
response time (see Table 6), and with a low number of control
messages sent by the units (see Table 7). These counting results
can be used to select the next light phase of the traffic lights at
the intersection.

For example, for a total number of vehicles equal to 450
(which were distributed in segments B, C, and D with 144,
142, and 164 vehicles, respectively), and a propagation range
equal to 300 m, we can see that our algorithmmade a counting
with a high degree of accuracy in each of the segments (B, C,
and D). That is, in segment B, C, and D, the RSU should count
144, 142, and 164 vehicles, respectively, and our algorithm
reported 144 (an exact counting), 142 (an exact counting), and
163 (with a margin of error of 0.6%), respectively. According
to Table 6, the response times were 9.07 ms (segment B),
9.02 ms (segment C), and 11.96 ms (segment D), and a total
number of control messages sent by the vehicles equal to 4, in
each of these segments (see Table 7).

B

D F

H

RSU

S1 S2

S3 S4

Fig. 17 Third phase of the traffic light cycle at the intersection

B

D F

H

RSU

S1 S2

S3 S4

Fig. 16 Second phase of the traffic light cycle at the intersection

B

D F

H

RSU

S1 S2

S3 S4

Fig. 18 Fourth phase of the traffic light cycle at the intersection

Int. J. ITS Res. (2020) 18:122–139136

It is important to mention that in real vehicular contexts, in
fact, vehicle counting can be very helpful during critical pe-
riods of flow at an intersection, to make a wiser decision about
the light change [34]. Currently, vehicles have to wait a fixed
amount of time to get a green signal, even if the other roads at
the intersection have no traffic or a light traffic load. This
situation can be avoided by programming the lights according
to the vehicular density. In other words, the green light should
be extended to a longer period for the road where the vehicular
density is higher.

5.5 Scenarios with Different Penetration Rates

In this section, we study the influence of the penetration rate
over the algorithm. To this end, we use the same scenario as
the one of Section 5.1 (one-way road of a single lane).

Table 8 shows the counting error as a percentage when we
varied the number of vehicles (25, 50, 75, 100, 125, 150, and
175) and the penetration rate (100%, 95%, 90%, 85%, and
80%), with a propagation range of 300 m. The simulations
seem to indicate that the counting error is proportionally affect-
ed by the decrease of the penetration rate, i.e., for a penetration
rate of 80%, the counting error fluctuates around 20% (which is
100%–80%). These results are encouraging, since the algo-
rithm still makes an effective counting of the units that do have
an RSU, even in the presence of not VANET-based
vehicles. It is worth to mention that there is no way
to count a vehicle that does not have an RSU when
we limit the system to the WAVE and GPS technolo-
gies. Aggregating some other information from other
sensors of the vehicles or from a few Bin-situ^ sensors
on the roadside might reduce the error counting, but this
possible research is outside the scope of this paper.

Table 5 Units counted at an intersection when varying the number of units and propagation range

Total number
of units

Propagation range values in meters

200 m 300 m 400 m

B C D B C D B C D

50 20/20 11/11 19/19 20/20 14/14 16/16 16/16 16/16 18/18

100 29/29 39/39 32/32 30/30 36/36 34/34 30/30 31/31 39/39

150 40/39 60/60 50/49 54/54 48/48 48/48 62/62 38/38 50/50

200 64/63 74/73 62/62 71/71 70/70 59/59 64/64 66/66 70/70

250 87/86 84/82 79/78 91/91 88/87 71/71 77/77 97/97 76/76

300 91/89 99/97 110/108 110/110 103/103 87/86 94/94 110/108 96/96

350 117/116 125/123 108/107 117/117 137/137 95/95 117/116 113/113 120/120

400 142/140 127/127 131/130 137/136 137/137 126/126 154/154 131/131 115/115

450 160/158 144/142 146/145 144/144 142/142 164/163 141/141 142/142 167/166

500 177/175 158/157 165/163 164/163 178/177 158/157 163/163 157/157 180/179

Table 6 Response time during the counting at an intersection when varying the number of units and propagation range

Total number
of units

Propagation range values in meters

200 m 300 m 400 m

B C D B C D B C D

50 3.99 ms 3.59 ms 3.83 ms 3.97 ms 3.99 ms 4.01 ms 3.96 ms 3.95 ms 3.99 ms

100 4.30 ms 4.85 ms 4.43 ms 4.54 ms 4.67 ms 4.60 ms 4.10 ms 4.35 ms 4.64 ms

150 5.12 ms 5.80 ms 5.23 ms 4.33 ms 4.25 ms 4.23 ms 5.68 ms 5.27 ms 5.52 ms

200 10.74 ms 10.97 ms 7.51 ms 7.52 ms 13.76 ms 7.18 ms 5.38 ms 5.75 ms 5.84 ms

250 11.95 ms 11.72 ms 8.51 ms 13.98 ms 13.49 ms 4.60 ms 5.47 ms 9.15 ms 5.35 ms

300 10.78 ms 11.50 ms 13.49 ms 11.35 ms 10.26 ms 9.05 ms 7.25 ms 10.32 ms 8.58 ms

350 16.69 ms 16.88 ms 12.27 ms 7.67 ms 7.43 ms 6.81 ms 5.45 ms 8.99 ms 9.23 ms

400 20.15 ms 19.22 ms 19.54 ms 8.06 ms 13.69/0 ms 8.19 ms 9.45 ms 8.99 ms 6.23 ms

450 22.45 ms 22.38 ms 21.93 ms 9.07 ms 9.02 ms 11.96 ms 9.05 ms 9.08 ms 10.21 ms

500 16.95 ms 16.48 ms 16.56 ms 9.58 ms 17.18 ms 13.64 ms 12.64 ms 12.28 ms 12.74 ms

Int. J. ITS Res. (2020) 18:122–139 137

6 Conclusions and Future Work

The major contribution that we have achieved in this paper is
the design and implementation of an efficient novel algorithm
to count vehicles that are stopped at a traffic light, by using
VANET technology. This algorithm can be used as a basic tool
in the development of Adaptive Traffic Control Systems
(ATCSs), and should dramatically help to optimize vehicular
flow.

The proposed algorithm was simulated in different scenar-
ios using SUMO and OMNeT++ as simulators, and Veins as a
framework to bi-directionally couple the simulators. To eval-
uate its performance, we conducted two different sets of

experiments. In the first set of experiments, we evaluated the
performance of our algorithm in scenarios where we varied
the total number of units and their respective propagation
range in one-way roads of one, two, and three lanes. In the
second set of experiments, we evaluated the behavior of the
algorithm in a four-way intersection, with several lanes.

The simulations that we performed show that our algorithm
efficiently calculates a total number of vehicles, with very low
response times and small numbers of control messages
(COUNT_REQUESTand COUNT_REPLY) sent by the units
during the counting.

As possible future work, we plan to enhance our algorithm
by dividing roads into Bsegments^ or Bregions of counting^ of
fixed or variable size, where a segment leader will be desig-
nated and be in charge of counting the vehicles in its respec-
tive segment, with the purpose of minimizing the response
time. We also intend to implement our algorithm under a radio
propagation model with random behavior and variations in the
link qualities from one transmission to the next, in order to
study and analyze its influence on the results. In the same
direction, we project to study the impact of a 10- to 15-m error
over the positions reported by GPSs, in the algorithms.
Finally, we are also interested in the development of a com-
plete procedure for more intelligent signal timing strategies to
improve traffic capacity at intersections [35], based on the
counting algorithm presented in this paper.

Acknowledgements We thank the CDCH-UCV (Consejo de Desarrollo
Científico y Humanístico) which partially supported this research under
grant number: PG 03-8066-2011/1.

References

1. Gamess, E., Mahgoub, I., Novel, A.: VANET-based approach to
determine the position of the last vehicle waiting at a traffic light.
In Proceedings of the 2011 International Conference on Wireless
Networks (ICWN’11), Las Vegas, Nevada, USA, pp. 327–333 (2001)

2. Najafzadeh, S., Ithnin, N., Abd Razak, S., Karimi, R.: Dynamic
broadcasting in vehicular ad hoc networks. IJCTE. 5(4), 629–632
(2013)

B

D F

H

S1
S2

S3 S4

Fig. 19 Example of a scenario in a four-way intersection

Table 7 Total number of control messages sent by the units during the
counting at an intersection when varying the number of units and
propagation range

Total number of units Propagation range values in meters

200 m 300 m 400 m

B C D B C D B C D

50 2 2 2 2 2 2 2 2 2

100 2 2 2 2 2 2 2 2 2

150 2 2 2 2 2 2 2 2 2

200 4 4 3 2 5 2 2 2 2

250 4 4 3 4 4 2 2 3 2

300 4 4 5 4 4 4 3 4 3

350 6 6 4 4 4 2 2 3 4

400 6 6 6 4 5 4 3 3 2

450 6 6 6 4 4 4 4 4 4

500 6 6 6 4 6 5 5 5 5

Table 8 Counting error in percent when varying the number of units
and penetration rate (road with one lane)

Total number of units Penetration rates

100% 95% 90% 85% 80%

25 0.0 4.9 10.0 15.1 19.8

50 0.0 5.0 9.7 14.8 20.1

75 0.2 5.2 10.3 15.2 20.0

100 0.5 4.7 9.2 15.3 20.2

125 1.1 5.5 9.1 14.3 19.1

150 1.7 6.1 11.8 16.9 21.0

175 1.8 6.9 12.3 17.2 22.3

Int. J. ITS Res. (2020) 18:122–139138

3. Soto, R., Redes Vehiculares AdHoc – VANET. Boletín CIIAS
(Centro de Integración para la Industria Automotriz y Aeronáutica
de Sonora, A.C.). No. 047, Abril (2009)

4. Jiang, D., Delgrossi L.:BIEEE 802.11p: Towards an International
Standard for Wireless Access in Vehicular Environments.^ in
Proceedings of the 2008 IEEE 67th Vehicular Technology
Conference (VTC Spring 2008). Marina Bay, Singapore, pp.
2036–2040 (2008)

5. Li, Y.: An overview of the DSRC/WAVE technology. In: Quality,
Reliability, Security and Robustness in Heterogeneous Networks,
Vol. 74 of Lecture Notes of the Institute for Computer Sciences,
Social Informatics and Telecommunications Engineering, Springer
Berlin Heidelberg, pp. 544–558 (2012)

6. Uzcategui, R., Acosta-Marum, G.: WAVE: A Tutorial. IEEE
Commun. Mag. 47(5), 126–133 (2009)

7. Yi, S.: Design and construction of LAN based Car traffic control
system. World Acad. Sci. Eng. Technol. 46, 612–615 (2008)

8. Dornbush, S., Joshi. A.: StreetSmart traffic: discovering and dis-
seminating automobile congestion using VANETs. In Proceedings
of the 2007 IEEE 65th Vehicular Technology Conference (VTC
Spring 2007), Dublin, Ireland, (2007)

9. Ghazy, A., Ozkul, T.: Design and Simulation of an Artificially
Intelligent VANET for Solving Traffic Congestion. In
Proceedings of the International Symposium on Mechatronics
and its Applications (ISMA'09), Sharjah, United Arab Emirates,
March (2009)

10. Padron, F., Mahgoub I.: Traffic Congestion Detection Using
VANET. Florida Atlantic University, Tech. Rep. (2010)

11. Kell, E., Mills, E.: Traffic Detector Handbook. U.S. Department of
Transportation, Federal Highway Administration, 2nd Edition, pp.
1–39. USA, (1990)

12. Klein, L.: Sensors Technologies and Data Requirements for ITS
Applications, Artech House Publishers, Norwood, USA, 2001

13. Mimbela, L., Klein, L.: A summary of vehicle detection and sur-
veillance Technologies used in intelligent transportation systems.
Handbook, Federal Highway Administration, intelligent transpor-
tation systems, USA, (2007)

14. Grafling, S., Mahonen, P., Riihijarvi, J.: Performance evaluation of
IEEE 1609 WAVE and IEEE 802.11p for vehicular communica-
tions. In Proceedings of the 2010 Second International
Conference on Ubiquitous and Future Networks (ICUFN 2010),
pp. 344–348, Jeju Island, Korea (2010)

15. Leduc, G.: Road Traffic Data: Collection Methods and
Applications. European Commission, Joint Research Center,
Institute for Prospective Technological Studies, Seville, Spain,
(2008)

16. Chintalacheruvu, N., Muthukumar, V.: Video based vehicle detec-
tion and its application in intelligent transportation systems. Journal
of Transportation Technologies. 2(4), 305–314 (2012)

17. Harris, C. and Stephens, M.: A combined corner and edge detector.
In Proceedings of the 4th Alvey Vision Conference (AVC’88),
Manchester, United Kingdom, September (1988)

18. Lei, M., Lefloch, D., Gouton, P., and Mfadani, K.: AVideo-Based
real-time vehicle counting system using adaptive background meth-
od. In Proceedings of the 4th IEEE International Conference on
Signal Image Technology and Internet Based Systems, Bali,
Indonesia, (2008)

19. Tursun, M. and Amrulla, G.: A Video Based Real-Time Vehicle
Counting System using Optimized Virtual Loop Method. In
Proceedings of the 2013 International Workshop on Systems,
Signal Processing and their Applications (WoSSPA), Algiers,
Algeria, (2013)

20. Peiris, K., Sonnadara, D.: Extracting traffic parameters at intersec-
tions through computer vision. In: Proceedings of the Technical
Sessions, vol. 27, pp. 68–75 (2011)

21. Knaian, A.: A wireless sensor network for Smart Roadbeds and
Intelligent Transportation Systems. In: Master Thesis, Department
of Electrical Engineering and Computer Science. Massachusetts
Institute of Technology, Cambridge, Massachusetts (2000)

22. Litzenberger, M., Kohn, B., Gritsch, G., Donath, N., Posch, C.,
Belbachir, N.A., Garn, H.: Vehicle counting with an embedded
traffic Data system using an optical transient sensor. In
Proceedings of the 10th International IEEE Conference on
Intelligent Transportation Systems (ITSC’07), Seattle,
Washington, USA. (2007)

23. Contreras, M., Gamess, E.: A multi-Interface Multi-Channel algo-
rithm to count nodes using wireless technology. AJNC. 6(1), 1–19
(2017)

24. Luo Q., Wei S., Cheng H., and Ren M.:A cooperative framework
for region crowdedness sensing in VANETs. In Proceedings of the
2017 IEEE/CIC International Conference on Communications in
China (ICCC 2017), Qingdao, China (2017).

25. IEEE 1609 – Family of Standards for Wireless Access in Vehicular
Environments (WAVE), U.S. Department of Transportation,
January 2006

26. Hofmann-Wellenhof, B., Lichtenegger, H., Collins, J.: Global
Positioning System: Theory and Practice, 5th Edition, Springer,
September 2004

27. Martinez, F., Toh, C., Cano, J., Calafate, C., Manzoni, P.: A survey
and comparative study of simulators for vehicular ad hoc networks
(VANETs). Wirel. Commun. Mob. Comput. 11(7), 813–828 (2011)

28. Behrisch, M., Bieker, L., Erdmann, J., Krajzewicz, D.: SUMO -
simulation of urban MObility: an overview. In Proceedings of the
Third International Conference on Advances in System Simulation
(SIMUL 2011), Barcelona, Spain, October 2011

29. Varga, A., Hornig R.: An overview of the OMNeT++ simulation
environment. In Proceedings of the First International Conference
on Simulation Tools and Techniques for Communications,
Networks and Systems (SIMUTools 2008), Marseille, France,
March 2008

30. Gamess, E., Contreras, M.: A proposal for an algorithm to count
nodes using wireless Technologies. International Journal of High
Performance Computing and Networking. 8(4), 345–357 (2015)

31. Sommer, C., German, R., Dressler, F.: Bidirectionally coupled net-
work and road traffic simulation for improved IVC analysis. IEEE
Trans. Mob. Comput. 10(1), 3–15 (2011)

32. Wegener, A., Pi Orkowski, M., Raya,M., Hellbruck, H., Fischer, S.,
Hubaux, J.-P.: TraCI: an Interface for coupling road traffic and
network simulators. In Proceedings of the 11th Communications
and Networking Simulation Symposium (CNS 2008), Ottawa,
ON, Canada, April 2008

33. Wessel, K., Swigulski, M., Kopke, A., Willkomm, D.: MiXiM: the
physical layer an architecture overview. In Proceedings of the 2nd
International Conference on Simulation Tools and Techniques
(SIMUTools 2009), Rome, Italy. March 2009

34. Homburger, W.S., Hall, J.W., Loutzenheiser, R.C., Reilly, W.R.:
Volume studies and characteristics. In: Fundamentals of Traffic
Engineering, pp. 5.1–5.6. UC Berkeley Institute of Transportation
Studies, University of California at Berkeley (1996)

35. Huang, X., Zhang Q., Wang, Y.: Research on Multi-Agent Traffic
Signal Control System Based on VANET Information, in
Proceedings of the 2017 IEEE 20th International Conference on
Intelligent Transportation Systems (ITSC 2017), Yokohama, Japan,
October 2017

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

Int. J. ITS Res. (2020) 18:122–139 139

	An Algorithm based on VANET Technology to Count Vehicles Stopped at a Traffic Light
	Abstract
	Introduction
	Related Work
	Algorithm to Count Vehicles that Are Stopped at a Traffic Light, Using VANET Technologies
	Requirements and Assumptions
	Structure of Unicast COUNT_REQUEST and COUNT_REPLY Messages
	Structure of BEACON Messages
	Discovery Protocol for Neighboring Vehicles
	Algorithm
	Example of Propagation

	Environments and Scenarios for Simulation
	Simulation Tools

	Analysis of the Performance Results of our Simulations
	Scenarios with a One-Way Road of One Lane
	Scenarios with a One-Way Road of Two Lanes
	Scenarios with a One-Way Road of Three Lanes
	Application of the Proposed Algorithm in a Scenario with a Four-Way Intersection
	Scenarios with Different Penetration Rates

	Conclusions and Future Work
	References

