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Abstract
Continuous growth in traffic demand has led to a decrease in the air quality in various urban areas. More than ever, local
authorities for environmental protection and urban planners are interested in performing detailed investigations using traffic
and air pollution simulations for testing various urban scenarios and raising citizen awareness where necessary. This article is
focused on the traffic and air pollution in the eco-neighbourhood BNancy Grand Cœur^, located in a medium-size city from north-
eastern France. The main objective of this work is to build an integrated simulation model which would predict and visualize
various environmental changes inside the neighbourhood such as: air pollution, traffic flow or meteorological information.
Firstly, we conduct a data profiling analysis on the received data sets together with a discussion on the daily and hourly traffic
patterns, average nitrogen dioxide concentrations and the regional background concentrations recorded in the eco-neighbourhood
for the study period. Secondly, we build the 3D mesoscopic traffic simulation model using real data sets from the local traffic
management centre. Thirdly, by using reliable data sets from the local air-quality management centre, we build a regression
model to predict the evolution of nitrogen dioxide concentrations, as a function of the simulated traffic flow and meteorological
data. We then validate the estimated results through comparisons with real data sets, with the purpose of supporting the traffic
engineering decision-making and the smart city sustainability. The last section of the paper is reserved for further regression
studies applied to other air pollutants monitored in the eco-neighbourhood, such as sulphur dioxide and particulate matter and a
detailed discussion on benefit and challenges to conduct such studies.
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1 Introduction

Context As many urban areas have known a rapid increase, it is
expected that by 2050, almost 70% of the population will live in
cities [1]. According to TomTom [2], some of the most
congested cities around the globe are: Mexico City (66%),
followed by Bangkok (61%), Jakarta (58%), Chongqing
(52%) and Bucharest (50%). The large number of vehicles in
densely populated areas contributes to an increasing deteriora-
tion of the air quality due to motor vehicle emissions. According
to 2012 report of the U.S. Environmental Protection Agency
(US EPA) 61% of the total carbon monoxide concentrations

(CO) and 35% of total nitrogen oxide concentrations were pro-
duced by highways [3]. More recently, in 2015, the organisation
has further organised the International Decontamination
Research and Development Conference for exploring current
issues and future directions in detection, environmental emer-
gency response, risk communication, sampling, treatment, de-
contamination and decision support tool development [4].

Health Impact Various studies which have been recently pub-
lished showcase the severe health impact that air pollution can
have on public health. In 2017, the European Environment
Agency (EEA) had released a detailed analysis based on official
data from more than 2500 monitoring stations across Europe
[5]. Although the data shows that air quality in Europe is slowly
improving due to past/current policies and advanced technolog-
ical developments, the PM2.5 concentrations were responsible
for an estimated 428000 premature deaths annually. The report
indicates that in 2015, about 19 % of the EU-28 urban popula-
tion was exposed to PM10 above the EU daily limit value, 53%
was exposed to concentrations exceeding the stricter WHO

* Adriana Simona Mihăiţă
simona.mihaita@data61.csiro.com.au

1 DATA61, 13 Garden Str., Eveleigh 2015, Australia
2 ERPI laboratory EA6737, 8 Rue Bastien Lepage,

54010 Nancy, France

International Journal of Intelligent Transportation Systems Research (2019) 17:125–141
https://doi.org/10.1007/s13177-018-0160-z

http://crossmark.crossref.org/dialog/?doi=10.1007/s13177-018-0160-z&domain=pdf
mailto:simona.mihaita@data61.csiro.com.au


AQG value for PM10, while 30% was exposed to higher O3

concentrations above the EU target value threshold. The report
also outlines that the road transport sector was the largest
contributor to the total NOx emissions, as 89% of all values
above the annual limit value were observed around traffic
stations. Traffic is a major source of NO which reacts with
O3 to form NO2. Furthermore, 98% of the stations with
values above the annual limit were urban or suburban.
Therefore, reductions in NO2 concentrations need to be
focused on traffic and urban locations because its emissions
are close to the ground and are distributed over densely
populated areas.

Taking it to an international level, the 2017 official
report of OMS (Organisation Mondiale de la Santé) has
estimated to 7 million per year the number of total deaths
caused by bad air quality, especially in Asian countries
[6]. The causes listed can vary from high energy con-
sumption, intense industrial manufacturing, deforestation,
sand storms, with a deep emphasis on road traffic
congestion.

Economic Impact This health scourge causes a huge loss of
revenue for the global economy: 225 billion dollars loss of
revenue per year according to the 2016 report of the World
Bank, which wanted to raise high awareness on the financial
burden of poor air quality around the globe [7]. Global welfare
losses from exposure to ambient PM2.5 rose by 63% from
1990 to 2013, reaching $3.55 trillion—a reflection of worsen-
ing exposure in many fast-growing countries together with a
higher marginal cost for fatality risks which is normally asso-
ciated with rising incomes.

Without further sound policies and annual strict mea-
sures, air pollution could cost the global economy 2,600
billion dollars by 2060. These staggering figures come
from a study led by the Organization for Economic
Cooperation and Development (OECD) on BThe
Economic Consequences of Outdoor Air Pollution^ pub-
lished in [8]. Over the next 50 years, with rising living
standards and rising demand for energy, emissions of
most pollutants will increase significantly. In particular,
emissions of nitrogen oxides and ammonia, which con-
tribute to the formation of PM2.5 could almost double.
The increasing concentrations of particulate matter and
ozone in the air will also lead to an increase in cases of
illness requiring hospitalization, and implicitly in health
costs and sick days remuneration. OCDE sets the alarm
that from 21 billion dollars in 2015, worldwide health
expenditure could reach 176 billion dollars by 2060.

Therefore, we believe that by predicting the impact of air
quality one would gain quicker insights on the pollution evo-
lution in cities, allowing councils and regional air quality cen-
tres to trigger alarms and adopt specific measures to reduce
pollution concentrations.

Proposed Solution for Air Quality Prediction The complexity
of the air pollution lies in its extent and the large number of
factors changing its behaviour, making it even more difficult
to implement measures for protecting the citizens. Therefore, a
systematic evaluation of efficient traffic management strate-
gies to reduce traffic congestion requires effective transporta-
tion simulation modelling in order to efficiently assess op-
erational traffic performance and pollution impact at dif-
ferent spatial and temporal resolutions (e.g. network, cor-
ridor and segment levels, second-by-second, peak hours,
24-h, multiple days) [9]. Mesoscopic and microscopic traf-
fic simulation tools are widely used for obtaining very
detailed traffic analysis and provide traffic dynamic in-
sights second-by-second. Although they require a high
amount of data and can be computationally intensive, they
can be efficiently combined with various tools for air pol-
lution monitoring; a recent comparison study of various
integrated traffic simulation and air pollution tools is pro-
vided in [10]. For detailed insights regarding all traffic and
air quality modelling approaches, the reader can refer to
[11]. While the construction of the traffic simulation or
air pollution models can follow standard modelling tech-
niques, integrating both modules together requires an in-
creased complexity and data analysis.

In this article we build a simplified nitrogen dioxide
(NO2) estimation model from traffic and meteorological
data which validates the concept and efficacity of an
integrated mesoscopic traffic simulation model. In the
next section we introduce the context of our project
and the organisational framework of our work. We fur-
ther conduct a data profiling analysis in Section 2.3 and
provide more information on background concentrations
registered in the regional area of our study. Section 2.4
details the steps for building the 3D mesoscopic traffic
simulation model using real data sets receved from the
Grand Nancy traffic management centre. Although vari-
ous research studies consider other factors, such as
speed and acceleration to model and predict the air pol-
lution concentrations, these data sets are not always
available in many urban areas with limited traffic detec-
tors or monitoring capabilities, this being the case for
Nancy Grand Cœur as well. The results of the simula-
tion are used to implement the simplified estimation
model for NO2 (detailed in Section 3), by considering
as well meteorological data received from the local air
monitoring association Air Lorraine. In Section 3.2 we
further conduct a seasonality study over the traffic vol-
ume and validate the estimation results over real data.
Section 4 of the paper is used for further investigations
on other air pollutants available for analysis during the
same study period, such as SO2 and PM10. Lastly,
Section 5 presents the conclusions and future perspec-
tives are closing the paper.
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2 Integrated Traffic and Air Pollution
Simulation Model

2.1 Context

Maintaining a sustainable development in congested cities has
become a priority for local authorities, in order to provide
flexibility, intermodal transportation systems and green mo-
bility for its citizens. As a response to these problems, the
Beco-neighbourhoods^ have become the perfect test-bed for
new technologies in the context of a smart city. With the urban
project BNancy Grand Cœur^ (NGC) [12], the Grand Nancy
council wants to rehabilitate the boundaries of the historic
train station of Nancy (hosting almost 9 million passengers
every year), and the surrounding belonging to the city centre,
as represented in Fig. 1a).

This ecological urban project is intended to be delivered by
2020, and the objectives for the central train station of the city
are manifold: new green mobility, traffic regulation, reconcil-
iation between historical and modern neighbourhoods of the
city, environment quality and green public spaces, reduced
energy consumption, comfortable homes and offices. As the
ne ighbourhood is cur ren t ly suffe r ing s t ruc tura l
reconfigurations that are meant to reduce congestion and in-
crease fluidity, no study has been undertaken so far to analyse
the impact of these traffic reconfigurations on the air pollution
inside the eco-neighbourhood.

The traffic analysis in this paper is a continuation of our
previous study of the neighbourhood presented in [13] and
currently under review in [14], in which we build the 3D
mesoscopic traff ic simulat ion model of the eco-
neighbourhood in FlexSim, and propose an evolutionary al-
gorithm for optimising the traffic plan in the most congested
crossroads (as marked in Fig. 1b). In this paper, we only focus
on the Viaduct Kennedy, located near the train station area,
which contains the fixed air pollution station of the local air
monitoring association Air Lorraine (Fig. 1c).

The main objective is to conduct an initial study in order to
simulate, predict and analyse simultaneously the traffic flow
and the pollution concentration in this highly congested area.
The choice of focusing on this area is also related to the air
quality workstation of Air Lorraine, which provides accurate
and real-time information for model validation and testing.

2.2 Organisational Framework

Figure 2 summarises the organisational framework of the
work proposed in this paper, which contains the traffic simu-
lation model and the emission prediction model. We start by
collecting and analysing the real data sets available for our
study. For building the 3D traffic simulation model in
FlexSim, Grand Nancy provided: a) the network geometry
of the Viaduct Kennedy, b) the hourly traffic volumes during

one month period (January 2015) and c) the traffic signal
control plan of the crossroads. For analysing the air pollution
registered in the neighbourhood, the local air quality associa-
tion Air Lorraine provided the hourly concentrations regis-
tered by the fixed air monitoring station (as marked on Fig.
1c), as well as the meteorological indicators during the chosen
study period such as wind, temperature and humidity. As 56%
of the nitrogen dioxide in the air isknown to be caused by road
transportation [15], for this study we mainly focus on NO2

a) Urban project for NGC by 2020, source: Arep Ville 
– J.M. Duthilleul.

b) Urban area in 2013.

c) Focus on the “Viaduct Kennedy”, around the fixed 
Air Lorraine pollution station.

Fig. 1 Case study of the eco-neighbourhood BNancy Grand Cœur^
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concentrations, which are not as sparse and volatile as other
pollutants such as SO2 and PM10, which are discussed in last
section of the paper. By using the provided real data sets we
build the 3D mesoscopic traffic simulation model, which al-
lows us to obtain statistical measures of the traffic model, such
as mean number of cars/average stay-time (average travel-
time on each road section), and also graphically visual-
ise the evolution of meteorological conditions and NO2

concentrations. Using the outputs of the simulation
model, we construct a simplified prediction model for
the NO2, which is later validated through analysis and
comparison tests with real-data sets.

2.3 Data Profiling

2.3.1 Background Concentrations in Lorraine

Before entering the air pollution analysis, we provide some
insights over the background concentration and extended air
quality measures taken in the Nancy region in 2015 by the Air
Lorraine agency which was officially published one year later
in [16]. Their main motivation that year was to evaluate the air
quality in areas exposed to traffic circulation by using: a) a
mobile station measuring NO2, PM10 and PM2,5 and b) fixed
passive diffusion tubes for measuring volatile organic com-
pounds (specifically benzene, toluene, ethylbenzene, m+p-xy-
lene and o-xylene), and NO2 in the ambient air. Their cylin-
drical tubes contain a reactive agent for trapping the pollutant
to be studied. The study extended over 4 different periods and
for a total of 103 days in 2015, and had various observations
concerning the background concentrations, especially when
compared to previous years. Main findings of the report are
the following:

a) Air Lorraine maintains an inventory of atmospheric emis-
sions of pollutants and greenhouse gases resulting from
the different sectors of activity in France. The dominant
sectors in terms of polluting emissions in our study area
are the manufacturing industry-waste-construction treat-
ment, road transport, and the residential sector. According

to [16], sulphur dioxide (SO2) is almost exclusively issued
by the manufacturing-waste-construction industry (98%).
Same for CO, which goes up to 77%.Most of the nitrogen
oxides come from road transport (56%) and the
manufacturing-waste-construction industry (29%).
Similar for PM10 but in different proportions: 33% comes
from the manufacturing industry and 24% from road
transportation. PM2.5 comes mainly from the residential
sector (32%), road transport (30%) and the manufacturing
industry-waste-construction (18%).

b) The annual maximal limits for background concentrations
in 2015 were settled around: 40 μg/m3 for NO2, 40μg/m

3

for PM10 and 10 μg/m3 for PM2,5.
c) The mobile station circulating in daily traffic indicated

low annual means of 26 μg/m3 for NO2 and 23 μg/m3

for PM10 but higher values of 15 μg/m3 for PM2,5.
However, the regional fixed air pollution stations indicat-
ed average annual values of 45 μg/m3 for NO2 which are
higher than the accepted annual limit. According to
Air Lorraine, these limits are slightly higher than
measures taken in the previous years, especially in
the city centre, where the traffic flow has increased
consistently in latest years.

d) The passive tubes monitoring NO2 revealed that 8 out of
21measuring points exceeded the annual limit value of 40
μg/m3 and that most of them have significant spatial dis-
parities ranging between 13 and 63 μg/m3. The highest
concentrations were generally observed in narrow
canyon-type streets circulated by a large number of vehi-
cles. The measurements near our case study location have
revealed mean values of 51 μg/m3 in February 2015,
which is a period following immediately our case study
evaluation for January 215.

e) For PM10, the threshold of 50 μg/m3 was exceeded for 2
days (16th and 17th of February 2015). These exceedances
were also observed at other fixed stations in the Lorraine
region, which triggered the regional procedure for infor-
mation and recommendations related to pollutant emis-
sions, combined with favourable weather conditions for
the accumulation of this pollutant in the ambient air.

Fig. 2 Organisational framework
of the article
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These findings have been further used to analyse and eval-
uate the results obtained in our case study, which are detailed
in the next section.

2.3.2 Data Profiling for Pour Case Study

The first step in understanding the traffic and air pollution
behaviour is to analyse the initial data we have received
from Grand Nancy and Air Lorraine, during the month
of January 2015.

Table 1 provides a summary of the meteorological condi-
tions registered during our case study analysis. This period
was characterized by north-easterly winds blowing in early
January and almost daily snowy showers with a cold regime
(touching minimal temperatures of -4.7°C), followed by an
increase in temperature to a maximum of 13.1°C in mid-
January, only to drop again to the end of the month. Overall
temperatures registered an average of 2.98°C while wind
reached in average 11 km/h with a maximum of 37 km/h on
13th of January 2015. The wind rose from Météo-France
Nancy-Essey station (30 years ofmeasurements) indicates that
most of winds in this region are weaker but colder in winter.
The wind rose from the fixed measurement point of Air
Lorraine located in Nancy-West (Brabois) for the period
2005-2015 indicates the same trends in the provenance of
the winds.

The meteorological conditions seem to be favourable to an
accumulation of pollutants in the ambient air, especially as
January is a month of return-to-work activity after long holi-
days which registers normally an increased level of domestic
heating, road traffic and industrial activity.

Figure 3a presents the evolution of NO2 concentrations for
24 hours; we represent every working day of the month in
blue, weekends in yellow, and in red the evolution of the daily
average NO2 concentrations. As the behaviour of the pollutant
is highly influenced by the traffic in the city, in Figure 3b we
represent as well the hourly evolution of the traffic volume,
which we denoteNrctars. As the two graphics show, during the
morning and afternoon traffic rush hours (07:00-09:00 and
16:00-19:00), high levels of NO2 concentrations are dispersed
in the air as registered by the air pollution station. An interest-
ing remark is that in two of the NO2 series corresponding to
weekend days, we observe higher NO2 levels (80 μg/m

3) than

in working days (70 μg/m3). Overall the mean hourly concen-
trations for this period seemed to reach a maximum peak of
45.6 μg/m3 during the evening rush hour around 5 pm. This
level exceeds the annual average limits of 40 μg/m3 and by
taking a closer look to the hourly registered values once can
notice that these records sometimes exceeds even twice the
maximal approved limit; this finding reflects a high situational
awareness that needs to be triggered in advance for the current
regional area transiting towards a more ecological and sustain-
able environment.

Figure 4a, b presents the evolution of traffic and NO2 con-
centrations over the whole month. The maximal NO2 concen-
tration took place on the 5th of January 2015, when it reached
90 μg/m3, an acceptable value according to the air quality
index of the European Union [17], but bigger than regional
annual accepted limits according to Air Lorraine. By looking
at the weekend 10th to 12th of January 2015, one would remark
a dramatically NO2 reduction compared to the previous week-
end, and initially conclude to a similar trend during other
weekends; the trend does not seem to repeat itself, as the
weekend 17th to 19th of January 2015 signalised another in-
crease in NO2, although the traffic volume was similar to the
previous weekend. Altough in most days the recorded average
NO2 concentrations fall under 40 μg/m3, various weekends
and beginnings of working week registered records which
sometimes reached 60 μg/m3, possibly due to return-to-work
activity in the city.

The evolution of NO2[μg/m
3] seems to be as well influ-

enced by other external factors, such as wind [km/h], humidity
[%] and temperature [°C], which we consider for the current
analysis, as shown in Figure 5. For easing the visualisation of
variables with different unit measures, we plot only the nor-
malized values (ex. for temperature: (T − Tmin)/(Tmax − Tmin)).

By closely looking at the highlighted region in Fig. 5d we
observe that low NO2 concentrations usually occur when ei-
ther the wind is strong, humidity is high or there are few cars
on the streets. Conversely, high NO2 concentrations appear
when either wind and humidity are low, or there is a higher
number of cars on the streets (compared data fields 300
marked in each subfigure in Fig. 5. Figure 5b showcases the
antagonic evolution between temperature and NO2 which can
be observed especially in the second part of the study period:
when the temperature was low, the NO2 concentrations were
higher. The pheonomena is more obvious in the beginning of
our study period (5th of January being the first day back
to work after winter holidays), when temperatures
reached their minimum of -4.7°C (this means normal-
ized valued around 0°C) while NO2 concentrations
reached their highest peak touching a maximum of 90
μg/m3. This behaviour has further triggered the correla-
tion analysis presented in the following section.

To further investigate the stochastic influence of the climate
and human factors (domestic heating, road traffic, industrial

Table 1 Summary of meteorological conditions during our study
period

Min Max Average

Temperature [°C] -4.7 13.1 2.98

Wind [km/h] 0 37 11

Humidity [%] 0.38 0.98 0.85

Wind direction North-East
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Fig. 3 a Hourly NO2

concentrations and (b) hourly
traffic volume from January 2015

Fig. 4 a Monthly evolution of
NO2 concentrations and (b)
Monthly traffic counts.
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activity, etc.) over the air pollution, we conduct a correlation
analysis between these four parameters (temperature T, Wind
W, humidity H and number of cars Nrcars) and the NO2 con-
centration, for January 2015, as presented in Table 2. The
loose Spearman correlation (0.509) between the NO2 concen-
trations and the number of cars, indicates that other factors
(apart from the number of cars) seem to influence pollution,
as previously mentioned. Some of the factors we have consid-
ered to adopt the Spearman correlation coefficient are the fol-
lowing: a) the variables we have studied are not normally
distributed and the relationship between them is not linear b)
the data sets seemed to present high outliers which are hard to
interpret especially under the given meteorological circum-
stances and c) the data we have received is continuous and
provided records every hour.

Although Wind and Temperature seem to be highly corre-
lated (0.767) for our analysis (probably due to winter condi-
tions: colder winds can cause the temperatures to drop even
more), they both have a negative correlation with nitrogen
dioxide. This confirms the complexity of the model and the
need to further build a more complex regression model which
would help predict the changes in the air pollution and help
traffic planners and local authorities to test various reconfigu-
ration traffic scenarios.

2.4 Simulation Model

At the intersection between macroscopic and microscopic
models, the mesoscopic modelling applies principles of non-
equilibrium statistical mechanics to kinetic theory to model
the traffic flow. Considering the amount of literature that has
been generated during the last few decades, it seems to us that
there is not a unanimous consensus as to what exactly consti-
tutes mesoscopic traffic flowmodels [18]. In general, the most
popular approach when it comes to mesoscopic modelling is
to group nearby vehicles together with respect to one of their
traffic flow characteristics, e.g., their space-mean speed.
Instead of having to perform detailed updates of all vehicles’
speeds and positions, the cluster approach allows to treat these
vehicles as a set of groups (called either clusters, cells,
packets, or macro-particles), which are then propagated down-
stream without the need for explicit lane-changing

Fig. 5 Normalized concentrations of NO2 versus Nrcars, temperature,
humidity and wind

Table 2 Spearman correlations between traffic and various air quality
indicators

Indicator Nrcars T W H NO2

Nrcars 1 0.12 0.194 -0.185 0.509

T - 1 0.767 -0.55 -0.441

W - - 1 -0.549 -0.492

H - - - 1 0.281

NO2 - - - - 1
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manoeuvres (leading to the coalescing and splitting of various
colliding and separating groups). Other approaches are also
available based on either headway distribution models or gas-
kinetic model as detailed in [19] , while a comprehensive state
of art for various traffic flow models can be found in [20]. As
well, for details on available traffic simulation tools which can
be used at various modelling levels, the reader can redirect to
the work of Barcelo [21].

There are also some traffic simulation models which are at
the boarder of different modelling levels and which integrate
various phenomena non-existent in most similar models, as
detailed in [22]. For example, KRONOS, often classified as a
macroscopic model, has the possibility to simulate lane chang-
ing, merging and diverging behaviour, which could be also
considered a mesoscopic model. INTEGRATION which is
normally a microscopic model, does not explicitly consider
all the details of lane-changing and car-following behaviour,
but relies on the aggregated speed-volume traffic interaction
which is the attribute of macro models. The AVENUE simu-
lation model is another example which represents traffic as a
continuum flow, but at the same time it moves discrete vehicle
images for the convenience of route choice calculation and for
handling conflicts of vehicles in crossroads. We consider that
the exploration of different traffic simulation models at the
mesoscopic level is still open for new debates with various
integrations between different modelling layers, based on the
needs and specification of the modelling project.

Due to the size and nature of the simulation requirement,
the current traffic simulation model has been constructed at a
mesoscopic level in FlexSim, a discrete-event simulator in
which groups of vehicles have been assigned proportionally
to a set of paths depending on different time intervals during
the simulation period. This is equivalent to the MSA (Method
of Successive Averages) procedure of the Dynamic User
Equilibrium in Aimsun [23], which redistributes the flows
among the available paths in an iterative procedure.
However, this requires the number of iterations to be defined
by the O-D pairs and the time interval of the simulation.

Traffic flow inside the NGC neighbourhood is highly im-
pacted by the central train station of the city and its particular
suspended structure as previously shown in Fig. 1c. The study

zone we are considering for the traffic simulation contains the
junction made by Viaduct Kennedy with Rue Saint Léon,
Avenue Foch and Rue de la Commanderie.

The data used to create vehicles was received from the
Grand Nancy traffic management centre and represents a
time-sliced profile demand for each 15-min time interval dur-
ing morning peak hours; from this data we have further com-
puted dynamic turning rates between all road sections during
the simulation time interval. The simulator does not distin-
guish nor trace the individual behaviour of each vehicle in
the system but can specify the probabilistic turning rates of
small groups of vehicles moving together in the network.
Groups of vehicles will travel on each road section with a
random speed following a uniform distribution which is
bounded by the speed limit of each network link.
Every connection inside the model influences the travel
time computation for the next road section, as the aver-
age travel time is influenced by the flow, the occupation
of the segment or its capacity.

The traffic simulationmodelling in FlexSim comprises sev-
eral steps such as: network geometry importation (AutoCAD
files), importation of the 3D environment built on this geom-
etry (see a 3D visual representation of the model in Fig. 6), 15-
min time-sliced profile demand generation and path assign-
ment, traffic signals groups creation which includes a priority
feature for the tramway (see Fig. 7b), as well as traffic control
plans for pedestrian crossing synchronisation (see Fig. 7a).

By traffic control plan we denote the red-yellow-green cy-
cles of all the traffic lights inside the simulation mode, as
shown in Fig. 7c. For example, the traffic light F1 has a
starting green-light at second 37 and ends at second 13 in
the 55-second cycle length, therefore lasting for 31 seconds.
The yellow light lasts for only 3 seconds while the red-light
will start at second 17 and end at second 37 after which the
green light will be activated again. As an observation, a traffic
control plans is conceived for all normal traffic lights and also
for all pedestrian lights inside the considered intersection.

In our simulation model, the vehicles circulate on road
sections which have predefined speed limits. For all vehicles
circulating together on a specific road section, the group fol-
lows a variable speed allocation, which can vary between the

Fig. 6 FlexSim 3D simulation
model of the Viaduct Kennedy in
FlexSim
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a)

b)

c)

Fig. 7 a Traffic light plans representation (b) Tramway stop in FlexSim (c) traffic control plan example used for red-yellow-green light
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minimum of the vehicle speed and the maximum speed limit
of each path. If the path that the vehicle is on is a BPassing
connection^ in the model, then the vehicles will accelerate or
decelerate to the appropriate speed once they get on this path.
If it is non-passing, however, then vehicles will immediately
change their speed to the appropriate speed, without using
acceleration or deceleration.

Due to the stochastic nature of the mesoscopic model, sev-
eral iterations need to be run in order to obtain accurate results.
The method suggested by [24] is to run successive simulations
until the average mean and standard variation of the average
travel-time (or the average number of cars) fall within an ac-
ceptable confidence interval calculated in relation to the stan-
dard t-distribution. Using this procedure in accordance with a
confidence interval of 95%, the number of runs indicated ap-
proximately 13 runs per scenario. Given the importance of the
result accuracy, we decided to conduct 15 simulation runs for
each time-period scenario. The final simulation outputs have
been used for comparison with real-traffic flows and re-
calibrationwhen needed. FlexSim can run parallel replications
of the simulation model according to the number of available
processors. The simulations have been made using an Intel
Quad Core i7 (2.4 GHz) computer having 8 GB DDR3
SDRAM memory.

The traffic simulation outputs have been validated through
manual field measurements taken by volunteers during the
simulation times for morning peak (07:00 AM to 09:00
AM). The R2 value between simulated and real traffic vol-
umes was 0.8254 which we believe sufficient enough due to
possible human errors in counting. As well, we compared our
experienced travel-times on 4 main routes during the morning
peak with the average travel time of the simulation which
indicated a percentage error of 16.7%; this aspect gave confi-
dence in the accuracy of the simulation outputs. Further on,
the average traffic volumes have been used in the following
step of the integrated simulation and air pollution model.

Apart from constructing a clear insight of the traffic condi-
tions in this area during congested periods, our efforts have
been also oriented towards the integration of pollution data
and meteorological information in the simulation model,
which can be a complementary source of information in the
process of traffic and air quality dynamic monitoring. Various
air pollution studies use dedicated tools for representing the
concentrations of pollutants in a specific area, such as
MISKAM (Microscale Flow and Dispersion Model), which
has been used for the air pollution study in the eco-
neighbourhood Danube, from Strasbourg, France [25].
MISKAM is a three-dimensional microscopic simulation tool
which integrates fluid dynamics equations to simulate pollut-
ant concentration as a 3D mesh. Although it can offer precise
estimations of various pollutant concentrations, it needs large
amount of input data, such as the topography and height of the
buildings, the annual traffic emissions computed with

Circul'Air [26], meteorological data including the direction
and wind speed, etc. The main limitation we encountered for
integrating MISKAM and FlexSim outputs was mainly relat-
ed to the differences in the static and dynamic behaviour of the
tools. As our initial objective was to build a rapid and dynamic
simulation model which offers an immediate visual insight on
the hourly variation of the NO2 concentrations during January
2015, we integrated the pollution concentrations as entities
circulating in the model (as shown in Fig. 8a), while the wind,
temperature and humidity as visual indicators (Fig. 8b).

3 Regression Model of the NO2

After validating andbuilding the traffic simulationmodel,weuse
thesimulatedaveragetrafficvolumestobuild theestimationmod-
el of the NO2 concentrations. We make the hypothesis that all
vehicles considered here are contributing toNO2 concentrations,
as no data regarding different types of vehicles circulating in the
area is currently available. We start by training a least squares
multiple regression model (LSMRM) on the first 20 days of our
data set from January 2015, and we further test the results on the
temporally holdout 10 days. In order for the prediction model to
workaccurately,oneneeds tousecontinuousdata sets for training
the model. All variations which are corresponding to weekends
andweekdayhavebeeninitiallyincorporatedintheoverallmodel
evolution and it will showcase on the final accuracy of themodel
as represented inFig.9and laterdiscussed.Asanobservation,we
have chosen LSMRMafter first fitting a simple linear regression
model that only slightly improved the performance over a base-
line. Using the statistical tool Minitab, we obtain the following
regression equation, showing the evolution of the NO2 concen-
tration as a function of the average number of cars on theViaduct
Kennedy, the temperature, the wind and the humidity, which we
denote as predictors in this section:

NO2 ¼ 28:43þ 0:05Nrcars−1:04T−0:91W þ 2:04H ð1Þ

As an example from our winter data set, if we consider that no
cars are on the road (Nrcars = 0), and the Temperature is 2.9°C,
Wind =11.28 km/h and Humidity = 85.47%, then we obtain an
NO2 concentration of 29.74[μg/m3]; this falls under the over-
all average concentration which was 32.17 [μg/m3]. Table 3
indicates whether the predictors we have used are independent
variables, as shown by the variance inflation factor (VIF) [27].
A predictor with a VIF indicator superior to 5 would indicate
that it is highly correlated to another predictor. For our study
the current results show that the considered predictors are non-
correlated, as their VIF values are inferior to 5. In order to
analyse the weight and influence of each predictor over the
NO2 concentration, we analyse the P-value which is based on
the T-test. P determines the appropriateness of rejecting the
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Fig. 9 Real versus estimated NO2 concentrations during the last 10 days of January 2015

a)

b)

Fig. 8 a Visual representation of
NO2 (b) Climate indicators
dashboard
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null hypothesis in a hypothesis test and ranges from 0 to 1.
According to [28], a predictor with a a P-value superior to 0.05
has a high chance of not influencing the estimated parameter,
which is the case of the Humidity variable, with a P-value of
0.68. This result indicates that we can stop considering the
Humidity variable for further studies related to NO2. Other
pollutants have different behaviour and similar analysis need
to be conducted before evaluating the importance that each
predictor/feature/variable plays in the overall model accuracy.
If only after running a similar analysis one discovers a predic-
tor with a Bp-value^ higher than 0.05 then this predictor can be
dropped from the analysis.

The intercept value (28.43) in Eq. (1) indicates the presence
of other external factors which we haven’t included in this
study and which might have a strong influence over the NO2

variation, such as topography, height of the buildings,
wind direction, etc. The regression test also returns a
value of R2 = 0.67 for the coefficient of determination,
which indicates that the data fits in a good proportion to
the regression model.

3.1 Validation of the Prediction Model

Using Eq. (1) we forecast the NO2 concentrations over the
last 10 days of the data set, and compare them to the
initial real data set, as shown in Fig. 9. In this figure,
the evolution of the NO2 concentrations is presented in a
time series manner where each data point represents the
hourly NO2 concentration, starting from the beginning of
the data records, at midnight 1st of January 2015. Due to
the small scale of the figure on the page, the labels on the
Ox axis are summarized by day, although the series con-
tains all hourly records. The last ten days contain both the
real time series and the predicted one, which shows that
our model is capable of accurately predict the evolution in
time of the NO2 concentrations, regardless of the type of
day (weekend or weekday). A more detailed seasonality
analysis is further provided in Section 3.2.

According to [29], there are various indicators for measur-
ing the accuracy of a forecast, such as the Mean Absolute
Percentage Error (MAPE), Mean absolute Deviation

(MAD), Mean squared deviation (MSD) or Mean Squared
Errors (MSE). For the error accuracy and ease of calculation
we use the MAPE, which is defined as:

MAPE ¼ 1

n
∑
n

k¼1

Fk−Yk

Y k

�
�
�
�

�
�
�
�

ð2Þ

where n is the number of observation points, Yk is the actual
observation of the studied variable and Fk is the forecasted value.

For our study we obtained a MAPE of 23.61%, which
validates the forecast model. According to [30] the MAPE
needs to be inferior to 30% for an accurate model
validation.

3.2 Seasonality Study

By analysing the current results, we observe that one of
the independent predictors (traffic volume) is sensitive to
time changes during the whole data set we are testing. As
previously shown in Fig. 3b, the traffic volume has a daily
seasonality, with increasingly number of vehicles during
the morning and afternoon rush hours, and low volumes at
night. By conducting a trend analysis and seasonal decom-
position on the first 20 days of the data set, we predict as
well the number of cars during the last 10 days of January
2015. The best estimations we have obtained is by using a
multiplicative model (trend and seasonal components are
multiplied and then added to the error component), which
returned a MAPE of 21.15%. This was better when com-
pared to the additive model (the effects of individuals fac-
tors are differentiated and added together to model the
data) which returned a MAPE of 43.6%. After integrating
the fitted trend equation of the multiplicative model in Eq.
(1), we obtain a new regression equation:

NO2 ¼ 28:43

þ 0:05 337þ 0; 0026⋅Hdð Þ⋅ið Þ−1:04T−0:91W
þ 2:04H ð3Þ

whereHd represents the daily hours and i the seasonality index
per hour. When validating again the NO2 concentrations over
the last 10 days of the data set using Eq. (3), we obtain
a MAPE of 25.39%, which is still below the 30% val-
idation threshold.

Although less accurate than the initial estimation, this result
could provide good NO2 estimations when access to traffic
data is limited. The MAPE can be further improved if longer
data sets would be available for future studies and comparison.
Validating the model on longer periods needs a more detailed
analysis and verification, especially if other predictors would
be available for the study.

Table 3 NO2 Regression analysis results for the first 20 days of January

PREDICTOR COEFF. T P VIF [MIN; MAX]

Constant 28.43 5.63 0.00 - -

Nrcars 0.05 21.96 0.00 1.06 [0;657]

T[°C ] -1.04 -5.88 0.00 3.19 [-4.7;13.1]

W [km/h] -0.91 -8.82 0.00 3.30 [0;37]

H[%] 2.04 0.40 0.68 1.71 [38;98]
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4 Limitations and Further Studies on SO2
and PM10

The main limitations of this work are: a) restricted data sets
concerning the air pollutant concentrations and traffic counts
which have been received from the traffic management centre;
having access to longer periods of data would help to build
more traffic demand scenarios and analyse for example how
traffic control measures would improve the air quality in the
neighbourhood, b) integrating the emissions from the train
station would also improve the current model.

After the encouraging results obtained for the predictability
of NO2 using an integrated traffic and air pollution simulation
model, we extended our analysis to other pollutants which
were monitored by the Air Quality Monitoring station

in Viaduct Kennedy. More specifically, we investigated
the evolution of sulphur dioxide (SO2) and fine
Particulate matter (PM10) during the same time interval
(January 2015), and applied the same regression meth-
odology as previously described.

4.1 SO2 Findings

SO2 can be present in the air in areas with high industrial
activity (that uses materials containing sulphur) but can also
be present in motor vehicle emissions as the result of
fuel combustion. Although several desulphurization pro-
cedures and technical improvements have been adopted
to prevent this gas from being released in the atmo-
sphere, its presence is still detectable in the air and can

Fig. 10 a Hourly and (b) daily
SO2 concentrations.
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have a high impact on citizen’s health. Figure 10a pre-
sents the hourly SO2 concentration over the study period,
which shows alarming peaks registered mostly during the
morning and afternoon traffic rush hours (7:00-10:00 and
16:00-19:00). Compared to hourly NO2 concentrations,
which were more compact and followed almost the same
trend evolution during workings days or weekends, the
hourly SO2 concentrations are far sparser from one hour
to another and do not follow a specific daily evolutional
trend. This behaviour is as well observed by studying the
monthly evolution of SO2 presented in Figure 10b,
which suffered a high peak in concentration mostly over
the third week of January 2015.

By also conducting a Spearman correlation analysis be-
tween SO2 and the rest of predictors we notice very loose
correlation levels (0.207) with the traffic counts and small
negative correlation indexes with temperature, wind and hu-
midity, which confirm that other factors might be more impor-
tant in influencing the SO2 concentrations besides the current
investigated ones (see Table 4). As previously mentioned, in
[16] the authors enhance on the fact that sulphur dioxide is
almost exclusively issued by the manufacturing-waste-
construction industry to an extent of almost 98%, which
makes any prediction or environmental analysis very chal-
lenging as the data sets will be highly influenced by the in-
dustrial activity in the region where the air pollution monitor-
ing takes place and the season when the data has been collect-
ed. For a consistent analysis, bigger data sets on long period of
times (continuous monitoring over several months/years)
would be necessary to be able to accurately predict the evolu-
tion of SO2 and identify the most important predictor factor
that can be easily integrated in all future predictions.

4.2 PM10 Findings

The presence in the air of Particulate Matters with a diameter
smaller than 10 microns can highly affect the air quality and:
a) produce respiratory problems for citizens, b) change the
nutrient and chemical balance in water bodies, or c) reduce
traffic visibility. As many of the PM10 are produced by

Diesel engines, we investigated as well the impact of
the number of cars on the evolution of PM10 registered
in the current study area.

Figure 11a shows the daily evolution of PM10 concentra-
tions, which present sparse levels throughout the day, without
being directly influenced by the morning or afternoon traffic
peak hours. On the other hand, by observing the monthly
evolution of PM10 in Fig. 11b, one would notice a smooth
pollutant transition from one day to another without extreme
outliers from the average; the highest peak was registered
around 60 μg/m3, a low concentration level for PM10 accord-
ing to the air quality index of the European Union [17] but
much higher than the annual limit treshold of 40 μg/m3 iden-
tified by Air Lorraine in [16].

As many studies have indicated that humidity [31], wind
speed and temperature [32] have different effects on particle
number concentrations in various global regions, meteorolog-
ical conditions are essential factors in analysing the levels and
variations of particulate matter concentration. By further
conducting the correlation analysis between PM10 and the
number of cars registered on the roads, as well as meteorolog-
ical conditions, one can observe a negative and small correla-
tion (-0.144) between traffic and fine particles for the time
period investigated (see Table 5). This is mainly due to high
level of humidity and precipitations during winter when the
data has been collected, as shown by the negative and higher
correlation factors between PM10 and T (-0.547) or PM10 and
W (-0.494). Therefore, one would assume that fine particle
concentration registered in humid weather conditions are not
directly linked with the number of cars on the road.

This finding influences as well the LSMRM regression
analysis on PM10 applied for the first 20 days of the data set,
which leads to the following equation:

PM10 ¼ 9:14−0:00417⋅Nrcars−1:466⋅Tþ
þ0:0603⋅W þ 15:75⋅H ð4Þ

and the predictor analysis presented in Table 6. The VIF indi-
cators remain below 5 which indicate that the chosen predic-
tors are not correlated one to each other. On the other hand, the
p-values for the number of cars and the wind are bigger than
0.05, which indicate that these predictors will not influence
the initial regression equation, therefore their role will not be
significant in the prediction step. If we remove these 2 predic-
tors, one would only have to use the temperature and the
humidity to predict the evolution of fine particles in the
neighbourhood. The regression test also returned a value of
R2 = 0.44 for the coefficient of determination, which indicates
that the data does not fit in a good proportion to the regression
model. These findings put the prediction process for PM10 on
hold until further data sets will be available for use.

Table 4 Spearman correlations between SO2, number of cars, wind,
temperature and humidity.

SO2 Nrcars T W H

SO2 1 - - - -

Nrcars 0.207 1 - - -

T -0.074 0.192 1 - -

W -0.155 0.194 0.767 1 -

H -0.037 -0.185 -0.555 -0.549 1
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5 Conclusions and Future Perspectives

In this paper, we proposed an integrated air pollution and
traffic simulation model for building a simplified NO2

estimation model, inside an eco-neighbourhood from north-
eastern part of France. The first step was to conduct a detailed
data profiling analysis, by taking into consideration the latest
available information on the background concentration mea-
sured in the regional area which has been used for initial data

Fig. 11 PM10 daily and hourly
concentration

Table 5 Spearman correlations between PM10, number of cars, wind,
temperature and humidity

PM10 Nrcars T W H

PM10 1 - - - -

Nrcars -0.144 1 - - -

T -0.547 0.192 1 - -

W -0.494 0.194 0.767 1 -

H -0.315 -0.185 -0.555 -0.549 1

Table 6 Predictor analysis for PM10

PREDICTOR COEFF. T P VIF

Constant 9.14 1.91 0.056

Nrcars -0.0014 -1.85 0.065 1.07

T[°C ] -1.466 -8.77 0 3.19

W [km/h] 0.0603 0.62 0.539 3.31

H[%] 15.75 3.26 0.001 1.71
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assessment. The second step was to construct the 3D
mesoscopic traffic simulation model of the study area using
real data sets provided by the Grand Nancy council consisting
in profiled traffic counts (every 15minutes), traffic light signal
controls and plans, pedestrian information and manual counts
verifications. The third step consisted in using the simulated
traffic volumes to build the regression model and estimate the
NO2 concentrations over the last 10 days of the model. The
last step included a seasonality study in the prediction model
based on a daily variation of number of cars. All results show a
good forecasting for NO2 concentrations which is subject to
improve if more data would be available.

The same procedure was applied on SO2 and PM10 but the
data sets have shown different behaviour, especially for SO2

whose evolution is very hard to analyse and predict by using
only traffic and meteorological data. One would need further
information about the manufacturing industry in the area, the
operating hours and the products being manufactured, which
might be very difficult to obtain. The PM10 data analysis and
prediction indicated that more data sets would be required to
build the prediction model and that one month of observations
is not enough. This would imply further calibration and vali-
dation of the simulation model on extended time periods, with
further manual counts and verifications which are the subject
of approval from the Grand Nancy council.

The integrated platform represents a good support for testing
various traffic scenarios, such as the limitation of traffic access
in the neighbourhood during rush hours for regular cars, in
order to encourage the use of electric vehicles. The simulation
platform is a perfect tool for testing as well traffic light plan
optimization methods or reconfiguration scenarios that would
help improve the air quality in this highly-circulated
neighbourhood. We are currently working on extending the
hybrid model to the whole NGC eco-neighbourhood and build
more detailed air pollution estimationmodels which would take
into consideration all the types of vehicles on the roads. We are
also testing wireless air pollution sensors in the neighbourhood,
which offer real-time information of the air pollution at the
human level. By human level we refer to an average height of
around 1.5 meters, as the mobile stations were carried by hand
by various volunteers when walking inside the eco-
neighbourhood during rush hours. These sensors can be used
on a daily basis for home-to-work journeys and represent an
accurate supplementary source of information regarding the air
pollution in the neighbourhood. The latest findings have been
recently submitted for publication in [33, 34].

Acknowledgements This work has been developed in the ERPI labora-
tory, from Nancy France, under the Chaire REVES project funding. The
final writing and submission of the paper has been done in the
DATA61|CSIRO research laboratory from Sydney, Australia, with further
work on the analysis of SO2 and PM10 pollutants. The authors of this
work are grateful for the data and support provided by Grand Nancy, Air
Lorraine and FlexSim Conseil.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

References

1. UN.: World Urbanizatin Prospects: The 2014 Revision, Highlights
(ST/ESA/SER.A/352). Department oof Economic and Social
Affairs, Poulation Division, New York: United Nations (2014)

2. TomTom.: [Online]. Available: https://bit.ly/1RxyKAl (2018)
Accessed 4 4 2018

3. U. EPA.: What Are the Six Common Air Pollutants? [Online].
Available: http://www3.epa.gov/airquality/urbanair/ (2016).
Accessed 30 03 2017

4. U. EPA.: International Decontamination Research and
Development Conference. National Homeland Security Research
Center, Durham, NC (2015)

5. EEA.: Air quality in Europe— 2017 report. European Environment
Agency, Copenhagen, Denmark (2017)

6. OMS.: Plus sain, plus juste, plus sur: l'itinéraire de la santé dans le
monde 2007-2017. Organisation mondiale de la Santé ; Licence :
CC BY-NC-SA, Genève (2017)

7. W. B. Group and IHME.: The Cost of Air Pollution, Strengthening
the Economic Case for Action. The World Bank and Institute for
Health Metrics and Evaluation, University of Washington, Seattle
(2016)

8. OCDE.: Les conséquences économiques de la pollution de l'air
extérieur. Éditions OCDE, Paris (2016)

9. Xuesong, Z., Shams, T., Hao, L., Taylor, J., Bin, L., Nagui, M.:
Integrating a simplified emission estimation model and mesoscopic
dynamic traffic simulator to efficiently evaluate emission impacts
of traffic manageent strategies. 37, 123–136.

10. T. P. S. F. P. B. J. &. C. M. Fontes.: How to combine different
microsimulation tools to assess the environmental impacts of road
traffic? Lessons and directions. 34, 293–306 (2015)

11. Shorshani, M.F., André, M., Bonhomme, C., Seigneur, C.:
Modelling chain for the effect of road traffic on air and water qual-
ity: Techniques, current status and future prospects. 64, 102-123
(2015)

12. Nancy, G.: [Online]. Available: www.grand-nancy.org/grands-
projets/nancy-grand-coeur/ . [Accessed 30 3 2017].

13. Mihaita, A., Camargo, M., Lhoste, P.: Optimization of a complex
urban intersection using discrete event simulation and evolutionary
algorithms. Cape Town, South Africa (2014)

14. Mihaita, A., Dupont, L., Camargo, M.: An urban traffic signal op-
timization using a 3D mesoscopic simulation approach and evolu-
tionary algorithms (submitted) (2016)

15. MEDE.: Bilan de la qualité de l'air en France en 2012. Ministère de
l'écologie et du développement durable, Direction Générale de
l’Energie et du Climat, Paris (2012)

16. Lorraine, A.: Caractérisation de la qualité de l’air ambiant à Nancy
en 2015 en contexte de proximité trafic. Air Lorraine, Nancy (2016)

17. van den Elshout, S.: Citeair II, common information to European
air. European Union, Bruxelles (2012)

18. Ni, D.: Multiscale modeling of traffic flow. Mathematica Aeterna.
1(1), 27–54 (2011)

19. Maerivoet, S., De Moor, B.: Transportation planning and traffic
flow models. Katholieke Universiteit Leuven (2005)

20. Hoogendoorn, S.P., Bovy, P.H.L.: State-of-the-art of vehicular traf-
fic flow modelling. Journal of Systems and Control Engineering.
215(4), (2001)

21. Barceló, J.: Fundamentals of traffic simulation. Springer-Verlag,
New York (2010)

22. Wang, Y., Prevedouros, P. D.: Synopsis of traffic simulation
models. University of Hawaii, Manoa (1996)

140 Int. J. ITS Res. (2019) 17:125–141

https://bit.ly/1RxyKAl
http://www3.epa.gov/airquality/urbanair/
http://www.grand-nancy.org/grands-projets/nancy-grand-coeur
http://www.grand-nancy.org/grands-projets/nancy-grand-coeur


23. Aimsun.: TSS Barcelona. [Online]. Available: https://bit.ly/
2G174KH (2017) Accessed 24 03 2018

24. Archer, J., Hogskolan, K.: Indicators for traffic safety assessment
and prediction and their application in microsimulation modelling:
a study of urban and suburban intersections. KTH, Stockholm
(2005)

25. ASPA.: Modélisation de la qualité de l’air sur le futur éco-quartier
Danube. Association pour la surveillance et l'étude de la Pollution
Athmosphérique en Alsace., Alsace (2012)

26. Galineau, J.: Bilan des émissions atmosphériques du transport
routier en Lorraine. Air Lorraine, Nancy (2012)

27. Liao, D., Valliant, R.: Variance inflation factors in the analysis of
complex survey data. 38(1), 53–62 (2012)

28. Schlotzhauer, S.D.: Elementary statistics using JMP. SAS Institute
Inc, Cary (2007)

29. Makridakis, S., Wheelwright, S.C., Hyndman, R.J.: Forecasting
methods and applications (1998)

30. Barlas, Y.: Model validation in system dynamics. pp. 1–10 (1994)
31. H. A., K. H., S. S.L., J. J., J. H., P. T., A. F., N. T., K.M., S. J.N.: The

role of relative humidity in continental new particle formation. J.
Geophys. Res. Atmos 116, 909–926, (2011)

32. Hussein, T., Karppinen, A., Kukkonen, J., Härkönen, J., Aalto, P.,
Hämeri, K., Kerminen, V.-M., Kulmala, M.: Meteorological depen-
dence of size-fractionated number concentrations of urban aerosol
particles. Atmos. Environ. 40(1427–1440), (2006)

33. Mihăiţă, A.-S., Dupont, L., Chery, O., Camaego, M., Cai, C.: Air
quality monitoring using stationary versus mobile sensing units: a
case study from Lorraine, France. vol. Special Number of ITS
World COngress 2018, no. (submitted) (2018)

34. Mihăiţă, A.-S., Dupont, L., Chery, O., Camaego, M., Cai, C.:
Evaluating air quality by combining stationary, smart mobile pol-
lution monitoring and data-driven modelling. vol. (submitted)
(2018)

Adriana Simona Mihăiţă is a
Research Scientist working in
the Advanced Data Analytics in
Transport (ADAIT) team from
DATA61|CSIRO, Australia. She
holds a PhD in Automatic
Control obtained from the
"Institut National Polytechnique
de Grenoble", France in 2012. In
2016 she was the project leader
for investigating the positioning
accuracy from connected vehicles
using DSRC in CITI (project
funded by New South Wales gov-
ernment, Australia). Her research

interest expands to: large scale traffic simulations using machine learning
technologies in order to assist traffic planners to predict the congestion
impact on the Sydney traffic network, air quality monitoring and predic-
tion, hybrid systems, Markov Chains and event-based control.

Mirian–Jannet Benavides Ortiz
is an engineer graduated from
University of Santiago de Chile,
which enrolled in a double master
program with the University of
Lorraine, France in 2015. She
was previously a research associ-
ate teaching in the Department of
Technology and Information
Communication from Santiago
University. She worked under
the supervision of Dr. MIHAITA
during her master license.

Mauricio Camargo is a full
Professor currently working in
the domain of Technology
Management and Innovation at
t h e S c h oo l o f I n d u s t r i a l
Engineering in the Lorraine
Universi ty (ENSGSI) from
Nancy, France. Prof. Camargo is
involved in the development of
Lorraine Smart Cities Living
Lab, an innovation laboratory
with the main aim of establishing
a Buser-driven^ based develop-
ment model to enhance the citi-
zen’s quality of life and to support

the local economic and urban development. His main research studies are
new product development, decision making in product-process design
and cost estimation models.

Chen Cai is a senior researcher of
the Analytics Research Group at
Data61. He obtained his PhD on
computational transportation sci-
ence from University College of
London in 2010. His expertise lies
in transport modelling and ma-
chine learning techniques. He is
currently the deputy leader of the
BAdvanced Data Analytics in
Transport^ (ADAIT) team at
Data61. He is also a conjoint se-
nior lecturer at UNSW.

Int. J. ITS Res. (2019) 17:125–141 141

https://bit.ly/2G174KH
https://bit.ly/2G174KH

	Predicting Air Quality by Integrating a Mesoscopic Traffic Simulation Model and Simplified Air Pollutant Estimation Models
	Abstract
	Introduction
	Integrated Traffic and Air Pollution Simulation Model
	Context
	Organisational Framework
	Data Profiling
	Background Concentrations in Lorraine
	Data Profiling for Pour Case Study

	Simulation Model

	Regression Model of the NO2
	Validation of the Prediction Model
	Seasonality Study

	Limitations and Further Studies on SO2 and PM10
	SO2 Findings
	PM10 Findings

	Conclusions and Future Perspectives
	References


