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Abstract
Hotelling’s T 2-test for the mean of a multivariate normal distribution is one
of the triumphs of classical multivariate analysis. It is uniformly most pow-
erful among invariant tests, and admissible, proper Bayes, and locally and
asymptotically minimax among all tests. Nonetheless, investigators often pre-
fer non-invariant tests, especially those obtained by selecting only a small
subset of variables from which the T 2-statistic is to be calculated, because
such reduced statistics are more easily interpretable for their specific appli-
cation. Thus it is relevant to ask the extent to which power is lost when
variable selection is limited to very small subsets of variables, e.g. of size one
(yielding univariate Student-t2 tests) or size two (yielding bivariate T 2-tests).
This study presents preliminary evidence suggesting that in some cases, no
power may be lost, in fact may be gained, over a wide range of alternatives.

JEL Classification C12; C52.
Keywords and phrases. Multivariate normal distribution, hotelling’s T 2 test,
student’s t2, variable selection, test for additional information, Mahalanobis
distance.

1 Introduction

This study is motivated by a re-examination of the variable-selection problem
for Hotelling’s T 2-test (closely related to variable selection for linear discrim-
inant analysis). After some notational preliminaries in §1.1, Hotelling’s T 2 is
reviewed in §1.2. The variable-selection problem is described in §1.3, where
the substance of this investigation is described.

1.1 The Noncentral f-distribution Let χ2
m(λ) denote a noncentral chi-

square random variable with m degrees of freedom and noncentrality param-
eter λ > 0. The noncentral fm,n(λ) distribution (nonnormalized) with m and
n degrees of freedom and noncentrality parameter λ > 0 is the distribution
of the ratio χ2

m(λ)/χ2
n (also denoted by fm,n(λ)), where the numerator and

denominator are independent chi-square random variables and χ2
n ≡ χ2

n(0).
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The upper α-quantile of fm,n ≡ fm,n(0) is denoted by fα
m,n, so that

Pr[fm,n > fα
m,n] = α. (1)

The noncentral fm,n-test of size α ≥ 0 for the problem of testing λ = 0
vs. λ > 0 has power function given by

πα(λ; m, n) = Pr[fm,n(λ) > fα
m,n] (2)

= e− λ

2

∞∑

k=0

(λ
2 )k 1

k!c
α
m,n;k, (3)

cα
m,n;k : = Pr[fm+2k,n > fα

m,n]; (4)

see Das Gupta and Perlman (1974), eqn.(2.1). Clearly πα(λ; m, n) is decreas-
ing in α, with π0(λ; m, n) = 0. Because fm,n(λ) has strictly monotone likeli-
hood ratio in λ, πα(λ; m, n) is strictly increasing in λ.

It will be convenient to work with the (central) beta distribution bm,n:

bm,n :=
fm,n

fm,n + 1
≡ χ2

m

χ2
m + χ2

n

, (5)

whose probability density function (pdf) is given by

φm,n(b) ≡ Γ(m+n
2 )

Γ(m
2 )Γ(n

2 )
b

m

2
−1(1 − b)

n

2
−1, 0 < b < 1. (6)

Clearly bm,n = 1 − bn,m. The upper and lower α-quantiles of bm,n are
denoted by bα

m,n and bm,n;α, respectively, so that

bα
m,n = 1 − bn,m;α. (7)

Later we shall need the following relation, obtained from Eqs. 4, 5, 6 and
7:

cα
m,n;k = Pr[bn,m+2k < bn,m;α]. (8)

1.2 Hotelling’s T 2-test Let Xi : p × 1, i = 1, . . . , N (N ≥ p + 1) be
a random sample from the p-dimensional multivariate normal distribution
Np(μ,Σ), where μ (p × 1) ≡ (μ1, . . . , μp)′ ∈ R

p and Σ (p × p) ≡ (σij) is
positive definite. The problem of testing

H0 : μ = 0 vs. K : μ �= 0 (9)
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with Σ unknown is invariant under the group action Xi → AXi, i = 1, . . . , N ,
where A ∈ GL(p), the group of all nonsingular p × p matrices. A maximal
invariant statistic under GL(p) is given by Hotelling’s T 2 statistic:

T 2 := NX̄ ′S−1X̄, (10)

where X̄ =
∑N

i=1 Xi and S =
∑N

i=1(Xi − X̄)(Xi − X̄)′. Its distribution is

T 2 ∼ fp,N−p(Λ), (11)

where
Λ ≡ ΛΩp

:= Nμ′Σ−1μ, (12)

is a maximal invariant parameter. Therefore the uniformly most power-
ful invariant size-α test rejects H0 if T 2 > fp,N−p;α, with power function
πα(Λ; p, N − p); cf. Anderson, 2003 Theorem 5.6.1).1

It is informative to express Λ in terms of scale-free parameters, that is,

Λ = Nγ′R−1γ, (13)

where R ≡ (ρij) is the p × p correlation matrix determined by Σ and

γ (p × 1) ≡ (γ1, . . . , γp)′ :=
( μ1√

σ11
, . . . , μp√

σpp

)′
. (14)

The testing problem (9) can be stated equivalently as that of testing

H0 : γ = 0 vs. K : γ �= 0 (15)

with R unknown.
1.3 The T 2 Variable-selection Problem Denote the components of X̄

by X̄j , j = 1, . . . , p, and those of S by sjk, j, k = 1, . . . , p. Let Ωp be
the collection of all nonempty subsets of the index set I := {1, . . . , p}. For
ω ∈ Ωp denote the ω-subvector of X̄ by X̄ω, the ω-submatrix of S by Sω,
and similarly define μω, γω, Σω, and Rω. The T 2-statistic based on (X̄ω, Sω)
is given by

T 2
ω ≡ NX̄ ′

ωS−1
ω X̄ω ∼ f|ω|, N−|ω|(Λω), (16)

Λω ≡ Λω(γ, R) = Nγ′
ωR−1

ω γω. (17)

1 Among the larger class of all tests, invariant or non-invariant, the T 2 test is admissible
[Schaafsma (1982)], proper Bayes (Kiefer and Schwartz, 1965), and locally and asymptotically
minimax for small and large values of Λ, respectively (Giri and Keifer, 1964).
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(T 2
I = T 2, ΛI = Λ ≡ Λ(γ, R).) The test that rejects H0 if T 2

ω > fα
|ω|,N−|ω|

has size α for H0, and its power function is given by

πα(Λω; |ω|, N − |ω|). (18)

This T 2
ω-test is not invariant under GL(p) but it is admissible for testing

H0 vs. K, being a unique proper Bayes test for a prior distribution under
which {μ | μI\ω = 0} has prior probability 1; cf. Kiefer and Schwartz (1965),
Marden and Perlman (1980).

This paper addresses the feasibility of finding a parsimonious subset ω
such that the T 2

ω-test maintains high power over a substantial portion of
the alternative K. Because (γ, R) is unknown, variable selection in practice
is traditionally approached by forward and/or backward selection proce-
dures based on a preliminary sample that yields estimates of (γ, R); see the
Appendix. At worst, all 2p − 1 nonempty subsets ω must be considered.

Recently I consulted on such a variable-selection problem. The investi-
gator, a research and development engineer, had observed 20 physiological
variables (blood pressure, temperature, heart rate, etc.) on each of 100 sub-
jects (the numbers are approximate). He wished to compare their responses
to a new product design with their responses to the current design. The over-
all T 2-statistic, based on a linear combination of all 20 variables, indicated a
significant difference between the two sets of responses. However, the client
wished to find a more readily interpretable measure of difference, namely a
T 2

ω-statistic based on a very small subset ω of the 20 variables, hopefully
with |ω| = 1 or 2.

Such a desire is not atypical of investigators presented with a multivari-
ate data analysis. This led me to wonder how much power would be lost
by restricting variable selection to small subsets ω, for example to single
variables or pairs of variables.

In fact some power might be gained. It is well known (e.g., Das Gupta
and Perlman, 1974) that πα(Λω; |ω|, N − |ω|) is decreasing in |ω| while
increasing in Λω. Might the decreasing effect outweigh the increasing effect
over a significant portion of the sample space? If so then restricting attention
to small variable subsets might be desirable.

To state this more precisely, define

ω̂α(γ, R) = arg max
ω∈Ωp

πα(Λω(γ, R); |ω|, N − |ω|). (19)
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Thus ω̂α(γ, R) is the (not necessarily unique) subset ω of variables that
maximizes the power of the size-α T 2

ω-test to detect the alternative (γ, R) if
the actual value of (γ, R) were revealed by an oracle. Whereas the admissibil-
ity of the overall size-α T 2-test dictates that its power cannot be everywhere
dominated by that of the size-α T 2

ω-test when ω �= Ωp, might it happen that
|ω̂α(γ, R)| is small, perhaps 1 or 2, over a fairly wide range of parameter
values (γ, R)? If so, then might one, with some confidence, limit variable
selection to consideration of single variables (univariate t2-tests) or pairs of
variables (bivariate T 2-tests), as an alternative to simply applying the overall
(p-variate) T 2-test?

Of course, corrections for multiple testing must be considered for any
variable-selection procedure before definitive conclusions can be drawn and
procedures implemented, see §5 for a brief example. However, restriction to
small variable subsets has another desirable property: there are relatively
few such subsets compared 2p −1 the number of all nonempty subsets of Ωp,
greatly reducing any correction factor. For example, when p = 20 as in the
consulting problem cited above, there are 20 univariate subsets,

(
20
2

)
= 190

bivariate subsets, compared to 220 − 1 = 1, 048, 575 total nonempty subsets.
Such a radical suggestion flies in the face of 100 years of multivariate

statistical theory, of which I have been but one of many proponents. This
report presents preliminary evidence indicating that limitation of variable
selection to low-dimensional tests may not be entirely inappropriate.

In Sections 2, 3, and 4, several examples are considered where tractable
algebraic expressions for the asymptotic (Λω → ∞), local (Λω → 0), and/or
exact values of πα(Λω; |ω|, N−|ω|) are available. These in turn can be utilized
to compare the powers of T 2

ω and T 2. These examples include both sparse
and non-sparse mean-vector configurations, and the results may be the first
that are based on algebraically-explicit power function comparisons of the
low-dimensional and full-dimensional tests.

Examples 2.1 and 3.1 treat only the simplest possible case: the bivariate
case (p = 2) with N = 3.2 Here it is shown that |ω̂α(γ, R)| = 1 over large
portions of the asymptotic and local regions of the alternative hypothesis
K. This implies that the power of at least one of the two univariate Student
t2-tests (|ω| = 1) exceeds that of the overall (bivariate) T 2-test for most
alternatives (γ, R) in these regions.

In Example 4.4 this result is extended to the entire alternative hypoth-
esis K, both for N = 3 and N = 5, but only under the highly restrictive

2 However, Giri et al. (1963) also began their study of Hotelling’s T 2 test by considering only
this simplest case p = 2, N = 3.
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and vague condition that α be sufficiently small, with “sufficiently small”
determined by the value of the unknown noncentrality parameter – see
Eqs. 126 and 131.

Examples 2.2 and 3.2 go beyond the bivariate case. Here p ≥ 3, N = p+2,
and the powers of all possible bivariate T 2

ω-tests (|ω| = 2) are compared to
the power of the overall (p-variate) T 2 test, again only for asymptotic and
local alternatives and only for very special configurations of γ and R. In these
cases, admittedly highly restrictive, the bivariate T 2

ω-tests dominate the p-
variate T 2-test over a substantial portion of the alternative hypothesis K.
This does not establish that |ω̂α(γ, R)| = 2 but again suggests that variable
selection might be limited to small variable subsets ω.

Together, the preliminary findings in this paper indicate the feasibility
and potential benefit of limiting variable selection to small subsets, in par-
ticular to univariate or bivariate subsets. Further study will be needed to
implement this approach to variable selection and to confirm its efficacy. See
§5 and the Appendix for related comments.

2 Some Asymptotic Power Comparisons

The power function of the T 2
ω-test is

πα(Λω) ≡ πα(Λω; |ω|, N − |ω|) (20)

(recall (16) and (17)). It follows from eqn. (3.4) in Marden and Perlman
(1980) that as Λω → ∞,

πα(Λω) ∼ 1 − exp[−Λω

2 (fα
|ω|,N−|ω| + 1)−1]

= 1 − exp[−Λω

2 bN−|ω|,|ω|;α]. (21)

Thus for two subsets ω, ω′ with ω ⊂ ω′, there exists Λ∗
|ω|,|ω′|,N ;α > 0 such

that

Λω > max
(
Λ∗

|ω|,|ω′|,N ;α,
bN−|ω′|,|ω′|;α
bN−|ω|,|ω|;α

Λω′

)
=⇒ πα(Λω) > πα(Λω′). (22)

Therefore power comparisons of T 2
ω and T 2

ω′ for distant alternatives3

require determination of the lower quantiles bn,m;α. This can be done explic-
itly in Examples 2.1 and 2.2 below. Although these examples are of very

3 We do not claim to know the value of Λ∗
|ω|,|ω′|,N ;α

, even approximately.
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limited scope4 they begin to suggest that variable subset selection some-
times can be limited to very small subsets ω ∈ Ωp, e.g., singletons in the
bivariate Example 2.1, or pairs (including singletons) in Example 2.2.

To simplify the notation, set

Q|ω|,|ω′|,N ;α :=
bN−|ω′|,|ω′|;α
bN−|ω|,|ω|;α

< 1. (23)

The quantile bn,m;α satisfies

α = Γ(n+m

2
)

Γ(n

2
)Γ(m

2
)

∫ bn,m;α

0 b
n

2
−1(1 − b)

m

2
−1db (24)

For the simple cases n = 2 or m = 2,

b2,m;α = 1 − (1 − α)
2
m , bn,2;α = α

2
n . (25)

Example 2.1 In the bivariate case p = 2, abbreviate the singleton subsets
{1} and {2} of Ω2 by 1 and 2 respectively. We shall compare the powers
πα(Λ1; 1, 2) and πα(Λ2; 1, 2) of the two univariate size-α t2-tests to the
power πα(Λ; 2, 1) of the overall (bivariate) size-α T 2-test for distant alter-
natives.

Assume that γ1 �= 0 (recall (14)) and set

η = γ2

γ1
, ρ = ρ12, (26)

where −1 < ρ < 1 , so by Eqs. 13 and 17,

Λ1 = Nγ2
1 , Λ2 = Nη2γ2

1 , Λ = N
(1−2ηρ+η2

1−ρ2

)
γ2
1 . (27)

Without loss of generality we can assume that |γ1| ≥ |γ2|, so 0 ≤ η2 ≤ 1
and

max(Λ1, Λ2) = Nγ2
1 . (28)

The alternative hypotheses K can be represented as

K = {(γ1, η, ρ) | |γ1| > 0, |η| ≤ 1, |ρ| < 1}, (29)

while ω
α(γ, R) can be re-expressed as ω

α(γ1, η, ρ).

4 But see Footnote 2.
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Because max(Λ1, Λ2) ≤ Λ, it follows from Eqs. 22, 27, and 28 that

γ2
1 > max

(
1
N Λ∗

1,2,N ;α, Q1,2,N ;α

(1−2ηρ+η2

1−ρ2

)
γ2
1

)
(30)

=⇒ max(πα(Λ1; 1, 2), πα(Λ2; 1, 2)) > πα(Λ; 2, 1) (31)
=⇒ |ωα(γ1, η, ρ)| = 1. (32)

In the simplest case N = 3, Eq. 25 yields the explicit expression

Q1,2,3;α = b1,2;α

b2,1;α
= α

2−α , (33)

while the inequality in Eq. 30 is equivalent to

1 > max
(

Λ∗
1,2,3;α

3γ2
1

, Q1,2,3;α

(1−2ηρ+η2

1−ρ2

))
. (34)

Note that

1 > Q1,2,3;α

(1−2ηρ+η2

1−ρ2

)
(35)

⇐⇒ 0 > ρ2−2Q1,2,3;αηρ + Q1,2,3;α(1 + η2) − 1 =: hα,η(ρ). (36)

The quadratic function hα,η(ρ) (−1 ≤ ρ ≤ 1) satisfies

hα,η(−1) = Q1,2,3;α(1 + η)2 ≥ 0,

hα,η(1) = Q1,2,3;α(1 − η)2 ≥ 0,

hα,η(0) = Q1,2,3;α(1 + η2) − 1.

It is easily seen that if α ≤ 2
3 then Q1,2,3;α ≤ 1

2 , so hα,η(0) ≤ 0 for all
η ∈ [−1, 1]. Thus if α ≤ 2

3 then hα,η(ρ) must have one root in [−1, 0] and
one root in [0, 1]. The two roots are given by

ρ̂±
α,η = Q1,2,3;αη ± √

(1 − Q1,2,3;α)(1 − Q1,2,3;αη2); (37)

note that ρ̂±
α,−η = −ρ̂∓

α,η.
It follows that if α ≤ 2

3 then for sufficiently large γ2
1 , i.e., γ2

1 ≥ 1
3Λ

∗
1,2,3;α,

ρ ∈ (ρ̂−
α,η, ρ̂+α,η) =⇒ |ω̂α(γ1, η, ρ)| = 1, (38)

that is, at least one of the two univariate t2-tests is more powerful than the
overall (bivariate) T 2-test. Specifically, when γ2

1 ≥ 1
3Λ

∗
1,2,3;α, |ω̂α(γ1, η, ρ)| =
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1 in the (η, ρ)-regions of the parameter space indicated in Table 1. From this
it is seen that for p = 2, N = 3, and the common (small) values of α, the
bivariate size-α T 2-test is dominated by at least one of the two univariate
size-α t2-tests for most of the distant alternative hypothesis K, i.e., for suf-
fiiciently large γ2

1 . In fact, for most cases this domination occurs over almost
the entire range (−1, 1) of ρ. �
Example 2.2 Suppose that p ≥ 3 and N = p + 2. The powers of the

(
p
2

)

bivariate size-α T 2-tests and the overall (p-variate) size-α T 2-test will be
compared for distant alternatives, which requires comparison of the powers

{π(Λω; 2, p) | ω ∈ Ωp, |ω| = 2} and π(Λ; p, 2). (39)

Table 1: Take p = 2, N = 3, and γ2
1 sufficiently large, that is, γ2

1 ≥ 1
3Λ

∗
1,2,3;α

α Q1,2,3;α η (ρ̂−
α,η, ρ̂+α,η)

.50 .333 1 (–.333, 1)
.5 (–.615, .948)
0 (–.816, .816)

.20 .111 1 (–.778, 1)
.5 (–.874, .985)
0 (–.943, .943)

.10 .0526 1 (–.895, 1)
.5 (–.941, .993)
0 (–.973, .973)

.05 .0256 1 (–.949, 1)
.5 (–.971, .997)
0 (–.987, .987)

.01 .00503 1 (–.990, 1)
.5 (–.994, .999)
0 (–.997, .997)

0+ 0 1 (–1, 1)
.5 (–1, 1)
0 (–1, 1)

If ρ ∈ (ρ̂−
α,η, ρ̂+

α,η) then |ω̂α(γ1, η, ρ)| = 1, i.e., the power of at least one of the two univariate
size-α t2-tests dominates that of the bivariate size-α T 2-test. (Note that ρ̂±

α,−η = −ρ̂∓
α,η)
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From Eq. 22,

Λ(2) : = max{Λω | ω ∈ Ωp, |ω| = 2} > max
(
Λ∗

2,p,p+2;α, Q2,p,p+2;αΛ
)

=⇒ max{π(Λω; 2, p) | ω ∈ Ωp, |ω| = 2} > π(Λ; p, 2).

Therefore for sufficiently large values of Λ(2), namely Λ(2) ≥ Λ∗
2,p,p+2;α,

at least one of the bivariate size-α T 2-tests will be more powerful than the
p-variate size-α T 2-test5 provided that

Λ(2) > Q2,p,p+2;αΛ. (40)

From Eq. 25 we obtain the explicit expression

Q2,p,p+2;α = b2,p;α

bp,2;α
= 1−(1−α)

2
p

α
2
p

. (41)

If we set νp = 2
p and Up;α = νp

Q2,p,p+2;α
then

lim
p→∞ Q2,p,p+2;α = 0, (42)

lim
p→∞ Up;α = 1

− log(1−α) (> 1 for α < e−1
e = .6321); (43)

lim
p→∞(p − 1)Up;α = ∞. (44)

Table 2 shows that Q2,p,p+2;α decreases rapidly to 0 as p → ∞, which
suggests that Eq. 40 might hold over substantial regions of the alternative
hypothesis K. We proceed to exhibit several such regions.
Case 1 γ1 = · · · = γp =: δ and R has the intraclass form

Rρ := (1 − ρ)Ip + ρ1p1′
p, (45)

where 1p = (1, . . . , 1)′ : p×1 and the allowable range of ρ is (− 1
p−1 , 1). Then

R−1
ρ = 1

1−ρ

[
Ip − ρ1p1′

p

1+ρ(p−1)

]
, (46)

1′
pR

−1
ρ 1p = p

1+ρ(p−1) , (47)

5 Note that by itself this does not establish that |ω̂α(γ, R)| = 2.
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Table 2: Take p ≥ 3, N = p + 2, and δ2 sufficiently large, that is, δ2 ≥
(p + 2)−1Λ∗

2,p,p+2;α

p α Q2,p,p+2;α Up;α ψ̃−
p;α (ρ̃−

p;α, ρ̃+p;α) − 1
p−1

4 .20 .236 2.118 –.209 (–.304, .776) –.333
.10 .162 3.081 –.245 (–.314, .844)
.05 .113 4.415 –.279 (–.320, .890)
.01 .050 9.975 –.310 (–.328, .951)

10 .20 .0602 3.321 –.080 (–.110, .907) –.111
.10 .0330 6.052 –.094 (–.110, .948)
.05 .0186 10.764 –.102 (–.111, .973)
.01 .02504 39.652 –.109 (–.111, .980)

20 .20 .0259 3.858 –.039 (–.0525, .954) –.0526
.10 .0132 7.579 –.046 (–.0526, .976)
.05 .02690 14.486 –.049 (–.0526, .988)
.01 .02159 62.810 –.052 (–.0526, .997)

40 .20 .0120 4.158 –.020 (–.0256, .977) –.0256
.10 .02590 8.481 –.023 (–.0256, .989)
.05 .02298 16.806 –.024 (–.0256, .994)
.01 .03632 79.055 –.025 (–.0256, .999)

∞ .20 0 4.481 0 [0, 1) 0
.10 0 9.491 0 [0, 1)
.05 0 19.496 0 [0, 1)
.01 0 99.499 0 [0, 1)

In Case 1, if ∼ ψ−
p;α <ρ< 1 then the power of all the

(
p
2

)
bivariate size-α T 2-tests dominates

that of the p-variate size-α T 2-test. In Case 2, if ρ̃−
p;α < ρ <∼ ρ+

p;α then the power of at
least one of the

(
p
2

)
bivariate size-α T 2-tests dominates that of the p-variate size-α T 2-test

By symmetry, all bivariate tests have the same power, and by Eqs. 13
and 17,

Λ = p(p+2)δ2

1+(p−1)ρ , Λ(2) = 2(p+2)δ2

1+ρ . (48)

Thus Λ(2) ≥ Λ∗
2,p,p+2;α holds for all allowable ρ if δ2 ≥ (p+2)−1Λ∗

2,p,p+2;α.
Also, if we set νp = 2

p (≤ 2
3) then Eq. 40 is equivalent to each of the inequal-

ities

Up;α > 1+ρ
1+(p−1)ρ ;

[(p − 1)Up;α − 1] ρ > 1 − Up;α. (49)
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Because (p − 1)Up;α > 1 for common (small) values of α (see Eq. 44 and
Table 2), in such cases Eq. 49 is equivalent to

ρ > 1−Up;α

(p−1)Up;α−1 =: ψ̃−
p;α. (50)

Table 2 shows that in Case 1, ψ̃−
p;α is close to the lower limit of the

allowable range (− 1
p−1 , 1) for ρ. Thus by Eq. 50, all of the bivariate size-α

T 2-tests are more powerful than the p-variate size-α T 2-test for most of the
distant alternative hypothesis specified in Case 1, i.e., for sufficiently large
δ2 (≥ (p + 2)−1Λ∗

2,p,p+2;α).

Case 2 (γ sparse): γi = γj =: δ for some {i, j} ⊂ {1, . . . , p}, γk = 0 for
k �= i, j, and R has the intraclass form Rρ in Eq. 45 By Eqs. 13 and
17,

Λ = 2(p+2)δ2[1+(p−3)ρ]
(1−ρ)[1+(p−1)ρ] , Λ(2) = 2(p+2)δ2

1+ρ , (51)

so again Λ(2) ≥ Λ∗
2,p,p+2;α holds for all allowable ρ if δ2 ≥ (p+2)−1Λ∗

2,p,p+2;α.
Abbreviating Q2,p,p+2;α by Q, Eq. 40 is equivalent to each of the inequalities

1
1+ρ > Q[1+(p−3)ρ]

(1−ρ)[1+(p−1)ρ] ;

0 > [(p − 1) + (p − 3)Q]ρ2 − (p − 2)(1 − Q)ρ − (1 − Q) =: hp;α(ρ).

Since hp;α(0) = Q−1 < 0 for common (small) values of α (see Eqs. 42-43
and Table 2), hp;α(ρ) has two real roots ρ̃−

p;α < 0 < ρ̃+p;α (found numerically).
Therefore 0 > hp;α(ρ) for ρ̃−

p;α < ρ < ρ̃+p;α.
Table 2 shows that in Case 2, the interval (ρ̃−

p;α, ρ̃+p;α) covers almost all of
the allowable range (− 1

p−1 , 1) for ρ. Thus at least one of the bivariate size-α
T 2-tests is more powerful than the p-variate size-α T 2-test for most of the
distant alternative hypothesis specified in Case 2, i.e., for sufficiently large
δ2 (≥ (p + 2)−1Λ∗

2,p,p+2;α).

Case 3 (γ sparse): γi = δ and γj = −δ for some {i, j} ⊂ {1, . . . , p},
γk = 0 for k �= i, j, and R has the intraclass form Rρ By Eqs. 13 and
17,

Λ(2) = 2(p+2)δ2

1−ρ , Λ = 2(p+2)δ2

1−ρ . (52)
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Thus Λ(2) ≥ Λ∗
2,p,p+2;α again holds for all allowable ρ if δ2 ≥ (p +

2)−1Λ∗
2,p,p+2;α, while Eq. 40 is equivalent to 1 > Q2,p,p+2;α, which holds

for most p, α (see Eqs. 42-43 and Table 2). Again at least one of the bivari-
ate size-α T 2-tests will be more powerful than the p-variate size-α T 2-test
for the entire distant alternative hypothesis in Case 3, i.e., for sufficiently
large δ2 (≥ (p + 2)−1Λ∗

2,p,p+2;α).

Case 4: p =: 2l is even, γi = δ for l indices in {1, . . . , p}, γi = −δ for
the remaining l indices, and R has the intraclass form Rρ

By Eqs. 13 and 17,

Λ(2) = 2(p+2)δ2

1−|ρ| , Λ = p(p+2)δ2

(1−ρ) . (53)

Thus Λ(2) ≥ Λ∗
2,p,p+2;α again holds for all allowable ρ if δ2 ≥ (p +

2)−1Λ∗
2−2,p+2;α, while Eq. 40 is equivalent to the inequality

Up;α > 1−|ρ|
1−ρ . (54)

Because 1−|ρ|
1−ρ ≤ 1, while Up;α > 1 for holds for most p, α (see Eq. 43 and

Table 2), at least one of the bivariate size-α T 2-tests is more powerful than
the p-varisate size-α T 2-test over the entire distant alternative hypothesis in
Case 4, i.e., for sufficiently large δ2 (≥ (p + 2)−1Λ∗

2,p,p+2;α)

3 Some Local Power Comparisons

From Eqs. 2-4, as Λω ↓ 0 the power function πα(Λω) ≡ πα(Λω; |ω|, N − |ω|)
of the T 2

ω-test satisfies

πα(Λω) = e− Λω
2 [α + Λω

2 cα
|ω|,N−|ω|;1 + O(Λ2

ω)] (55)

= α + Λω

2 (cα
|ω|,N−|ω|;1 − α) + O(Λ2

ω). (56)

Thus for two subsets ω, ω′ with ω ⊂ ω′, there exists Λ∗∗
|ω|,|ω′|,N ;α > 0 such

that

Λω′ < min
(
Λ∗∗

|ω|,|ω′|,N ;α, Z|ω|,|ω′|,N ;αΛω

)
=⇒ πα(Λω) > πα(Λω′), (57)
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where, from (2.2) and (2.3) in Das Gupta and Perlman (1974),

Z|ω|,|ω′|,N ;α :=
cα

|ω|,N−|ω|;1−α

cα
|ω′|,N−|ω′|;1−α > 1. (58)

Therefore power comparisons of T 2
ω and T 2

ω′ for local alternatives6 require
determination of the lower tail probabilities cα

m,n;k, which in turn require the
lower quantiles bn,m;α (see Eq. 8).

In parallel with Section 2, this is done explicitly in Examples 3.1 and 3.2.
As in Examples 2.1 and 2.2, these examples begin to suggest that variable
selection might be limited to very small subsets ω ∈ Ωp, e.g., singletons in
the bivariate Example 3.1, or pairs (plus singletons) in Example 3.2.
Example 3.1 As in Example 2.1 consider the bivariate case p = 2. Repeat
the first two paragraphs from Example 2.1 verbatim, except replace “distant
alternatives” by “local alternatives”. Because max(Λ1, Λ2) ≤ Λ, it follows
from Eqs. 27 and 57 that

(1−2ηρ+η2

1−ρ2

)
γ2
1 < min

(
1
N Λ∗∗

1,2,N ;α, Z1,2,N ;αγ2
1

)
(59)

=⇒ max(πα(Λ1; 1, 2), πα(Λ2; 1, 2)) > πα(Λ; 2, 1), (60)
=⇒ |ω̂α(γ1, η, ρ)| = 1. (61)

In the simplest case N = 3, it follows from Eqs. 8, 6, and 25 that

Z1,2,3;α = cα
1,2;1−α

cα
2,1;1−α = 1−(1−α)3−α

3
2
(α− 1

3
α3)−α

= 2(2−α)
1+α . (62)

First note that in Eq. 59,

1−2ηρ+η2

1−ρ2 < Z1,2,3;α (63)

⇐⇒ hα,η(ρ) :=Z1,2,3;αρ2 − 2ηρ + η2 + 1 − Z1,2,3;α < 0. (64)

The quadratic function hα,η(ρ) (−1 ≤ ρ ≤ 1) satisfies

hα,η(−1) = (1 + η)2 ≥ 0,

hα,η(1) = (1 − η)2 ≥ 0,

hα,η(0) = η2 + 1 − Z1,2,3;α,

6 We do not claim to know the values of Λ∗∗
|ω|,|ω′|,N ;α

, even approximately.
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It is easily seen that if α ≤ 1
2 then Z1,2,3;α ≥ 2, so hα,η(0) ≤ 0 for all

η ∈ [−1, 1]. Therefore, if α ≤ 1
2 then hα,η(ρ) must have one root in [−1, 0]

and one root in [0, 1]. The two roots are given by

ρ̌±
α,η = η

Z1,2,3;α
± 1

Z1,2,3;α

√
(Z1,2,3;α − 1)(Z1,2,3;α − η2); (65)

again ρ̌±
α,−η = −ρ̌∓

α,η. Thus, if α ≤ 1
2 and ρ ∈ (ρ̌−

α,η, ρ̌+α,η) then Eq. 63 must
hold.

To conclude that |ω̂α(γ1, η, ρ)| = 1, γ2
1 must be sufficiently small, i.e.,

0 < γ2
1 <

( 1−ρ2

1−2ηρ+η2

)Λ∗∗
1,2,3;α

3 . (66)

Because

min
|η|≤1

( 1−ρ2

1−2ηρ+η2

)
= 1

2(1 − |ρ|),

for fixed η, Eq. 66 will be satisfied provided that

ρ ∈ (ρ̌−
α,η, ρ̌+α,η), (67)

m̌α,η : = max(|ρ̌−
α,η|, |ρ̌+α,η|) < 1, (68)

γ2
1 < 1

6(1 − mα,η)Λ∗∗
1,2,3;α. (69)

It is straightforward to show that Eq. 68 holds for |η| < 1 but not for
|η| = 1.

Thus, if α ≤ 1
2 , |η| < 1, and Eqs. 67, 68, and 69 are satisfied then

|ω̂α(γ1, η, ρ)| = 1, in which case at least one of the two univariate t2-tests
are more powerful than the overall (bivariate) T 2-test. This occurs in the
(η, ρ)-regions of the parameter space indicated in Table 3, provided that
γ2
1 < 1

6(1 − m̌α,η)Λ∗∗
1,2,3;α. Thus, for p = 2, N = 3, and the common (small)

values of α, the bivariate size-α T 2-test is dominated by at least one of the
two univariate size-α t2-tests over much of the local alternative hypothesis
space. Compared to Table 1, this effect seems somewhat less than for distant
alternatives.

Example 3.2 Suppose that p ≥ 3 and N = p+2 ≥ 3. We shall compare the
powers of the

(
p
2

)
bivariate size-α T 2-tests and the p-variate size-α T 2-test

for local alternatives, which requires comparison of the powers

{π(Λω; 2, p) | ω ∈ Ωp, |ω| = 2} and π(Λ; p, 2). (70)
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Table 3: For p = 2, N = 3, and sufficiently small γ2
1 ≡ max(Λ1, Λ2) (i.e.,

γ2
1 < 1

6(1 − m̌α,η)Λ∗∗
1,2,3;α), if ρ ∈ (ρ̌−

α,η, ρ̌+α,η) then |ω̂α(γ1, η, ρ)| = 1, i.e., the
power of at least one of the two univariate size-α t2-tests dominates that of
the bivariate size-α T 2-test
α Z1,2,3;α η (ρ̌−

α,η, ρ̌+α,η) 1 − m̌α,η

.50 2 .9 (–.095, .9954) .0046
.5 (–.411, .911) .089
0 (–.707, .707) .293

.20 3 .9 (–.398, .9976) .0024
.5 (–.615, .948) .052
0 (–.816, .816) .184

.10 3.454 .9 (–.477, .9980) .0020
.5 (–.667, .957) .043
0 (–.843, .843) .157

.05 3.714 .9 (–.514, .9982) .0018
.5 (–.691, .962) .038
0 (–.855, .855) .145

.01 3.941 .9 (–.542, .9983) .0017
.5 (–.709, .963) .037
0 (–.864, .864) .136

0+ 4 .9 (–.548, .9984) .0016
.5 (–.714, .964) .036
0 (–.866, .866) .134

(Note that ρ̌±
α,−η = −ρ̌∓

α,η)

From Eq. 57,

Λ < min(Λ∗∗
2,p,p+2;α, Z2,p,p+2;αΛ(2)) (71)

=⇒ max{π(Λω; 2, p) | ω ∈ Ωp, |ω| = 2} > π(Λ; p, 2). (72)

Therefore for sufficiently small values of Λ, namely Λ ≤ Λ∗∗
2,p,p+2;α, at

least one of the bivariate size-α T 2-tests will be more powerful than the
p-variate size-α T 2-test7 whenever

Λ < Z2,p,p+2;αΛ(2). (73)

7 As in Example 2.2, this does not establish that |ω̂α(γ, R)| = 2.
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From Eqs. 58, 8-6, 25, and some algebra, the explicit expression

Z2,p,p+2;α = cα
2,p;1−α

cα
p,2;1−α = pα[1−α

2
p ]

2(1−α)[1−(1−α)
2
p ]

(74)

is obtained. Setting νp = 2
p (≤ 2

3) and Vp;α := νpZ2,p,p+2;α, we have

lim
p→∞ Z2,p,p+2;α = ∞, (75)

lim
p→∞ Vp;α = α logα

(1−α) log(1−α) (> 1 for α < 1
2), (76)

lim
p→∞(p − 1)Vp;α = ∞. (77)

Table 4 shows that Z2,p,p+2;α increases rapidly to ∞ as p → ∞, which
suggests that Eq. 73 might hold over substantial regions of the alternative
hypothesis. Several such regions are now exhibited.
Case 1: γ1 = · · · = γp =: δ and R has the intraclass form Eq. 45

Here − 1
p−1 < ρ < 1 and as in Eq. 48,

Λ(2) = 2(p+2)δ2

1+ρ , Λ = p(p+2)δ2

1+(p−1)ρ . (78)

Here Eq. 73 is equivalent to each of the inequalities

Vp;α > 1+ρ
1+(p−1)ρ ;

Vp;α − 1 > − [(p − 1)Vp;α − 1] ρ. (79)

Because (p − 1)Vp;α > 1 for common (small) values of α (see Eq. 77 and
Table 4), in such cases Eq. 79 in turn is equivalent to

ψ̆−
p;α := − Vp;α−1

(p−1)Vp;α−1 < ρ < −1. (80)

To conclude that Eqs. 71-72 holds, δ2 must be sufficiently small, i.e.,

0 < δ2 <
[
1+(p−1)ρ

p(p+2)

]
Λ∗∗

2,p,p+2;α. (81)

However, ρ > ψ̆−
p;α implies that

1+(p−1)ρ
p(p+2) >

1+(p−1)ψ̆−
p;α

p(p+2) = p−2
p(p+2)[(p−1)Vp;α−1] := m̆p,α. (82)
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Therefore Eq. 81 will be satisfied provided that

ρ > ψ̆−
p;α and δ2 < m̆p,αΛ∗∗

2,p,p+2;α. (83)

If p is large and α is small, Table 4 shows that in Case 1, ψ̆−
p;α is close

to the lower limit of the allowable range (− 1
p−1 , 1) for ρ. Then by Eq. 83,

at least one of the bivariate size-α T 2-tests will be more powerful than the
p-variate size-α T 2-test for most of the local alternative hypothesis covered
by Case 1, i.e., for δ2 < m̆p,αΛ∗∗

2,p,p+2;α.

Case 2 (γ sparse): γi = γj ≡ δ for some {i, j} ⊂ {1, . . . , p}, γk = 0 for
k �= i, j, and R has the intraclass form Rρ in Eq. 45 As in 51,

Λ(2) = 2(p+2)δ2

1+ρ , Λ = 2(p+2)δ2[1+(p−3)ρ]
(1−ρ)[1+(p−1)ρ] ,

Abbreviating Z2,p,p+2;α by Z, Eq. 73 is equivalent to each of the inequal-
ities

Z
1+ρ > [1+(p−3)ρ]

(1−ρ)[1+(p−1)ρ] ;

0 > [(p − 1)Z + (p − 3)]ρ2 − (p − 2)(Z − 1)ρ − (Z − 1) =: hp;α(ρ).

Since hp;α(0) = 1 − Z < 0 (cf. Eq. 58), hp;α(ρ) has real roots ρ̆−
p;α < 0 <

ρ̆+p;α (found numerically). Therefore 0 > hp;α(ρ) for ρ̆−
p;α < ρ < ρ̆+p;α.

To conclude that Eqs. 71-72 holds, δ2 must be sufficiently small, i.e.,

0 < δ2 <
{

(1−ρ)[1+(p−1)ρ]
2(p+2)[1+(p−3)ρ]

}
Λ∗∗

2,p,p+2;α. (84)

Because (1−ρ)[1+(p−1)ρ]
1+(p−3)ρ is decreasing in ρ, ρ < ρ̆+p;α implies that

(1−ρ)[1+(p−1)ρ]
2(p+2)[1+(p−3)ρ] >

(1−ρ̆+
p;α)[1+(p−1)ρ̆+

p;α]

2(p+2)[1+(p−3)ρ̆+
p;α]

:= m̆′
p,α. (85)

Therefore Eq. 84 will be satisfied provided that

ρ ∈ (ρ̆−
p;α, ρ̆+p;α) and δ2 < m̆′

p,αΛ∗∗
2,p,p+2;α. (86)

Table 4 shows that in Case 2, the interval (ρ̆−
p;α, ρ̆+p;α) covers almost all

of the allowable range (− 1
p−1 , 1) for ρ. Thus at least one of the bivariate

size-α T 2-tests will be more powerful than the p-variate size-α T 2-test for



On the Feasibility of Parsimonious Variable Selection...

most of the local alternative hypothesis determined by Case 2, i.e., for δ2 <
m̆′

p,αΛ∗∗
2,p,p+2;α.

Case 3 (γ sparse): γi = δ and γj = −δ for some {i, j} ⊂ {1, . . . , p},
γk = 0 for k �= i, j, and R has the intraclass form Rρ By Eqs. 13 and
17,

Λ(2) = 2(p+2)δ2

1−ρ , Λ = 2(p+2)δ2

1−ρ .

Here Eq. 73 is equivalent to Z2,p,p+2;α > 1, which holds for all p, α (see Eq.
58).

To conclude that Eqs. 71-72 holds, δ2 must be sufficiently small, i.e.,

δ2 <
( 1−ρ
2(p+2)

)
Λ∗∗

2,p,p+2;α (87)

for all ρ ∈ (− 1
p−1 , 1). This requires that ρ be bounded below 1, that is,

ρ < 1 − ε for some ε > 0, whence Eq. 87 will be satisfied if

δ2 <
(

ε
2(p+2)

)
Λ∗∗

2,p,p+2;α. (88)

Thus at least one of the bivariate size-α T 2-tests is more powerful than
the p-variate size-α T 2-test if ρ < 1 − ε, which covers almost all of the local
region Eq. 88 in the alternative hypothesis determined by Case 3.

Case 4: p =: 2l is even, γi = δ for l indices in {1, . . . , p}, γi = −δ for
the remaining l indices, and R has the intraclass form Rρ By Eqs.
13 and 17,

Λ(2) = 2(p+2)δ2

1−|ρ| , Λ = p(p+2)δ2

(1−ρ) .

Here Eq. 73 is equivalent to the inequality

Vp;α > 1−|ρ|
1−ρ . (89)

Because 1−|ρ|
1−ρ ≤ 1, while Vp;α > 1 for holds for most p, α (see Eq. 76 and

Table 4), Eq. 89 is satisfied for most p, α.
To conclude that Eqs. 71-72 holds, δ2 must be sufficiently small, i.e.,

δ2 <
[ 1−ρ

p(p+2)

]
Λ∗∗

2,p,p+2;α (90)
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for all ρ ∈ (− 1
p−1 , 1). This again requires that ρ be bounded below 1, that

is, ρ < 1 − ε for some ε > 0, whence Eq. 90 will be satisfied if

δ2 <
[

ε
p(p+2)

]
Λ∗∗

2,p,p+2;α (91)

Thus at least one of the bivariate size-α T 2-tests is more powerful than
the p-variate size-α T 2-test if ρ < 1 − ε, which covers almost all of the local
region Eq. 91 in the alternative hypothesis determined by Case 4. �

Remark 3.3 The mean-vector and covariance matrix configurations in
Examples 2.1 and 2.2 are the same as those in Examples 3.1 and 3.2 respec-
tively, so the results for distant alternatives in the former can be compared to
those for local alternatives in the latter. Because both sets of results support
the feasibility of limiting variable selection to small subsets, this suggests
that this feasibility may extend to intermediate alternatives as well. Fur-
thermore, both sparse cases (Cases 2 and 3) and non-sparse cases (Cases 1
and 4) exhibit this feasibility in §2 and §3. Of course, more extensive com-
parisons will be needed to confirm this conclusion.

4 Some Exact Power Comparisons for the Bivariate Case

The results in Sections 2 and 3 compare the power of the overall (p-variate)
T 2-test with those of univariate or bivariate T 2-tests based on the original
variates. However these power comparisons are asymptotic or local, and are
relevant only for noncentrality parameters Λ that approach ∞ or 0. In this
section we consider the bivariate case p = 2 and attempt to compare the
exact power functions of the T 2-test and the two univariate t2-tests for all
values of Λ. Two conjectures are presented; the first of these is confirmed in
Proposition 4.3 and applied in Example 4.4 for only two simple cases.
Conjecture 4.1 (weak) Suppose that p = 2 and N is odd: N = 2l+1. Then
for each λ > 0, there exists α∗

l (λ) ∈ (0, 1) such that

0 < α < α∗
l (λ) =⇒ πα(λ; 1, 2l) > πα

((
4l

2l−1

)
λ; 2, 2l − 1

)
, (92)

with equality when α = α∗
l (λ). �

Conjecture 4.1 is established below for l = 1, 2 and we expect it to hold
for all l ≥ 3 as well. However, it is unsatisfactory in that if α∗

l (λ) depends
nontrivially on λ then we cannot conclude that, at least for small α, one or
both of the two univariate size-α t2-tests dominate the bivariate size-α T 2
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test in a large region of the alternative hypothesis. For this the following
stronger result would be needed.
Conjecture 4.2 (strong) Conjecture 4.1 holds with α∗

l (λ) not depending on
λ, i.e., α∗

l (λ) = α∗
l . �

At this time we do not have evidence either for or against Conjecture
4.2. If valid, it would be essential to determine or approximate the values of
α∗

l .
Proposition 4.3 Conjecture 4.1 is valid for l = 1 and 2.
Proof By Eq. 3,

πα(λ; 1, 2l) > πα(2(1 + δ)λ; 2, 2l − 1) (93)

if and only if

s
(l)
δ,λ(α) := e(

1
2
+δ)λ ∑∞

k=0(
λ
2 )k 1

k!c
α
1,2l;k >

∑∞
k=0

(1+δ)kλk

k! cα
2,2l−1;k =: t

(l)
δ,λ(α).

(94)

From Eqs. 8 and 6 we find that

cα
1,2l;k = Pr[b2l,1+2k < b2l,1;α] (95)

= Γ(l+ 1
2
+k)

Γ(l)Γ( 1
2
+k)

∫ b2l,1;α

0 bl−1(1 − b)k− 1
2 db; (96)

α = Pr[b2l,1 < b2l,1;α] (97)

= Γ(l+ 1
2
)

Γ(l)Γ( 1
2
)

∫ b2l,1;α

0 bl−1(1 − b)− 1
2 db. (98)

Set u = 1− b in Eqs. 97-98, then differentiate with respect to α to obtain

d
dαb2l,1;α = Γ(l)Γ( 1

2
)

Γ(l+ 1
2
)

(1−b2l,1;α)
1
2

bl−1
2l,1;α

; (99)

d
dαcα

1,2l;k = Γ(l+ 1
2
+k)Γ( 1

2
)

Γ(l+ 1
2
)Γ( 1

2
+k)

(1 − b2l,1;α)k (100)

d
dαs

(l)
δ,λ(α) = e(

1
2
+δ)λ ∑∞

k=0(
λ
2 )k 1

k!

Γ(l+ 1
2
+k)Γ( 1

2
)

Γ(l+ 1
2
)Γ( 1

2
+k)

(1 − b2l,1;α)k (101)

=
[∑∞

k=0
( 1
2
+δ)kλk

k!

][∑∞
k=0(

λ
2 )k 1

k!

Γ(l+ 1
2
+k)Γ( 1

2
)

Γ(l+ 1
2
)Γ( 1

2
+k)

(1 − b2l,1;α)k
]

(102)

=
∑∞

k=0
( 1
2
+δ)k

k!

[∑k
r=0

(
k
r

)
1

(1+2δ)r

Γ(l+ 1
2
+r)Γ( 1

2
)

Γ(l+ 1
2
)Γ( 1

2
+r)

(1 − b2l,1;α)r
]
λk.

(103)
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Next,

α = Pr[b2l−1,2 < b2l−1,2;α] (104)

= Γ(l+ 1
2
)

Γ(l− 1
2
)Γ(1)

∫ b2l−1,2;α

0 bl− 3
2 db = b

l− 1
2

2l−1,2;α, (105)

b2l−1,2;α = α
2

2l−1 ; (106)

cα
2,2l−1;k = Pr[b2l−1,2+2k < α

2
2l−1 ] (107)

= Γ(l+ 1
2
+k)

Γ(l− 1
2
)Γ(1+k)

∫ α
2l

2l−1

0 bl− 3
2 (1 − b)kdb (108)

= Γ(l+ 1
2
+k)

Γ(l+ 1
2
)Γ(1+k)

∫ α
0 (1 − w

2l

2l−1 )kdw; (109)

d
dαcα

2,2l−1;k = Γ(l+ 1
2
+k)

Γ(l+ 1
2
)Γ(1+k)

(1 − α
2l

2l−1 )k; (110)

d
dα t

(l)
δ,λ(α) =

∑∞
k=0

(1+δ)kλk

k!

Γ(l+ 1
2
+k)

Γ(l+ 1
2
)Γ(1+k)

(1 − α
2l

2l−1 )k. (111)

Therefore a sufficient condition that d
dαs

(l)
δ,λ(α) > d

dα t
(l)
δ,λ(α) is that for all

k ≥ 0,

( 1
2
+δ)k

(1+δ)k(1−α
2l

2l−1 )k

∑k
r=0

(
k
r

) (1−b2l,1;α)r

(1+2δ)r

Γ(l+ 1
2
+r)

Γ( 1
2
+r)

≥ Γ(l+ 1
2
+k)

Γ( 1
2
)Γ(1+k)

, (112)

with strict inequality for at least one k.
Thus for α = 0, a sufficient condition that d

dαs
(l)
δ,λ(α = 0) > d

dα t
(l)
δ,λ(α = 0)

is that for all k ≥ 0,

( 1
2
+δ)k

(1+δ)k

∑k
r=0

(
k
r

)
1

(1+2δ)r

Γ(l+ 1
2
+r)

Γ( 1
2
+r)

≥ Γ(l+ 1
2
+k)

Γ( 1
2
)Γ(1+k)

, (113)

with strict inequality for at least one k. After some algebra, Eq. 113 can be
written equivalently as

E
[

Γ(l+ 1
2
+Rk,δ)

Γ( 1
2
+Rk,δ)

]
≥ Γ(l+ 1

2
+k)

Γ( 1
2
)Γ(1+k)

, (114)

where Rk,δ ∼ Binomial(k, 1
1+δ ). Because Rk,δ is (strictly) stochastically

decreasing in δ (for k ≥ 1) while Γ(l+ 1
2
+Rk,δ)

Γ( 1
2
+Rk,δ)

is (strictly) increasing in Rk,δ,

the left side of Eq. 114 ≡ Eq. 113 is (strictly) decreasing in δ (for k ≥ 1).
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For k = 0 both sides of Eq. 113 = Γ(l+ 1
2
)

Γ( 1
2
)

. For k = 1, Eq. 113 is equivalent
to the inequality

( 1
2
+δ)

(1+δ)

[
Γ(l+ 1

2
)

Γ( 1
2
)

+ 1
(1+2δ)

Γ(l+ 3
2
)

Γ( 3
2
)

]
≥ Γ(l+ 3

2
)

Γ( 1
2
)

,

which is equivalent to δ ≤ 1
2l−1 . Therefore the sufficient condition Eq. 113

for
d

dαs
(l)
δ,λ(α = 0) > d

dα t
(l)
δ,λ(α = 0)

will be satisfied for all δ ≤ 1
2l−1 if Eq. 113 holds for δ = 1

2l−1 for all k ≥ 2,
with strict inequality for at least one k ≥ 2.

Because s
(l)
δ,λ(0) = t

(l)
δ,λ(0) = 0, it follows from Eqs. 93-94 that Eq. 113,

with strict inequality for some k ≥ 2, is a sufficient condition that for each
λ > 0, there exists α∗

l (λ) ∈ (0, 1) such that

0 < α < α∗
l (λ) =⇒ πα(λ; 1, 2l) > πα

((
4l

2l−1

)
λ; 2, 2l − 1

)
, (115)

with equality when α = α∗
l (λ).

For the simplest case l = 1 (N = 3), Eq. 113 with δ = 1
2l−1 = 1 becomes

(
3
4

)k ∑k
r=0

(
k
r

)
1
3r (12 + r) ≥ Γ( 3

2
+k)

Γ( 1
2
)Γ(1+k)

, (116)

which by Eq. 114 can be reduced to the equivalent form

1 + k
2 ≥ Γ( 3

2
+k)

Γ( 3
2
)Γ(1+k)

. (117)

It is straightforward to verify Eq. 117 by induction on k, with strict
inequality holding for large k because Γ( 3

2
+k)

Γ(1+k) = O(k
1
2 ). Therefore Eq. 115

holds for l = 1; that is, for each λ > 0, there exists α∗
1(λ) ∈ (0, 1) such that

0 < α < α∗
1(λ) =⇒ πα(λ; 1, 2) > πα(4λ; 2, 1), (118)

with equality when α = α∗
1(λ).

Next consider the case l = 2 (N = 5). With δ = 1
2l−1 = 1

3 , Eq. 113
becomes

(
5
8

)k ∑k
r=0

(
k
r

)(
3
5

)r(32 + r)(12 + r) ≥ Γ( 5
2
+k)

Γ( 1
2
)Γ(1+k)

, (119)
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which can be reduced to the equivalent form

3
4 + 9k

8 + 9k(k−1)
64 ≥ Γ( 5

2
+k)

Γ( 1
2
)Γ(1+k)

= (32 + k)(12 + k) Γ( 1
2
+k)

Γ( 1
2
)Γ(1+k)

. (120)

Interestingly, Eq. 120 holds with equality for k = 2 as well as for 0 and
1. Rewrite Eq. 120 in the equivalent form

k(k−1)···2·1
(k− 1

2
)(k− 1

2
)··· 3

2
· 1
2

≥ 48+128k+64k2

48+63k+9k2 . (121)

To verify (121) by induction on k, it suffices to show that for k ≥ 2,

k+1
k+ 1

2

48+128k+64k2

48+63k+9k2 ≥ 48+128(k+1)+64(k+1)2

48+63(k+1)+9(k+1)2 . (122)

After simplification, this is equivalent to the inequality

4k3 + 4k2 − 5k − 3 ≥ 0, (123)

which holds for all k ≥ 1, with strict inequality for k + 1 ≥ 3. Thus Eq. 115
holds for l = 2: for each λ > 0, there exists α∗

1(λ) ∈ (0, 1) such that

0 < α < α∗
2(λ) =⇒ πα(λ; 1, 4) > πα(83λ; 2, 3), (124)

with equality when α = α∗
2(λ).

Example 4.1 s Return to the bivariate Example 2.1, where p = 2 and

Λ1 = Nγ2
1 , Λ2 = Nη2γ2

1 , Λ = N
(1−2ηρ+η2

1−ρ2

)
γ2
1 ; (125)

(recall Eq. 27). For N = 3 it follows from Eqs. 118 and 125 that for each
γ2
1 > 0,

0 < α < α∗
1(3γ2

1) =⇒ πα(3γ2
1 ; 1, 2) > πα(4·3γ2

1 ; 2, 1). (126)

Furthermore,

4·3γ2
1 > 3

(1−2ηρ+η2

1−ρ2

)
γ2
1 ⇐⇒ 4 > 1−2ηρ+η2

1−ρ2 (127)

⇐⇒ 0 > 4ρ2 − 2ηρ + (η2 − 3) := hη(ρ). (128)
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The two roots of hη(ρ) are ρ̂±
η = η±√

12−3η2

4 ; note that ρ̂±
−η = −ρ̂∓

η . Some
values appear in Table 5. Thus, if α < α∗

1(3γ2
1) then

ρ ∈ (ρ̂−
η , ρ̂+η ) =⇒ max(πα(Λ1; 1, 2), πα(Λ2; 1, 2)) > πα(Λ; 2, 1) (129)

=⇒ |ω̂α(γ1, η, ρ)| = 1; (130)

that is, at least one of the two univariate t2-tests is more powerful than the
overall (bivariate) T 2-test. This occurs in the (η, ρ)-regions of the param-
eter space indicated in Table 5, which constitute a substantial part of the
alternative hypothesis.

Similarly, for N = 5 it follows from Eqs. 124 and 125 that for each γ2
1 > 0,

0 < α < α∗
2(5γ2

1) =⇒ πα(5γ2
1 ; 1, 4) > πα(83 ·5γ2

1 ; 2, 3). (131)

Furthermore,

8
3 ·5γ2

1 > 5
(1−2ηρ+η2

1−ρ2

)
γ2
1 ⇐⇒ 8

3 > 1−2ηρ+η2

1−ρ2 (132)

⇐⇒ 0 > 8
3ρ

2 − 2ηρ + (η2 − 5
3) := h̃η(ρ). (133)

The two roots of h̃η(ρ) are ρ̃±
η = 3η±√

40−15η2

8 ; note that ρ̃±
−η = −ρ̃∓

η .
Some values appear in Table 5. Thus, if α < α∗

2(5γ2
1) then

ρ ∈ (ρ̃−
η , ρ̃+η ) =⇒ max(πα(Λ1; 1, 4), πα(Λ2; 1, 4)) > πα(Λ; 2, 3) (134)

=⇒ |ω̂α(γ1, η, ρ)| = 1; (135)

that is, at least one of the two univariate t2-tests is more powerful than the
bivariate T 2-test. Again this occurs in the (η, ρ)-regions of the parameter
space indicated in Table 5.

Thus for p = 2, N = 3 or 5, and sufficiently small α (but depending
on γ2

1), the bivariate size-α T 2-test is dominated by at least one of the two
univariate size-α t2-tests over a fairly large portion of the entire alternative
hypothesis, comprising local, intermediate, and distant alternatives.

5 Concluding Remarks

For the purpose of encouraging future research, the questions raised in this
report are stated formally as follows:
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Table 5: For p = 2, N = 3 (N = 5), and α < α∗
1(3γ2

1) (α < α∗
2(5γ2

1)), if
ρ ∈ (ρ̂−

η , ρ̂+η ) (ρ ∈ (ρ̃−
η , ρ̃+η )) then |ω̂α(γ1, η, ρ)| = 1, so the power of at least

one of the two univariate size-α t2-tests exceeds that of the bivariate size-α
T 2-test
η (ρ̂−

η , ρ̂+η ) (ρ̃−
η , ρ̃+η )

1 (–.5, 1) (–.25, 1)
.75 (–.615, .990) (–.421, .983)
.5 (–.714, .964) (–.566, .940)
.25 (–.797, .922) (–.687, .875)
0 (–.866, .866) (–.791, .791)
(Note that ρ̂±

−η = −ρ̂∓
η and ρ̃±

−η = −ρ̃∓
η )

The Oracular Variable-Selection Problem (OVSP) is that of deter-
mining the function ω̂α(γ, R), as defined in Eq. 19, and using this to deter-
mine the regions

Aα(i) ≡ {
(γ, R)

∣∣|ω̂α(γ, R)| = i
}
, i = 1, ..., p. (136)

The Parsimonious Variable-Selection Problem (PVSP) asks if Aα(i)
comprises a substantial portion of the alternative hypothesis K for small
values of i, e.g., i = 1, 2.

If the answer to the PVSP is positive, then variable selection in some
applied investigations can be limited to small, easily interpretable subsets of
variables.

Finally, Example 5.1 illustrates the gain in power that ideally can be
attained by variable selection limited to univariate subsets even after the
crude Bonferonni correction for multiple testing is applied.

Example 5.1 For p = 10, N = 12, 22, 41, and α = .05, Table 6 shows the
gain in power obtained by the Bonferroni-corrected test T 2

ω̂ with the oracular

Table 6: The powers of the overall T 2 test and optimal univariate test T 2
ω̂

under a most-favorable parameter configuration where their noncentralities
coincide: Λ = Λω̂ = 18
N π.05(Λ; p, N − p) π.005(Λω̂; |ω̂|, N − |ω̂|)
12 0.134 0.756
22 0.548 0.849
41 0.707 0.890
121 0.801 0.914
Here p = 10 and α = .05
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subset ω̂ ≡ ω̂α(γ, R) when |ω̂| = 1 and Λ = Λω̂ = 18. The gain in power can
be substantial unless N is very large. (The powers are from Tiku, 1967.)
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6 Appendix A Testing for additional information.

Variable selection for the T 2-test and related linear discriminant analysis
was thoroughly studied in the 1970s and 1980s, an era of limited computer
power, and subsequently by several authors with greater ability to consider
all-subsets methods; a list of references appears below. Almost all of these
studies were based on testing for additional information (= increased Maha-
lanobis distance), as now described.

For any two nested subsets ω ⊂ ω′ in Ωp, in general Λω ≤ Λω′ . The
question of whether the power of the Tω′-test exceeds that of the Tω-test for
the testing problem Eq. 9 usually was formulated as the problem of testing
for additional information (TAI), namely, testing

Λ′
ω = Λω vs. Λ′

ω > Λω (137)

based on a preliminary sample – see [Rao (1973)] §8c.4. This formulation was
adopted by many researchers, even while citing the following result of Das
Gupta and Perlman (1974) which implies that this standard formulation of
TAI is inappropriate.

It was shown in [DGP, Theorem 2.1] that for fixed λ > 0, the power func-
tion πα(λ; m, n) (recall Eq. 2) of the non-central f -test is strictly decreasing
in m and strictly increasing in n.8 Therefore for any integer 1 ≤ q ≤ n − 1
there exists a unique real number

gα(λ) := gα(λ; m, n, q) > 0 (138)

such that

πα(λ; m, n) = πα(λ + gα(λ); m + q, n − q). (139)

Here gα(0) = 0 and gα(λ) is strictly increasing in λ; cf. (Theorem 3.1, Das
Gupta and Perlman, 1974). Thus the power is increased only if

Λω′ > Λω + gα(Λω; |ω|, N − |ω|, |ω′\ω|). (140)

8 In line 2 of the second column on p.179 of Das Gupta and Perlman (1974), “conclude”
should be“include”. In the line following the third display in the second column on p.179, “j”
should be“f”. In Remark 4.1 on p.180, “increasing in m” should be “decreasing in m”. In the next
line, “m → ∞” should be “n → ∞”.
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Therefore (Section 4, Das Gupta and Perlman, 1974) introduced the prob-
lem of testing for increased power (TIP), namely, testing

H1 : Λω′ ≤ Λω + gα(Λ|ω|; |ω|, N − |ω|, |ω′\ω|)
vs. K1 : Λω′ > Λω + gα(Λ|ω|; |ω|, N − |ω|, |ω′\ω|),

and proposed several (approximate) tests.
This proposal was noted by subsequent authors but never implemented for

variable selection, possibly because of difficulties in computing the functions
gα(·), especially if many pairs (ω, ω′) must be considered. However, if as
suggested above, variable selection might be limited to very small subsets of
variables in practical applications, then replacing the TAI by the TIP might
be feasible.
Remark A1 The relation Eq. 92 in Conjecture 4.1 can be stated equiva-
lently in terms of gα:

0 < α < α∗
l (λ) =⇒ gα(λ; 1, 2l, 1) >

(
2l+1
2l−1

)
λ ∀ λ > 0, (141)

with equality when α = α∗
l (λ). Thus the relations Eqs. 118 and 124 in

Proposition 4.3 also can be stated equivalently in terms of gα:

0 < α < α∗
1(λ) =⇒ gα(λ; 1, 2, 1) > 3λ ∀ λ > 0, (142)

with equality when α = α∗
1(λ);

0 < α < α∗
2(λ) =⇒ gα(λ; 1, 4, 1) > 5

3λ ∀ λ > 0, (143)

with equality when α = α∗
2(λ).
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