
https://doi.org/10.1007/s13177-018-0154-x

Towards a Semantically Enriched Local Dynamic Map

Thomas Eiter1 ·Herbert Füreder2 · Fritz Kasslatter2 · Josiane Xavier Parreira2 · Patrik Schneider1,2

Received: 19 April 2017 / Revised: 11 February 2018 / Accepted: 19 February 2018
© The Author(s) 2018

Abstract
With the increasing availability of Cooperative Intelligent Transport Systems, the Local Dynamic Map (LDM) is becoming a
key technology for integrating static, temporary, and dynamic information in a geographical context. However, existing ideas
do not leverage the full potential of the LDM approach, as an LDM contains streaming data and varying implicit information
which are not captured by current models. We aim to provide a semantically enriched LDM that applies Semantic Web
technologies, in particular ontologies, in combination with spatial stream databases. This allows us to define an enhanced
world model, to derive model properties, to infer new information, and to offer expressive query capabilities over streams.
We introduce our envisioned architecture which includes an LDM ontology, an integration and annotation framework, and
a stream query answering component. We also sketch three application scenarios that illustrate the usability and benefits of
our approach, thus we provide an in-depth validation of the scenarios in an experimental prototype.

Keywords Cooperative Intelligent Transport Systems (C-ITS) · Local dynamic map · Ontologies · Semantic web
technologies · Streaming data

1 Introduction

For Cooperative Intelligent Transport Systems (C-ITS), the
integration of static, temporary, and dynamic information
in a geographical context is a crucial feature for the
understanding and processing of complex traffic scenes.
Different ITS systems collect (sensor) data and exchange
it by vehicle-to-vehicle (V2V), vehicle-to-infrastructure
(V2I), or combined (V2X) communication, which naturally
contains temporal data (e.g., traffic light signal phases) and

� Thomas Eiter
eiter@kr.tuwien.ac.at

Herbert Füereder
herbert.fuereder@siemens.com

Fritz Kasslatter
fritz.kasslatter@siemens.com

Josiane Xavier Parreira
josiane.parreira@siemens.com

Patrik Schneider
patrik@kr.tuwien.ac.at

1 Institut für Logic and Computation, Technische Universität
Wien, Favoritenstraße 9–11, A-1040 Vienna, Austria

2 Siemens AG Österreich, Siemensstrasse 90,
1210 Vienna, Austria

geospatial data (e.g., GPS location) of traffic participants.
Different types of messages are broadcast at most every
100 ms by traffic participants and roadside C-ITS stations to
inform other participants about the current local state, e.g.
about position and speed. The main types of V2X messages
are:

– Cooperative Awareness Messages (CAM) provide high
frequency status updates of a vehicle’s position, speed,
vehicle type, etc.;

– Map Data Messages (MAP) describe the detailed
topology of an intersection, including its lanes and their
connections;

– Signal Phase and Timing Messages (SPaT) give the
projected signal phases (e.g., green) for each lane; and

– Decentralized Environmental Notification Messages
(DENM) in

Since V2X communication is a key technology to
enable autonomous driving, many projects regarding this
technology have been carried out. The SAFESPOT [1]
and CVIS [30] projects are of particular interest, since
they are motivated by improving road safety. In these
projects, the concept of the Local Dynamic Map (LDM) was
introduced, which acts as an integration platform to combine
static digital maps, also called geographic information
system (GIS) maps, with dynamic environmental objects

International Journal of Intelligent Transportation Systems Research (2019) 17:32–48

/Published online: 26 March 2018

http://crossmark.crossref.org/dialog/?doi=10.1007/s13177-018-0154-x&domain=pdf
http://orcid.org/0000-0003-2973-5097
mailto:eiter@kr.tuwien.ac.at
mailto:herbert.fuereder@siemens.com
mailto:fritz.kasslatter@siemens.com
mailto:josiane.parreira@siemens.com
mailto:patrik@kr.tuwien.ac.at

representing, e.g., vehicles or pedestrians. As shown in
Fig. 1, the LDM consists of the following four layers:

(1) Permanent Static: the first layer contains static
information obtained from GIS maps that include
roads, intersections, and points-of-interest (POIs);

(2) Transient Static: the second layer extends the static map
by traffic attributes, roadside ITS stations, landmarks,
and intersection features such as more detailed topo-
logical data that include lanes and their connections;

(3) Transient Dynamic: the third layer contains temporary
regional information like weather, road or traffic con-
ditions, e.g., traffic jams, and traffic light signal phases;

(4) Highly Dynamic: the fourth layer contains dynamic
fast-changing information, mainly V2X messages of
road users including their GPS position, heading, and
speed.

We recognize that the LDM is a key technology for data
integration in cooperative ITS systems, which is indicated
by its initial standardization as ETSI [24, 25] and ISO
([27, 28]) technical recommendations. Influenced by the on-
going standardization efforts, there is a common under-
standing that the LDM should include a high-level API, a
GIS database (DB), and have SQL as a query language.
Thus, the LDM is a conceptual data store in an ITS station,
which integrates GIS maps, sensor data, and V2X messages.

To realize the LDM, the authors of [1] and [34]
suggest an object-oriented schema, called world model, a
topology of geospatial objects, and an object associator. The
object associator connects different objects like vehicles
and roadside units to the world model. Yet, the existing
ideas do not address the “streaming” nature of the data in

combination with the complex world model, which would
allow to leverage the full potential of the LDM approach.
The LDM can become a powerful integration tool for
sensor data and V2X messages in general, allowing complex
scene recognition by utilizing implicit information in the
streaming data. Such an advanced integration can be used to
provide new or enhanced functionality for ITS applications.
For instance, by combining the lane direction, the trajectory,
and the role of a vehicle (e.g., ambulances) a wrong-way
driver can be detected by querying the stream of V2X
messages. By implicit information, we mean all the data
that is not directly represented either by V2X messages or
by static information from the GIS map. We identified the
following list of important implicit information in an LDM:

– Part-Whole relations, e.g., a traffic light is part of an
intersection;

– Spatial relations, e.g., a car is crossing a stop lane that
is within an intersection;

– Connectivity, e.g., one intersection is connected to
another intersections via a road;

– Functionality, e.g., if two objects have the same
identifier (ID), they are the same.

In this paper, we aim to provide a semantically
enriched LDM that applies Semantic Web technologies
to the standard LDM approach, which include ontologies
(an enhanced world model), spatial-stream databases,
the related stream processing, and ontology-based data
access (OBDA) [15, 40] for connecting the ontology
with the database. Essentially, OBDA is the technique
for accessing databases through the ontology by queries
(typically, conjunctive queries). Although adding another

Fig. 1 The four layers of an
LDM [1] LOCAL DYNAMIC MAP

Layer 1:
Permanent Static

Layer 2:
Transient Static

Layer 3:
Transient Dynamic

Layer 4:
Highly Dynamic

Legacy vehicle

Vehicles
in queue

Signal
phases

Own vehicle (with position,
speed, status, etc.)

congestion

Trees

Fog bank

Accident
(just occurred)

33Int. J. ITS Res. (2019) 17:32–48

layer increases complexity, but we gain the following
advantages from a semantically enriched LDM:

– World Model: our notion of a world model is
captured by an LDM ontology, which is based on the
W3C standard OWL [31] and simply modifiable and
extendable. Extensions can be made without altering
the database and its relational schema.

– Model Properties: the formal models of an ontology and
the data have defined properties, which can be used
for verification, simplification, and optimization on the
conceptual level. For instance, by defining constraints in
the ontology, inconsistencies in the data can be found;
e.g., by stating disjointness of the concepts car and bicy-
cle, that a an object can not be both a car and a bicycle.

– Inference: OBDA allows us to infer new information
at query time (e.g., class hierarchies), which reveals
implicit information and keeps the amount of stored
data small.

– Expressive Queries: the queries are posed through the
ontology extending the vocabulary beyond database
relations. The query language of conjunctive queries1

(CQ) is simple and yet powerful. Furthermore, by
examining the structure of the ontology, we can obtain
meaningful combinations of query atoms, which aid in
building and validating user queries.

By semantically enriching the LDM, we highlight the
following contributions and related challenges, which we
aim to address in this paper:

– Modeling: besides the mentioned ETSI/ISO standards,
mobility vocabularies are defined in Schema.org and
Mobivoc.2 Yet, there are no comprehensive ontologies
available that allow to capture an LDM and related V2X
messages. The latter are standardized and thoroughly
specified, but based on a different (modeling) language,
namely the Abstract Syntax Notation One (ASN.1). The
specifications of V2X messages in ASN.1 are tree-like
and must be converted into triples of an RDF-graph, as
needed by the ontology standards in the Semantic Web.

– Integration and Annotation: after the conversions to
triples is completed, the V2X messages and the GIS
database have to be mapped to the given vocabulary
of the ontology. Due to the tree-like structure of
the messages, not all relations between objects are
available, hence we need to calculate the missing
relations, e.g., spatial relations. The integration and
annotation steps have to handle static and streaming

1CQs are a lean representation of SQL select-project-join queries:
q(x) = MAPLane(x) ∧ isIngress(x,T) is rewritten into
SELECT a.x FROM MAPLane AS a, isIngress AS b WHERE a.x =
b.x AND b.y = T
2http://schema.org/ and http://www.mobivoc.org/

data in a uniform way and should be easily extendable
and maintainable.

– Stream query answering: the combination of the meth-
ods and respective techniques for query answering
(QA) over streams are challenging regarding perfor-
mance and scalability. With OBDA, there is a trend to
lightweight query answering over ontologies; we thus
can benefit from recent results which improve perfor-
mance and scalability (cf. [15, 40]). On the other hand,
for query evaluation on stream database systems such
as PipelineDB3, most implementations are designed
toward efficiency, but not for complex query evaluation
using ontologies and/or geospatial data; both aspects
add complexity and diminish scalability.

The remainder of the paper is organized as follows.
Section 2 describes the state-of-the-art of the LDM
approach. In Section 3 we introduce Semantic Web and
stream-processing technologies. Section 4 presents our
envisioned architecture to illustrate how Semantic Web
technologies can be used for the LDM. Section 5 describes
the stream query answering component, which is a central
component of the architecture. In Section 6 we present three
application scenarios to show the benefits of a semantically
enriched LDM, which is evaluated in Section 7. Section 8
concludes with possible future works and refinements.

2 State-of-the-art of the LDM

In this section, we have a closer look at state-of-the-art
efforts regarding the LDM approach.

SAFESPOT Project The SAFESPOT project initiated the
term and definition of the LDM in work package D 7.3.1
[1]. The authors recognized that the data model “has a
hierarchical structure using associations between classes
to describe their relationships”. However, they dropped an
object-orient model in favor of a relational model tailored to
a Relational Database Management System (RDBMS) due
to performance concerns. The authors also suggested two
implementations based on commercial geospatial RDBMS:
PG-LDM and NAVTEQ-LDM. PG-LDM is developed by
Tele Atlas and built on top of PostGIS.4 This is a natural
choice, as the first and second layer contain largely
static GIS maps. NAVTEQ-LDM is built by Navteq5 and
uses SQLite6 as its geospatial RDBMS. It is thus well-
suited for the first and second LDM layer and already
targets the deployment on mobile devices. In SAFESPOT,

3https://www.pipelinedb.com/
4http://postgis.net/
5now part of https://here.com/
6https://www.sqlite.org/

34 Int. J. ITS Res. (2019) 17:32–48

http://schema.org/
http://www.mobivoc.org/
https://www.pipelinedb.com/
http://postgis.net/
https://here.com/
https://www.sqlite.org/

also a relational database schema was introduced, which
represents the four layers with different groups of tables
that include static features, moving objects, conceptual
objects, and relationships. Finally, it defined an API that
supports custom functions such as to access all lanes of a
road element (called getLanesForRoadElement) and a direct
interface to submit SQL queries.

ETSI/ISO Standards The initial standard was by the ETSI
TR 102 863 (V1.1.1) report [25], where an LDM was
defined as “a conceptual data store located within an ITS
station . . . containing information that is relevant to the safe
and successful operation of ITS applications.” The report
locates the LDM in the facilities layer of the ITS station
reference architecture and connects the four layers with
possible ITS applications. For example, speed limitation
is defined in the third layer and can be used for co-
operative speed management. The report also recognizes
that the LDM architecture is made of a management and
a data store that can be accessed through an API with
three interfaces, called AF-SAP for applications, NF-SAP
for networking, and SF-SAP for security. It also addresses
the topic of how the LDM can be linked to the road
network of a static GIS map (the first layer), called dynamic
location referencing. In the ETSI EN 302 895 (V1.1.0)
final draft [24], the work of the previous report was
extended with new functionalities, introducing LDM Data
Objects, which are compositional data structures, and LDM
Data Providers/Customers. Also a new interface for LDM
services and maintenance was defined. Via the interface
Data Objects can be fetched with SQL-like filtering and
selection statements. We view a semantically enriched LDM
as an extension of LDM Data Objects and Providers. With
a more international focus, the ISO/TS 17931:2013 [27]
and ISO/TS 18750:2015 [28] reports defined comparable
standards to ETSI, which include an LDM architecture, data
models, and an embedding into the ITS architecture.

Recent Research Netten et al. [34] introduced DynaMap,
which is an extension to the LDM architecture. They recog-
nized that previous work on the LDM was car-centric and
thus focussed on roadside ITS stations. Netten et al. defined
a novel architecture that includes data sources, a world
model, world objects, and data sinks. World objects are
created by the world object associator based on the streamed
input from the different data sources which includes V2X
messages and sensor readings. The world model resembles
an ontology and defines the relationships between all the
objects including their hierarchical relations and a running
history of data items. They also recognize that each object
has a reference position that connects it to a spatial topology.

Koenders et al. [29] developed an “open Local Dynamic
Map”, where they point out that the LDM cannot store

all objects and their data items permanently. Hence,
they introduced a “simple” streamed filtering technique,
by deleting the objects that are too far from the ITS
station. They designed their own relational schema having
tables for areas, objects, and roads including a spatial
topology. They also provided additional functions to the
LDM, which include map-matching and a security layer.
Shimada et al. [42] implemented the initial (RDBMS-
centric) approach by SAFESPOT and evaluated it in a
complex collision detection application scenario. For the
evaluation, a traffic simulation tool was used to generate
V2X messages for different numbers of vehicles. The
authors also recognized that GIS maps and tools can be
open-source and extracted the road graph from collaborative
mapping project OpenStreetMap (OSM).7

Ulbrich et al. [45] introduced a graph-based context
representation of the static and dynamic environment used
by an ego vehicle. For the context representation, they
developed an ontology that includes classes for actions,
traffic objects, and situations. The ontology is part of an
“overall” context model that includes (a) a geometric layer,
(b) a topological layer, and (c) a semantic layer, which are
all linked to each other. Besides the context model, the
authors described an approach for information aggregation
in order to enrich the model. Furthermore, they provided
a quantitative evaluation of the approach in the context of
their Stadtpilot project.

Zoghby et al. [48], investigated an approach to improve
the environmental perception of vehicles by cooperative
perception. They extended the individual LDM of each
vehicle with an extension called Dynamic Public Map
(DPM) that is based on Dynamic Distributed Maps (DDM),
which are exchanged between the vehicles. They provided
an algorithm for calculating the DPM using (i) a discounting
step with confidence evaluation, (ii) a prediction step
using spatial and temporal alignment, and (iii) a fusion
step using an existing association algorithm. An extensive
experimental evaluation showed that the DPM improves the
detection of surrounding vehicles and their classification.

Colored spatio-temporal Petri nets as introduced by Zhao
et al. [47] are intended to model traffic control cyber-physical
systems. We believe that these nets are an orthogonal
approach, but could be extended to streamify the LDM.

Current Shortcomings The above efforts are already mature
and allow an elaborate usage of the LDM. However, they
are of limited use in a complex, fast-changing environment
with vehicles that update information at high frequency. We
believe the following shortcomings are still present:

– Database-centric: besides DynaMap, all other efforts
have a database-centric model of the LDM using a

7https://www.openstreetmap.org/

35Int. J. ITS Res. (2019) 17:32–48

https://www.openstreetmap.org/

static schema, where the LDM objects are directly
mapped to relational tables. New types of objects need
a modification of the schema, which makes it harder to
add new domains, e.g., traffic regulations. Furthermore,
the database schema cannot simply capture and query
class hierarchies and the dependencies between the
different objects as it is not graph-based.

– Stream processing: except DynaMap, other efforts are
designed to work on top of a GIS database (e.g.,
PostGIS) and neglect the streaming nature of the LDM
data, since it should allow for real-time queries over
large amounts of data “in-stream”, i.e., without storing.
Stream processing needs a clear data model (e.g.,
a point-based model) and a defined query language
that supports window operators (e.g., having sliding
windows), stream joins, and aggregation over streams
(e.g., average speed over 30 s). These features are
either entirely missing or only considered in external
components.

– Sound integration: the integration of all layers and
the model of a complex intersection could lead to
incomplete or inconsistent data. A MAP message
allows integrity constrains to check for wrongly
connected lanes. However they are only implicit in the
database definitions and do not cover for all possible
integrity cases (e.g., disjointness between classes).

As already mentioned, DynaMap and Stadtpilot address
to some extent the above shortcomings, but differs from
our work in three points: (a) our world model is based
on a standard language using ontologies, thus existing
approaches and algorithms can be applied directly; (b)
their streaming support is based on “monitors” or “vector
of points” that do not provide the power of a full
query language, hence, this makes a flexible processing,
optimization, and integration harder; and (c) checking
inconsistencies is not an aim of both projects. Thus,
our emphasis is more on query answering over streams
with ontologies, whereas DynaMap and Stadtpilot have
an object-oriented data model and use custom processing
techniques such as a point-in-lane-segment algorithm.

3 Background Technology andMethods

In this section, we give a brief introduction to the methods
and technologies that we envision to use for achieving a
semantically enriched LDM.

Semantic Web Technologies Semantic Web technologies
provide a common framework for sharing and reusing
data across boundaries. We refer to the seminal article of
Berners-Lee et al. [10] for an outline of the ideas and

architectural overview to the Semantic Web stack8 The
Resource Description Framework (RDF) [13, 41] serves as
a flat, graph-based unified data model which is based on
URIs as identifiers for objects and relations. An RDF graph
is represented by triples 〈S,P,O〉 of a subject S, a predicate
P, and an object O. Ontologies are used for modeling
knowledge domains, by expressing relations between terms
with a restricted vocabulary and by modeling them as
class hierarchies. In the Semantic Web context, OWL [31]
plays a central role as the standard modeling language
of ontologies with its (formal) logical underpinning of
Description Logics (DL) [6]. The vocabulary of a DL
consists of objects (called individuals), classes (called
concepts), and properties (called roles). Furthermore, a
knowledge base (KB) consists of a terminological box
(TBox), which contains axioms about relations between
classes and properties, and instance data in an assertion
box (ABox), which contains factual knowledge about
individuals by the following assertions represented as N-
triples (cf. [6]):

– Class assertions 〈id1 type Class〉: states object id1 is
of type Class, e.g., Vehicle;

– Object property assertions 〈id1 property1 id2〉: states
object id1 is related by property1 to object id2, e.g.,
〈lane1 isPartOf intersection2〉;

– Data property assertions 〈id1 property2 value〉: states
object id1 has a property2 with a numeric value, e.g.,
〈car1 hasSpeed 20〉.

In the light of data-intensive applications, there is a
trend to move from the expressive OWL 2 language
toward more scalable and tractable fragments called OWL
2 Profiles [33]. These research efforts have been focused
on efficient query answering techniques over lightweight
ontology languages, such as OWL2 QL [15] and OWL2
EL [5]. Conjunctive query evaluation over OWL2 QL
ontologies can be delegated by SQL query rewriting to
a RDBMS, which facilitates scalable query processing.
Ontologies modeled with OWL2 QL are well-suited for
defining the conceptual level. The Ontop system [40] is an
example for an ontology-based data access (OBDA) system,
where a global schema is defined as an OWL2 QL ontology,
and the source schemas are mapped to the global schema
by SQL queries. OBDA has been extended to non-standard
data formats such as GIS [9, 20], temporal data [4, 11], and
streamed data [14, 35].

Stream Processing and Stream Reasoning Relational
stream processing has been investigated for long. An
important step was the Continuous Query Language (CQL)

8A recent version is available at https://commons.wikimedia.org/wiki/
File:Semantic web stack.svg

36 Int. J. ITS Res. (2019) 17:32–48

https://commons.wikimedia.org/wiki/File:Semantic_web_stack.svg
https://commons.wikimedia.org/wiki/File:Semantic_web_stack.svg

[3] with the design goals of a clear syntax based on SQL-
99 and a multi-set (bag) semantics. The authors defined
streams and relations as data types and use the following
operators that map between them: (1) stream-to-relation,
(2) relation-to-relation, and (3) relation-to-stream. For (1),
they introduced various window operators n order to select
tuples rom a stream.Among them are time-based sliding,
tuple-based sliding, and partitioned window operators.

(2) is taken directly from the relational database setting;
for (3), they defined insert stream, delete stream, and
relation stream operators. Based on the operators, they
developed a method for query execution and benchmarked a
prototype implementation of a highway tolling application
scenario in order to show the applicability of their approach.

Stream reasoning studies how to introduce reasoning pro-
cesses into scenarios that involve streams of continuously
produced information. In that, domain models provide back-
ground knowledge for the reasoning and lift streams to a
“semantic” level. Particular aspects of stream reasoning are
incremental and repeated evaluation, either push-based, i.e.
on data arrival, or pull-based at given points in time, and
using data snapshots (called windows) to reduce the data
volume. Windows can be obtained by selecting data based
on temporal conditions (called time-based windows) or data
counts. Besides the seminal CQL, many formalisms and
languages for stream reasoning exist. Among them are

(1) extensions of the SPARQL web query language, e.g.,
C-SPARQL [7], Morph-streams [14], and CQELS
[36];

(2) extensions of ontology languages to streams e.g., by
Ren and Pan [39], STARQL [35], and Cayuga [39];
and

(3) rule-based formalisms e.g., ETALIS [2], Reactive ASP
[26], Teymourian et al. [44], LARS [8], metric Datalog
[12], and Streamlog [46].

LARS [8] provides a rule-based formalism with generic
windows as first class citizens. Windows can be nested, and
modal operators allow to reason about points in a window.
LARS provides a monotonic and an answer set program-
ming (ASP) semantics that generalizes the standard ASP
semantics. It offers nondeterminism and nonmonotonicity
to deal with missing information. The ETALIS system [2],
which was applied to traffic management, offers a rule-
based language to express complex event patterns enriched
with a background KB. The patterns are expressed with
predicates like af ter(e1, e2) and are combined with the KB
and causal parts for query answering. The standard Pro-
log query evaluation is altered to an event-driven backward
chaining (EDBC) of rules. A Prolog system is then trig-
gered to evaluate a query and the EDBC rules when new
data is passing by. The STARQL framework [35] is an effort
for streamifying ontology-based data access (OBDA) by

introducing an extensible query language and uses tempo-
ral reasoning over sequences of ABoxes. The framework
extends the first-order query rewriting of DL-Lite with
Intra-ABox reasoning.

4 Architecture of a Semantically Enriched
LDM

Our envisioned architecture is shown in Fig. 2 and illustrates
how Semantic Web technologies can be used to enrich the
LDM. In this paper, we focus on the main methods and
related techniques the architecture and leave parts of the
technical analysis to (existing) in-depth work (see [22] and
[23]). Also, we show how the architecture is implemented.

We apply and extend two different methods for the
semantic enrichment: first, rule-based methods are used to
(semantically) complete the LDM by materializing newly
derived data. This is applied to slower changing data of the
first, second, and third layers of the LDM, but is is also
needed for more complex tasks like consistency checking
and diagnosis. Second, OBDA-based methods are applied
to (semantically) complete queries on demand by encoding
axioms (e.g., sub-class axioms) of the ontologies into the
query, called query rewriting. This approach is suitable for
large amounts of fast changing data that occur in the fourth
layer. The queries can be used for data aggregation and
(complex) event detection (details are shown in Section 5).
The starting points for the methods are the works on rule-
based spatial data extraction [21], spatial query answering
(QA) [20], and spatial-stream QA [23]. Next we describe
the LDM ontology, as well as the integration, annotation,
and linking framework.

LDM Ontology With the support of ITS domain experts,
we have modeled an ontology to capture the four levels
of the LDM architecture as well as elements of a traffic
scene.9 The LDM ontology is represented by the W3C
standard OWL2 QL [15] for OBDA and partially rendered
in Fig. 2b. Besides the restriction to OWL2 QL, our methods
are ontology-agnostic, hence other ontologies could be used
as well. We follow a layered approach starting at the bottom
with a simple separation between the following classes:

– V2XFeature is the spatial representation of V2X
objects;

– GeoFeature represents the GIS aspects of the LDM
including POIs and the road networks;

– Geometry is the geometrical representation of features;

9Available at http://www.kr.tuwien.ac.at/research/projects/loctrafflog/
LocalDynamicMapITS-v0.1-Lite.owl

37Int. J. ITS Res. (2019) 17:32–48

http://www.kr.tuwien.ac.at/research/projects/loctrafflog/LocalDynamicMapITS-v0.1-Lite.owl
http://www.kr.tuwien.ac.at/research/projects/loctrafflog/LocalDynamicMapITS-v0.1-Lite.owl

(a) System architecture (b) Ontology (partial rendering)

Fig. 2 LDM system architecture and ontology

– Actor is an individual actor involved in a transport
scene;

– Event describes events that happen in a transport scene;
– CategoricalValues such as allowed maneuvers or

vehicle roles (e.g., emergency vehicle).

We also introduce the following properties:

– properties for partonomies, e.g., isPartOf;
– spatial relations, e.g., intersects;
– connectivity, e.g., connected; and
– standard properties, e.g., isAllowed, hasRole,

isManaged, or positions.

The sub-classes of GeoFeature are linked to the
GeoOWL and GeoNames ontologies for embedding it
into existing work.10 V2XFeature is the domain specific
modeling of the MAP topology and describes the details of
an intersection including its lanes, allowed maneuvers, and
traffic lights. The Actor class includes persons, vehicles, as
well as roadside ITS stations. Objects of the Actor class have
their autonomous behavior and are a generator of streamed
data.

Static and Stream Databases In an LDM, we have to deal
with spatial-relational data that never or infrequently change
(the first and second layer), and the streaming data (third
and fourth layer) that changes at higher frequency (at most

10see http://www.w3.org/2005/Incubator/geo/XGR-geo/ and http://
www.geonames.org/ontology/

100 ms). Besides the TBox T that consists of the ontology
axioms, we distinguish between a (standard) static ABox A

that is a static database, a stream database F , a static spatial
database SA, and a spatial database with stream support SF .
These sources can be combined in different ways as shown
below, where angled brackets show that the sources are the
same physical and logical entity:

– (i) 〈A, F, SA, SF 〉 as a “universal” database, which
allows for streamed and spatial data;

– (ii) A, F, 〈SA, SF 〉 as a normal database for A, a stream
database for F , and a spatial database which allows for
time stamps;

– (iii) A, SA, 〈F, SF 〉 as a normal database for A, a spatial
database for SA, and a stream database with limited
support for spatial data;

– (iv) A, F, SA, SF as separate databases that are only
connected by query atoms at query time.

Our work builds on combination (iii), therefore we
enhance a stream database (in our case PipelineDB) with
the support for spatial data. The spatial data includes the
static spatial objects of the GIS maps such as POIs (e.g.,
petrol stations). Furthermore, V2X objects like intersection
topologies are also kept in the spatial database. After
integration and annotation of a V2x message, most of the
objects have a geometrical representation, i.e., polygons or
points. Objects of the first layer are initially added from
OSM instances (e.g., Vienna) and stored in the spatial
database. Objects of the second layer might be predefined

38 Int. J. ITS Res. (2019) 17:32–48

http://www.w3.org/2005/Incubator/geo/XGR-geo/
http://www.geonames.org/ontology/
http://www.geonames.org/ontology/

for a roadside unit or frequently updated by incoming MAP
messages.

The third and fourth layer are represented by a
stream database and include relations such as streams and
continuous views (named as in PipelineDB). The database
is modeled such that there are one-to-one mappings from
stream relations to continuous views, and further to the
TBox classes and properties. For instance, vehicle positions
are fed into the relation stream pos that is accessed by
view pos, which then is mapped to the property positions.
The stream relations keep the raw message data, which are
only accessible via the continuous views over the streams.

Integration and Annotation Framework The integration
framework represents the initial layer that is responsible
for (continuously) receiving the V2X messages. The raw
message data is extracted and added either to normal
relations (i.e., relational tables) of the static database or the
stream relations (called streams) of the stream database,
which are managed by PipelineDB. Note that in PipelineDB
streams are write-only, so the query component has to create
(read-only) continuous views on-demand for querying the
streams of data. Redundancy and duplication of received
message data is handled in this layer. Since we have a
one-to-one mapping between classes (e.g., vehicles) resp.
properties (e.g., speed) and database relations, we split the
message content into tuples and add them to the respective
relations. For instance, we add the tuples 〈car1〉 resp.
〈car1 hasSpeed 50〉 to the unary table Vehicle resp. binary
stream hasSpeed.

Furthermore, we align the data items to our system
timeline using the time injected by the data sources (called
application time). If the application time is missing, we add
the (implicit) arrival time. In addition to the alignment, we
erase duplicate data items in the working storage based on
the unique identification by object ID, message ID, and
application time. Duplicate data items might occur due to
the multi-hop propagation of V2X messages. Note that we
do not have distributed and redundant LDMs here, as we
consider in our system design only single roadside ITS
stations.

For the first three layers, we can take advantage of our
work on an OSM data extraction tool, which combines
Datalog rules with simple extract, transform, and load
(ETL) features [21]. Note that only the coarse road network
and POIs can be extracted from OSM, since detailed
topologies that include lanes are often not available or
inaccurate. Hence, we have to model the topologies single-
handed or extract it from other sources. In the ETL tool,
each rule is simply a mapping from a source to target with
an optional transformation step in between.

Example 1 The following rules create class and property
triples for police stations in a city, where GeoPoint and
TagPolice extract the OSM points that are tagged as
“police”:11

GeoPoint(x) ∧ TagPolice(x) → PoliceStation
(x).
GeoPoint(x) ∧ TagPolice(x) ∧ GeoPolygon(y)∧
TagCity(y)∧Inside(x,y) → hasPoliceStation
(y,x).

Linking Framework The linking framework (LF) computes
and stores links between objects that are not directly
represented in the data. The linking could be computed
offline or on-demand using similar Datalog rules as
in the annotation framework. For the linking, spatial
relations are the main focus, where we follow the standard
approach called Dimensionally Extended Nine-Intersection
Model (DE-9IM), which supports relations like touches,
intersects, or disjoint . For instance, one important link is
the adjacency of lanes.

Example 2 The following rule calculates the lanes that are
adjacent to other lanes:
MAPLane(x) ∧ hasLocation(x,u) ∧ hasLocation
(y,v)∧
MAPLane(y) ∧ touches(u,v) → adjacentLane
(x,y).

The atom MAPLane extracts the lane objects from the
incoming MAP message and hasLocation returns the
polygons of these objects, which are checked in touches
if the polygons touch each other. Another important link
is the connection of the MAP intersection object to its
representation in OSM, which is a node in the road network.
For this, the OSM representation has to be matched to the
closest MAP intersection, thus anchoring the V2X features
in the OSM road network.

Stream Reasoning and Problem Solving Simple events can
be detected by the stream QA component (details are
given in Section 5), but complex events like multiple-
vehicle collisions, which are a chain of simple events
satisfying specific temporal relations, are not expressible
by simple queries. This requires a more powerful stream
reasoning component, which could by enabled by a
more expressive rule-based formalism such as Answer
Set Programming (ASP) [19] that offers nondeterminism

11PoliceStation(x) and hasPoliceStation(x,y) are leg-
ible renderings of the N-Triples 〈x type PoliceStation〉 and
〈x hasPoliceStation y〉

39Int. J. ITS Res. (2019) 17:32–48

and nonmonotonicity. Adding a long-term memory for
detected events (called observations), the stream reasoning
component could also be geared toward model-based
diagnosis [37, 38], which would allow one to find the cause
for complex traffic problems like traffic jams. This is a topic
for future work.

API The LDM is defined as a data integration platform
that provides services to external applications. We aim to
support different types of APIs. First we aim to support the
standard API requirement by the ETSI TR 102 863 [25].
We assume that the SF-SAP is handled by the ITS station;
thus it is not in the scope of our work. As described in the
standard, the NF-SAP interface connects the LDM to the
communication functions of the ITS station and receives the
V2X messages, which are then forwarded to the integration
layer.

5 Query Answering over Streams

The QA component is central to the usage of a semantically
enriched LDM, since it allows us to access the streamed data
in the LDM. We focus on pull-based queries that evaluate a
query at a single point in time called the query time Ti .

Example 3 The following query should illustrate the
component as it detects red-light violations on intersections
by searching for vehicles y with speed above 30km/h on
lanes x whose signals will turn red in 4s:

q(x, y) : LaneIn(x) ∧ hasLocation(x, u) ∧ intersects(u, r)∧
pos[line, 4s](y, r) ∧ Vehicle(y) ∧ speed[avg, 4s](y, v)∧
(v > 30) ∧ isManaged(x, z) ∧ SignalGroup(z)∧
hasState[first, −4s](z, s) ∧ (s = Stop)

Query q exhibits the different dimensions that need to be
combined:

– Vehicle(y) and isManaged(x, z) are ontology atoms,
which have to be unfolded with respect to the ITS
domain that is modeled in the LDM ontology;

– intersects(u, v) and hasLocation(x, u) are spatial atoms,
where the first checks spatial intersection and the
second the assignment of geometries to objects;

– speed[avg, 4s](y, v) resp. pos[line, 4s](y, r) defines a
window operator that aggregates the average speed resp.
positions (as points) of the vehicles over the streams
speed and pos; hasState[first, −4s](z,Stop) gives us
the traffic lights, which switch in 4s to the state “Stop”.

For the evaluation of this query, we have to adapt OBDA
to handle spatial and streaming data, which is not considered

in the standard approaches like [15]. For that, we extend our
preliminary work [20] with a window operator, which (a)
collects a set of data items (e.g., positions or speed) for each
query atom from the underlying stream; and (b) calculates
different aggregation functions on the set of numerical (e.g.,
sum), sequential (e.g., first), and spatial (e.g., line) data
items.

Data Model and Query Language Our data model is point-
based (in contrast to an interval-based model) and captures
the valid time, extracted from the V2X messages, saying
that some data item is valid at that time point. To capture
streaming data, we introduce the timeline T, which is a
closed interval of (N,≤). A (data) stream is a triple F =
(T, v, P), where T is a timeline, v : T → 〈F, SF 〉
is a function that assigns to each element of T (called
timestamp) data items of 〈F, SF 〉, where F (resp. SF) is
a stream (resp. spatial with streams) database, and P is
an integer called pulse defining the general interval of
consecutive data items on the timeline (cf. [35]). A pulse
generates a stream of data items with the frequency derived
from the interval length. We always have a main pulse with
a fixed interval length (usually 1) that defines the lowest
granularity of the validity of data points. The pulse also
aligns the data items, which arrive asynchronously in the
database (DB), to the timeline. We allow additional larger
pulses that generate streams at lower frequency and thus of
larger intervals; this can be utilized to perform optimizations
such as e.g. caching.

Our query language is based on ordinary conjunctive
queries (CQs) and adds spatial-stream capabilites. Thus,
queries may contain ontology, spatial, and stream atoms. A
spatial-stream CQ q(x) is a formula:
∧l

i=1 QOi
(x, y) ∧ ∧n

j=1 QSj
(x, y) ∧ ∧m

k=1 QFk
(x, y) (1)

where x are the distinguished (answer) variables, y are
either non-distinguished (existentially quantified) variables,
objects, or constant values:

– each QOi
(x, y) has the form A(z) or P(z, z′), where

A is a class name, P is a property name of the LDM
ontology, and z, z′ are from x ∪ y;

– each atom QSj
(x, y) is from the vocabulary of

spatial relations and of the form S(z, z′), where
z, z′ is as before and S is one of the following
spatial relation rel ∈ {intersects, contains, nextTo,
equals, inside, disjoint, outside};

– QFj
(x, y) is similar to QOi

(x, y) but adds the
vocabulary for stream operators, which are taken from
[8] and relate to CQL operators [3]. We have a window
[agr, l] over a stream Fj , where l is the window size
in time units (positive for past, or negative for future).

40 Int. J. ITS Res. (2019) 17:32–48

The aggregate function agr ∈ {count, sum, f irst, . . .}
(see below for details) is applied to the data items in the
window:12

– [agr, l]: represents the aggregate of last or next
l time units of stream Fj ;

– [l]: represents the single tuple of Fj at index l

with l = 0 if it is the current tuple;
– [agr, b, e]: represents the aggregate on a

window between b and e in the past/future of a
stream. This extension is inspired by [12] and
allows to query historic data (e.g., logs), if they
are stored as streams.

Query Rewriting by StreamAggregation We aim at answer-
ing pull-based queries at a single time point Ti with stream
atoms that define aggregate functions on different win-
dows sizes relative to Ti . For this, we consider a semantics
based on epistemic aggregate queries (EAQ) over ontolo-
gies [16] by dropping the order of time points for the data
and handling the streamed data items as bags (multi-sets).
This is similar to classic stream processing approaches.
Roughly, we perform two steps, where we (1) calculate only
“known” solutions, and (2) evaluate the rewritten query,
which includes the TBox axioms as well, over these solu-
tions. Each EAQ is evaluated over one or more filtered and
merged temporal ABoxes. The filtering and merging, rela-
tive to the window size and Ti , creates for each EAQ φ one
(so-called) windowed ABox A�φ

, which is the union of the
static ABox A and the filtered streaming data items from
〈F, SF 〉. The EAQ are then applied on A�φ

by grouping and
aggregating the normal objects, constant values, and spatial
objects.

We introduce a bag-based epistemic semantics for the
queries, where we locally close the world for the specific
window and avoid “wrong” aggregations due to the open
world semantics of OWL2 QL. Further details on the
algorithm for EAQ evaluation are provided in [18, 23].

For normal objects and constant values, we allow differ-
ent aggregate functions such as count, min, max, sum,

avg, f irst, last on the data items of a stream. For last

and f irst , we need to search the bag of data items as the
sequence of time points is lost. This is achieved by itera-
tively checking whether we have a match at one of the time
points. In the implementation, the first and last match can
be simply cached while processing the stream.

For spatial objects, geometric aggregate functions are
applied to the bag of data items, which are usually
geometries. As with last , the order of the items is lost,
hence, we need to rearrange them to create a valid geometry
g(s), which is a sequence p = (p1, . . . , pn) of points pi .

12This would be represented in CQL as R[Range L], R[Now],
R[Range L Slide D], etc.

We also introduce new aggregate functions to create new
geometries:

– point : we evaluate last to get the last available position
p1;

– line: we create p = (p1, . . . , pn), where p1
= pn and
determine a total order on the bag of points, such that we
have a starting point using last and iterate backwards
finding the next point by Euclidean distance;

– line angle: this aggregate function determines angles
(in degrees) in a geometry by (1) applying the
function line, (2) obtaining a simplified geometry using
smoothing, and (3) calculating the angles between the
lines of the simplified geometry.

– polygon: similar to line, but we create a polygon
(p1, . . . , pn), where p1 = pn by: (1) determining the
convex hull of the bag of points, and (2) extracting all
pairs of points representing the convex hull;

– trajectory: The simplest approach to calculate a
trajectory is by using the function line. However, this
is often not sufficient, and more complex smoothing
and map matching functions might be needed. For
the prediction of the future paths, we allow different
projections such a linear or curvature-based models. As
additional information, we need to include the maximal
distance and step size for each time point, where the
current speed could be taken as simple approximation.
Also more elaborate models using velocity profiles
could be applied.

Besides the above aggregate functions, more functions
such as computing a minimum spanning tree could be
applied.

Query Evaluation by Hypertree Decomposition A main
challenge relates to the handling of three types of query
atoms that need different evaluation techniques over
possibly separate databases. Ontology atoms are evaluated
over the static ABox A using a “standard” OWL2 QL query
rewriting, i.e., PerfectRef [15]. For spatial atoms, we need
to dereference the bindings to the spatial ABox SA and
evaluate the spatial relations (e.g., inside) on the spatial
objects. Stream atoms are computed via EAQs over the
windowed ABoxes extracted from F and the spatial-stream
ABox SF .

In [20], we introduced two spatial query evaluation
strategies based on the assumptions that no bounded
variables occur in spatial atoms and that the CQ is acyclic
(roughly no proper cycle between join variables exists). As
shown in [20], one of them is based on the query hypergraph
and the derived join plan. This strategy is well-suited for a
lifting to spatial-stream CQs, since it allows us fine-grained
caching, the full control over the evaluation, and possibly
the handling of different database entities. We omit here

41Int. J. ITS Res. (2019) 17:32–48

decomposing an acyclic query into a hypergraph and the
related join tree (details in [32]). The main steps of our
query evaluation strategies are:

(1) construct the acyclic hypergraph Hq from q and label
each hyperedge in Hq with lO , lS , and lF , if it
represents an ontology, spatial, or stream atom, resp.
the combination of them; lF gets the window size
assigned, e.g., lF,2 for speed[avg, 2s](y, v).

(2) build the join tree Jq of Hq and extract the subtrees
Jφi

in Hq , such that each node is covered by the same
label lF,n. The intention is to extract subtree CQs that
share the same window size l (where static queries
have l = 0); they can be jointly evaluated and cached
for future query evaluations.

(3) apply detemporalization as described above, where
for each subtree Jφi

the stream CQ qφi
is extracted

and computed. The results are stored in a (virtual)
relation Rφi

, and each Jφi
is replaced with a query

atom pointing to Rφ .
(4) traverse Jq bottom up, left-to-right, to evaluate the

CQ qφi
for each subtree Jφi

(now without stream
atoms) and keep the results in memory for future steps.
Ontology atoms and spatial atoms are evaluated as
described before.

Caching for future queries is achieved by storing the
intermediate results in memory with an expiration time
according to l; static results never expire. Implementation
details are given in Section 7.

6 Application Scenarios

In this section, we give three application scenarios that
illustrate the usability and benefits of our approach. The
scenarios are related to the deployment of roadside ITS
stations on complex road intersections. The ITS stations
receive arbitrary V2X messages and are capable of sending
signal phases (SPaT) and the local intersection topology
(MAP) messages. The first scenario is concerned with static
data, where the consistency of a topology is validated
offline. The second and third scenario deal with streaming
data arising from vehicle movements (CAM) and SPaT
messages.

Application Scenario 1 (S1) - Consistency Checks The LDM
is defined as a data integration platform that provides
services such as message validation to external applications.
Hence, this scenario is related to the first and second layer of
the LDM and shows that data inconsistency can be detected
using Datalog rules. Inconsistencies occur in individual
messages, but also the integration of different messages
such as MAP and SPaT might lead to it, due to wrongly

generated or not up-to-date information. The following rules
show possible consistency checks.

Example 4 This rule checks if each ingress lane x connects
to an outgress lane y:
LaneIn(x) ∧ not connected(x,y) ∧ LaneOut(y)∧
isPartOf(x,z) ∧ Intersection(z) → inconsis
tent(x,z).

Note that not is the negation as failure for
connected(x,y) saying that the clause will succeed, if
there is no match of x and y in the relation connected.

Example 5 The following rule checks if each ingress lane x

has at least one maneuver, e.g., turn left:
LaneIn(x) ∧ #count{allowsManeuver(x,y) ∧ Man
euver(y)} = 0∧
isPartOf(x,z) ∧ Intersection(z) → inconsis
tent(x,z).

Application Scenario 2 (S2) - Data Aggregation The focus
of this stream scenario is the collection of statistical data
and vehicle moving patterns by observing the streaming
data on a specific intersection. Data aggregation can
be accomplished as an independent task, but is also a
preliminary step for more complicated reasoning task such
as diagnosis. The aggregation will be often based on the
CAM messages, but also SPaT aggregation is interesting, as
monitoring of traffic lights could be desired to detect faulty
behavior.

Example 6 The following query returns the last signal phase
u of each lane x on intersection I1 in an interval of 20
seconds:

qa(x, u) : LaneIn(x) ∧ Intersection(y) ∧ (y = I1) ∧ isPartOf(x, y)∧
isManaged(x, z) ∧ V2XSignal(z) ∧ hasState[last, 20s](z, u)

A more challenging task is the analysis of driving
patterns based on vehicles maneuvers (e.g., u-turns), which
then can be used for event detection or gathering local traffic
statistics.

Example 7 The following query returns all vehicles x and
their brands y that are moving above 30km/h and have been
heading straight during the last 5 seconds:

qb(x, y) : Vehicle(x) ∧ speed[avg, 5s](x, v) ∧ (v > 30)∧
vehicleMaker(x, y) ∧ position[line angle, 5s](x, a)∧
(a > 10) ∧ (a < 10)

Application Scenario 3 (S3) - Event Detection This stream
scenario deals with the detection of emergency vehicles
and red light violation. Emergency detection aims at giving
preference to emergency vehicles, e.g., ambulances or fire

42 Int. J. ITS Res. (2019) 17:32–48

trucks, by switching to a green phase for the incoming
vehicle. For this case, we need to integrate CAM and MAP
messages and use the LDM to detect whether a vehicle is
an emergency vehicle and is moving on one of the incoming
lanes of an intersection.

Example 8 This query returns the emergency vehicles z that
are the last 10 seconds on incoming lanes of intersection I1:

qc(z) : LaneIn(x) ∧ isPartOf(x, y) ∧ Intersection(y) ∧ hasGeo(x, u)∧
intersects(u, v) ∧ position[line, 10s](z, v) ∧ (y = I1)∧
MotorVehicle(z) ∧ hasRole(z, s) ∧ (s = EmergencyRole)

In this example, we can see the interaction of all
mentioned atoms. The stream atom position[line, 10s](z, v)
specifies a time-based window of 10s at query time, where
the GPS positions are used to construct a path using the
aggregate function line; intersects(u, v) checks whether the
path crosses the bounding box of any incoming lane.

The detection of red light violations is driven by
improving road safety on a heavily frequented intersection
with bad visibility. This is our most challenging case, as
all types of V2X messages have to be combined. We use
the LDM to detect, whether a vehicle is moving above
30km/h on a lane, whose current signal phase will turn
red in 4 seconds. Note that the parameter -4s relies on the
capabilities of the signal controller to predicts its future
state.

Example 9 This query is a small extension of Ex. 3 by
limiting it to a single intersection. It returns all vehicles y

that are moving above 30km/h and violate the signal phase
stop of a lane x:

qd(x, y) : LaneIn(x) ∧ hasLocation(x, u) ∧ intersects(u, v)∧
pos[line, 4s](y, v) ∧ Vehicle(y) ∧ speed[avg, 4s](y, r)∧
(r > 30) ∧ isManaged(x, z) ∧ SignalGroup(z)∧
hasState[first, −4s](z, s) ∧ (s = Stop)
isPartOf(y,w) ∧ Intersection(w) ∧ (w = I1)

The examples above are just samples of possible queries,
since our approach could also be used for other scenarios as
collecting road tolls, surveillance, or route planning.

7 Implementation and Experiments

We have implemented a prototype for our spatial-stream
query answering approach in JAVA 1.8 using the open-
source PIPELINEDB 9.6.113 as the spatial-stream RDBMS.
As a preprocessing step for each query, the hypertree
decomposition is computed using the implementation

13https://www.pipelinedb.com/

of Gottlob et al. [17].14 Based on it, each sub CQ
is evaluated separately and (spatial) joined in-memory.
For the query rewriting of OWL 2 QL, we used the
implementation of OWLGRES 0.1 [43]; more recent (and
more efficient) implementations for query rewriting (e.g.,
[40]) are available.

The experiments are based on our scenarios of data
aggregation and event detection located (a) on a single
intersection and (b) on a network of locally connected
intersections, both managed by a single roadside C-ITS
station. The ontology, nine queries (see Table 1), the
experimental setup with logs, and the implementation are
available on our project website.15 The nine queries are
composed of three queries of Scenario 2, three queries of
Scenario 3, and three queries that are synthetic and test
specific aspects of the query evaluation. We use our LDM
ontology (see Section 4) with 119 concepts having 113
inclusion assertions (e.g., sub-classes); 34 roles and 28 data
roles having 31 inclusion assertions.

For (a), we have a T-shaped intersection as shown in
Fig. 3a. It represents a real-world deployment of an exper-
imental C-ITS station in Vienna, and connects two roads
with 13 lanes and 3 signal groups linked to the lanes. We
have developed a synthetic data generator that simulates the
movement of a varying number of vehicles (10, 100, 500,
1000, 2500, and 5000) on a single intersection updating the
streams every 50 ms on average. This allows us to generate
streams with up to 10000 data items per stream and sec-
ond.16 We chose random starting points and simulated linear
movements on a constant pace, creating a stream of vehi-
cle positions. We also simulated simple signal phases for
each traffic light that toggle between red and green every
three seconds. This scenario aims to show the scalability of
our approach with many vehicles that have simple driving
patterns.

For (b), we use a realistic traffic simulation of 9
intersections in a grid (see Fig. 3b), developed with the
microscopic traffic simulation tool PTV VISSIM,17 which
allows us to simulate realistic driving behavior and signal
phases. The intersection structure, driving patterns and
signal phases are more complex, but the number of vehicles
is smaler (max. 300) than in (a), as quickly traffic jams
emerge. We developed an adapter to extract the actual state
of each simulation step, allowing us to replay the simulation
from the logs. To vary data throughput, we ran the replay
with 0ms (no delay), 100ms (real-time), 250ms and 500ms
delay.

14https://www.dbai.tuwien.ac.at/proj/hypertree/
15http://www.kr.tuwien.ac.at/research/projects/loctrafflog/eswc2017
16The intervals vary due to the number of vehicles, so we scale the DB
updates up to 12 generators.
17http://vision-traffic.ptvgroup.com/en-us/products/ptv-vissim/

43Int. J. ITS Res. (2019) 17:32–48

https://www.pipelinedb.com/
https://www.dbai.tuwien.ac.at/proj/hypertree/
http://www.kr.tuwien.ac.at/research/projects/loctrafflog/eswc2017
http://vision-traffic.ptvgroup.com/en-us/products/ptv-vissim/

Table 1 Benchmark queries (windows size in seconds)

/* S1: cars with brands, traveling above 30km/h */

q1(x,y,z) : Car(x),speed(x,y)[avg,10], vehicleMaker(x,z),y > 30

/* S1: lanes and signal groups switched to red */

q2(x,y) : LaneIn(x),hasSignal(x,y),SignalGroup(y), signalState(y,z)[last,15],z = ”R”

/* S1: vehicles on incoming lanes */

q3(x,v) : Vehicle(x),pos(x,y)[line,10],inside(y,u), hasGeo(v,u),LaneIn(v)

/* S2: vehicles with crossed paths */

q4(x,y) : Vehicle(x),pos(x,w)[line,30],intersects(w,z), pos(y,z)[line,30],Car(y)

/* S2: vehicles traveling above 30km/h heading straight */

q5(x,y) : Vehicle(x),speed(x,z)[avg,15], pos(x,y)[line angle,15],z > 30,y > −10,y < 10

/* S2: detection of red-light violation */

q6(x,y) : Taken from Ex. 9

/* Synthetic: testing many ontology atoms */

q7(x,z) : LaneIn(x),isPartof(x,u),Intersection(u),u = ”I1”,hasSignal(x,y),

SignalGroup(y),signalState(y,r)[last,15],r = ”R”,connect(x,q),connect(q,v),

Lane(v),hasSignal(v,z),SignalGroup(z),signalState(z,s)[last,15],s = ”R”

/* Synthetic: testing many spatial atoms */

q8(x,y) : Vehicle(x),pos(x,y)[line,20],intersects(y,u),LaneIn(r),hasGeo(r,u),

intersects(y,v),LaneIn(s),hasGeo(s,v),intersects(y,w),LaneIn(t),

hasGeo(t,w),within(y,z),hasGeo(q,z),Intersection(q)

/* Synthetic: testing many stream atoms */

q9(x,q,r,s,t,u) : Vehicle(x),speed(x,q)[avg,1],speed(x,r)[avg,5],speed(x,s)[avg,10],
speed(x,t)[avg,25],speed(x,u)[avg,50]

Results We conducted our experiments on a Mac OS X
10.6.8 system with an Intel Core i7 2.66GHz, 8GB of RAM,
and a 500GB hard disk drive. The average of 11 runs for
query rewriting time and evaluation time was calculated,
where the largest outlier was dropped. The results are shown

in Table 2, where we present the query type (O for ontology,
F for stream, and S for spatial atoms), the number of
subqueries #Q, size of rewritten atoms #A, and the average
evaluation time (AET) t in seconds for n vehicles or the
delay in ms.

Scenario (a) Scenario (b)

Fig. 3 Schematic representation of the scenarios

44 Int. J. ITS Res. (2019) 17:32–48

Table 2 Results (t in seconds) for scenario (a) and (b), items marked with * are signal streams

Type #Q #A (a) t with #vehicles (b) t with ms sim. delay

10 100 500 1000 2500 5000 0 100 250 500

q1 O, F 1 1 0.85 0.82 0.91 1.05 1.22 1.58 0.78 0.74 0.73 0.71

q2 O, F ∗ 1 6 0.83 0.83 0.83 0.83 0.83 0.83 0.77 0.77 0.72 0.71

q3 O, S, F 3 23 0.89 0.87 1.00 1.25 1.39 1.74 0.83 0.81 0.77 0.75

q4 O, S, F 3 22 1.10 1.09 1.24 1.53 1.81 2.32 1.02 1.00 0.95 0.93

q5 O, S, F 3 42 1.11 1.10 1.26 1.39 1.90 1.92 1.05 1.00 0.98 0.96

q6 O, S, F 7 52 1.39 1.39 1.49 1.69 2.36 2.28 1.40 1.28 1.26 1.25

q7 O, F ∗ 6 69 1.16 1.16 1.16 1.16 1.16 1.16 1.15 1.12 1.11 1.09

q8 O, S 9 73 0.92 0.94 1.30 1.43 1.72 2.19 0.99 0.98 0.92 0.91

q9 O, F 9 105 1.67 1.73 1.99 2.06 2.49 2.97 1.71 1.68 1.66 1.63

The baseline spatial-stream query is q3 for 500 vehicles,
where we have a loading time of 0.22s, an evaluation time
for the stream (resp. ontology) atom of 0.54s (resp. 0.03s),
and a spatial join time of 0.05s. Clearly, 50% of the AET
is used to evaluate the stream atoms (including rewriting
steps). The loading time could be reduced by pre-compiling
the program; this shortens evaluation by roughly 0.2s. Initial
evaluation of the queries q4, q5, q6 and q9 show that with
each new stream subquery the number of results dropped
down to zero, which seems an implementation issue of
PIPELINEDB with Continuous Views on the same stream
with different window sizes. We found a workaround by
adding a delay of 0.2s that again increases the number of
results. This delay increases the AET, e.g. by 0.76s in q9,
and might be ignored with future versions of PIPELINEDB
and other stream RDBMS. The synthetic queries with
predominant ontology (q6), spatial (q7), and stream atoms
(q9) clearly show that the real challenging aspect of query
evaluation are stream aggregates. The good performance
of PIPELINEDB allows us to work on condensed results
(reducing the join sizes); however, stream aggregates could
be further accelerated by continuously calculating inline
aggregates on the DB, which are skimmed by our queries.
Notably, PIPELINEDB does not always keep the order of
inserted data items; this does not affect our bag semantics,
since an order on the data items is not needed.

In conclusion, the results show that our experimental
prototype for up to 500 vehicles manages evaluation
within 1.5 s (except query q9). This suggests that with
optimizations such as the ones mentioned, the quick
detection of red-light violations on complex intersections is
feasible.

8 Conclusion

In this paper, we have presented an extension of the
LDM approach with Semantic Web technologies and

stream processing. The technologies allow us to define
a “semantic” world model, i.e., the LDM ontology, an
expressive spatial-stream query language, derived model
properties, and the inference of new information over
streams. Our envisioned architecture is designed to show
how these technologies can be applied in the context of
the LDM and V2X integration. The architecture consists
of an ontology, an integration and annotation framework
for static, spatial and stream databases, a query answering
component over streams, and a more expressive problem
solving component. We have also worked on an initial
version of an LDM ontology, and show how the architecture
is implemented based on existing work in spatial data
extraction [21] and spatial-stream query answering [20]
using PIPELINEDB. Apart from the restriction to OWL2
QL, our methods are ontology-agnostic, hence other
ontologies or evolved versions of the initial one could be
used as well.

Furthermore, we have developed application scenarios
for (i) consistency checking, (ii) data aggregation, and (iii)
event detection to show the usability and benefits of our
design. Finally, based on the scenarios we have conducted
experiments utilizing the microscopic traffic simulation
PTV VISSIM, to show the feasibility of query answering
component.

Outlook Applications The three application scenarios are
good starting points; however more complex scenarios such
as signal phase optimization of traffic lights or stream-based
routing could be considered. As the next step, we aim to
develop a model-based diagnosis component that includes
a clear definition and encoding of observations O, a (fault)
model S, and a list of system components C applied to the
C-ITS domain. Based on the encoding, we aim to apply a
standard rule-based evaluation with a solver for calculating
a diagnosis. The diagnosis component could further be
complemented with a repair and/or re-configuration service
for the system components, which would allow the dynamic

45Int. J. ITS Res. (2019) 17:32–48

adjustment and optimization of signal phases on a network
of intersections.

Outlook Framework Future work is directed to extend
the components of the framework framework. The LDM
ontology is only an initial draft and may be refined to
capture more elements of the LDM and a traffic scene. An
evolved version of the ontology could be taken as a first step
toward standardization. The query answering component
over streams could be further elaborated by realizing push-
based queries by an incremental evaluation and caching,
handling of inconsistency in data items, and new aggregate
functions.

Since the full coverage of ITS stations in urban/rural
areas is not feasible soon, the exchange and usage of
(distributed) LDMs should be available to all traffic
participants, e.g., cyclists. However, the computation and
communication power, which is sufficient in ITS stations,
might not be available for all participants, hence our
methods could be optimized for embedded systems. For
instance, we may realize materialization and smart indexing
of static data and the usage in-memory DBs.

Along the same lines, we have yet to consider distributed
LDMs as introduced by [48], which would require
alignment at the ontology level (if the ITS stations and
vehicles use different schemas), and data fusion including
consistency checks at the stream level. Distributed LDMs
would enable us to apply our methods to larger settings of
distributed traffic, and may be used as a tool for (distributed)
planing and optimization. Finally, the framework can be
directed toward more complex methods such as model-
based diagnosis or complex event detection.

Acknowledgements Open access funding provided by Austrian
Science Fund (FWF). We thank the reviewers for their comments,
which helped to improve this article. This work has been supported
by the Austrian Research Promotion Agency project LocTraffLog:
Lightweight Methods of KR/R for sensor-based Local TMS Service
(FFG 5886550) and the Austrian Science Fund projects P26471 and
P27730.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were
made.

References

1. Andreone, L., Brignolo, R., Damiani, S., Sommariva, F., Vivo, G.,
Marco, S.: Safespot final report. Technical Report D8.1.1 (2010).
Available online

2. Anicic, D., Fodor, P., Rudolph, S., Stojanovic, N.: EP-SPARQL:
a unified language for event processing and stream reasoning. In:
Proceedings of WWW 2011, pp. 635–644 (2011)

3. Arasu, A., Babu, S., Widom, J.: The CQL continuous query
language: semantic foundations and query execution. VLDB J.
15(2), 121–142 (2006)

4. Artale, A., Kontchakov, R., Wolter, F., Zakharyaschev, M.:
Temporal description logic for ontology-based data access. In:
Proceedings of IJCAI 2013, pp. 711–717 (2013)

5. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In:
Proceedings of IJCAI 2005, pp. 364–369. Morgan-Kaufmann
Publishers (2005)

6. Baader, F., Horrocks, I., Sattler, U.: Description logics. In: Staab,
S., Studer, R. (eds.) Handbook on Ontologies, pp. 21–43. Springer
(2009)

7. Barbieri, D.F., Braga, D., Ceri, S., Valle, E.D., Grossniklaus, M.:
C-SPARQL: a continuous query language for RDF data streams.
Int. J. Semant. Comput. 4(1), 3–25 (2010)

8. Beck, H., Dao-Tran, M., Eiter, T., Fink, M.: LARS: A logic-based
framework for analyzing reasoning over streams. In: Proceedings
of AAAI 2015, pp. 1431–1438 (2015)

9. Bereta, K., Koubarakis, M.: Ontop of geospatial databases. In:
Proceedings of ISWC 2016, pp. 37–52 (2016)

10. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Sci.
Amer. 284(5), 34–43 (2001)

11. Borgwardt, S., Lippmann, M., Thost, V.: Temporalizing rewritable
query languages over knowledge bases. J. Web Sem. 33, 50–70
(2015)

12. Brandt, S., Kalayci, E.G., Kontchakov, R., Ryzhikov, V., Xiao,
G., Zakharyaschev, M.: Ontology-based data access with a horn
fragment of metric temporal logic. In: Proceedings of AAAI 2017.
To appear (2017)

13. Brickley, D., Guha, R. (eds.): RDF Vocabulary Description
Language 1.0: RDF Schema. W3C Recommendation W3C (2004)

14. Calbimonte, J., Mora, J., Corcho, Ó.: Query rewriting in RDF
stream processing. In: Proceedings of ESWC 2016, pp. 486–502
(2016)

15. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M.,
Rosati, R.: Tractable reasoning and efficient query answering in
description logics: The dl-lite family. J. Autom. Reason 39(3),
385–429 (2007)

16. Calvanese, D., Kharlamov, E., Nutt, W., Thorne, C.: Aggregate
queries over ontologies. In: Proceedings of ONISW 2008, pp.
97–104 (2008)

17. Dermaku, A., Ganzow, T., Gottlob, G., McMahan, B.J., Musliu,
N., Samer, M.: Heuristic methods for hypertree decomposition. In:
Proceedings of MICAI 2008: Advances in Artificial Intelligence,
pp. 1–11 (2008)

18. Eiter, T., Füreder, H., Kasslatter, F., Parreira, J.X., Schneider,
P.: Towards a semantically enriched local dynamic map. In:
Proceedings of ITSWC 2016 (2016)

19. Eiter, T., Ianni, G., Krennwallner, T.: Answer set programming: A
primer. In: Proceedings of Reasoning Web Summer School 2009,
pp. 40–110 (2009)

20. Eiter, T., Krennwallner, T., Schneider, P.: Lightweight spatial
conjunctive query answering using keywords. In: Proceedings of
ESWC 2013, pp. 243–258 (2013)

21. Eiter, T., Pan, J.Z., Schneider, P., Simkus, M., Xiao, G.: A rule-
based framework for creating instance data from openstreetmap.
In: Proceedings of RR 2015 (2015)

22. Eiter, T., Parreira, J.X., Schneider, P.: Towards spatial ontology-
mediated query answering over mobility streams. In: Proceedings
of Stream Reasoning Workshop 2016 (2016)

23. Eiter, T., Parreira, J.X., Schneider, P.: Spatial ontology-mediated
query answering over mobility streams. In: Proceedings of ESWC
2017 (2017)

46 Int. J. ITS Res. (2019) 17:32–48

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

24. ETSI EN 302 895 (V1.1.0): Intelligent transport systems -
Extension of map database specifications for Local Dynamic Map
for applications of Cooperative ITS. Technical report, ETSI (2014)

25. ETSI TR 102 863 (V1.1.1): Intelligent Transport Systems
(ITS); Vehicular Communications; Basic Set of Applications;
Local Dynamic Map (LDM); Rationale for and Guidance on
Standardization. Technical report, ETSI (2011)

26. Gebser, M., Grote, T., Kaminski, R., Obermeier, P., Sabuncu,
O., Schaub, T.: Stream reasoning with answer set programming:
Preliminary report. In: Proceedings of KR 2012 (2012)

27. ISO/TS 17931:2013: Intelligent transport systems - Extension
of map database specifications for Local Dynamic Map for
applications of Cooperative ITS. Technical report, ISO (2013)

28. ISO/TS 18750:2015: Intelligent transport systems - Cooperative
systems - Definition of a global concept for Local Dynamic Maps.
Technical report, ISO (2015)

29. Koenders, E., Oort, D., Rozema, K.: An open local dynamic map.
In: Procedings of ITS European Congress 2014 (2014)

30. Kompfner, P.: Cvis final activity report. Technical Report
D.CVIS.1.3 (2010). Available online

31. Krȯtzsch, M., Patel-Schneider, P.F., Rudolph, S., Hitzler, P.,
Parsia, B.: OWL 2 web ontology language primer. Technical report
W3C (2009)

32. Maier, D.: The Theory of Relational Databases. Computer Science
Press (1983)

33. Motik, B., Fokoue, A., Horrocks, I., Wu, Z., Lutz, C., Grau, B.C.:
OWL 2 web ontology language profiles. W3C recommendation
W3C (2009)

34. Netten, B., Kester, L., Wedemeijer, H., Passchier, I., Driessen,
B.: Dynamap: A dynamic map for road side its stations. In:
Proceedings of ITS World Congress 2013 (2013)

35. Özċep, Ö.L., Möller, R., Neuenstadt, C.: Stream-query compilation
with ontologies. In: Proceedings of AI 2015, pp. 457–463 (2015)

36. Phuoc, D.L., Dao-Tran, M., Tuȧn, A.L., Duc, M.N., Hauswirth,
M.: RDF stream processing with CQELS framework for real-time
analysis. In: Proceedings of the 9th ACM International Conference
on Distributed Event-Based Systems, DEBS 2015, pp. 285–292
(2015)

37. Poole, D.: A methodology for using a default and abductive
reasoning system. Int. J. Intell. Syst. 5(5), 521–548 (1990)

38. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell.
32(1), 57–95 (1987)

39. Ren, Y., Pan, J.Z.: Optimising ontology stream reasoning with
truth maintenance system. In: Proceedings of the 20th ACM
Conference on Information and Knowledge Management, CIKM
2011, pp. 831–836 (2011)

40. Rodriguez-Muro, M., Kontchakov, R., Zakharyaschev, M.:
Ontology-based data access: Ontop of databases. In: Proceedings
of ISWC 2013, pp. 558–573 (2013)

41. Schreiber, G., Raimond, Y., Manola, F., Miller, E., McBride, B.:
Rdf 1.1 primer. W3C working group note W3C (2014)

42. Shimada, H., Yamaguchi, A., Takada, H., Sato, K.: Implemen-
tation and evaluation of local dynamic map in safety driving
systems. J. Transp. Technol. 5(2), 102–112 (2015)

43. Stocker, M., Smith, M.: Owlgres: A scalable owl reasoner. In:
Proceedings of OWLED 2008 (2008)

44. Teymourian, K., Paschke, A.: Plan-based semantic enrichment of
event streams. In: Proceedings of ESWC 2014, pp. 21–35 (2014)

45. Ulbrich, S., Nothdurft, T., Maurer, M., Hecker, P.: Graph-based
context representation, environment modeling and information
aggregation for automated driving. In: Proceedings of 2014
IEEE Intelligent Vehicles Symposium Proceedings, pp. 541–547
(2014)

46. Zaniolo, C.: Logical foundations of continuous query languages
for data streams. In: Proceedings of Datalog 2.0 Workshop 2012,
pp. 177–189 (2012)

47. Zhao, H., Sun, D., Yue, H., Zhao, M., Cheng, S.: Using CSTPNs
to model traffic control CPS. IET Softw. 11(3), 116–125 (2017)

48. Zoghby, N.E., Cherfaoui, V., Denoeux, T.: Evidential distributed
dynamic map for cooperative perception in vanets. In: Proceedings
of 2014 IEEE Intelligent Vehicles Symposium Proceedings, pp.
1421–1426 (2014)

Thomas Eiter is a full pro-
fessor (since 1998) at Vienna
University of Technology (TU
Wien), Austria, where he heads
the Knowledge Based Systems
Group. Prior to that, he was an
associate professor at the Uni-
versity of Giessen, Germany.
Eiter earned a PhD (1991) and
habilitation (1995) in Compu-
ter Science from TU Wien, and
currently works on knowledge
representation and reasoning,
declarative problem solving, lo-
gic programming & databases,
and knowledge-based agents.

He is a former President of Principles of Knowledge Representation
and Reasoning, Incorporated (KR, Inc.), Fellow of the European
Association for Artificial Intelligence, Corresponding Member of the
Austrian Academy of Sciences, and Member of Academia Europea
(London).

Herbert Füreder born in
1966, studied electrical engi-
neering at the Technical Uni-
versity in Vienna (Dipl. Ing. In
1993). He worked for 5 years,
until 1998 at Ericsson Austria
R&D department for small te-
lecom systems. Since 1999 he
worked for SIEMENS Austria
AG in R&D projects for Tele-
com, Automotive and networ-
king. Since 2010 he is work-
ing for cooperative R&D de-
partment specializing on net-
working. His main topic are
5.9 GHz V2X systems.

Fritz Kasslatter has received
his Diploma degree in com-
munication engineering from
the Technical University of
Vienna (TU Wien) in 1988.
He then has worked in Munich
for four years in the R&D
department at “Gesellschaft
für Technologieberatung” and
Schlumberger Technologies. In
1993 he started as engineer
at Siemens AG in the R&D
department. He is working as
project manager in the field

of car-to-car/infrastructure communications. He is actively contribut-
ing at standardization bodies as ETSI, ISO/CEN, SAE and Car2Car
Consortium.

47Int. J. ITS Res. (2019) 17:32–48

Dr. Josiane Xavier Parreira is
a Senior Research Scientist at
Siemens Corporate Technol-
ogy. Her main research inter-
ests are on Semantic Web,
Data Analytics and Internet of
Things. She holds a M.Sc. and
a Ph.D. in computer science
from the Max Planck Institute
for Informatics (MPII) - Uni-
versity of Saarland. She has
published more than 40 arti-
cles in journals, conferences
and workshops.

Patrik Schneider born in
1973, is currently pursuing his
PhD at the Institute of Logic
and Computation at Technische
Universität Wien (TU Wien).
At the same time, he is cur-
rently working as a research
assistant in the LocTraffLog
project at Siemens CT, Austria,
where lightweight methods
of Knowledge Representation
and Reasoning are developed
for event detection and diag-
nosis in C-ITS applications.
He received a MSc in Com-
putational Intelligence from

TU Wien (2010) and a BSc in Business Information Systems from
the University of Liechtenstein (2005). His research is concerned with
extending Semantic Web technologies such as ontology-mediated
query answering for spatial and streaming data.

48 Int. J. ITS Res. (2019) 17:32–48

	Towards a Semantically Enriched Local Dynamic Map
	Abstract
	Abstract
	Introduction
	State-of-the-art of the LDM
	SAFESPOT Project
	ETSI/ISO Standards
	Recent Research
	Current Shortcomings

	Background Technology and Methods
	Semantic Web Technologies
	Stream Processing and Stream Reasoning

	Architecture of a Semantically Enriched LDM
	LDM Ontology
	Static and Stream Databases
	Integration and Annotation Framework
	Linking Framework
	Stream Reasoning and Problem Solving
	API

	Query Answering over Streams
	Data Model and Query Language
	Query Rewriting by Stream Aggregation
	Query Evaluation by Hypertree Decomposition

	Application Scenarios
	Application Scenario 1 (S1) - Consistency Checks
	Application Scenario 2 (S2) - Data Aggregation
	Application Scenario 3 (S3) - Event Detection

	Implementation and Experiments
	Results

	Conclusion
	Outlook Applications
	Outlook Framework

	Acknowledgements
	Open Access
	References

