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Abstract
In this paper, we study Dirac-type theorems for an inhomogenous ran-
dom graph G whose edge probabilities are not necessarily all the same. We
obtain sufficient conditions for the existence of Hamiltonian paths and per-
fect matchings, in terms of the sum of edge probabilities. For edge probability
assignments with two-sided bounds, we use Pósa rotation and single vertex
exclusion techniques to show that G is Hamiltonian with high probability.
For weaker one-sided bounds, we use bootstrapping techniques to obtain a
perfect matching in G, with high probability. We also highlight an applica-
tion of our results in the context of channel assignment problem in wireless
networks.
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1 Introduction

Hamiltonian cycles are important objects of study from both theoretical
and application perspectives and for deterministic graphs, there are many
known sufficient conditions for their existence. For example, Dirac (1952)
proved that if the minimum degree of a graph H on n vertices is at least n

2 ,
then H is Hamiltonian and for further results along this direction, we refer
to Chapter 7 of West (2000).

In the case of random graphs, one of the earliest studies was initiated
by Pósa (1976), who used rotation techniques to obtain edge probability
threshold for the occurrence of Hamiltonian paths with high probability, i.e.
with probability converging to one as n → ∞. For a detailed survey of further
techniques, we refer to the book (Bollobás 2001). In Lee and Sudakov (2012)
a Dirac-type theorem is obtained for random subgraphs of a graph that is not
necessarily complete. The main result there is that if the minimum degree of
the “parent” graph is at least n

2 , then the Hamiltonicity threshold is again
of the order of logn

n and they also demonstrated the tightness of this bound.
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We also remark that recently (Condon et al. 2021) has obtained Dirac-type
theorems random regular graphs.

In this paper, we consider inhomogenous random graphs with indepen-
dently open edges, whose edge probabilities are not all the same. We obtain
sufficient “two-sided” conditions on the edge probabilities, for the existence
of a Hamiltonian path with high probability. We then show that under weaker
one-sided conditions, there is a perfect matching with high probability.

The paper is organized as follows. In Section 2 we state and prove our
results regarding existence of Hamiltonian paths and perfect matchings in
inhomogenous random graphs and in Section 3, we briefly describe an appli-
cation of our results in the context of channel assignment in wireless net-
works.

2 Inhomogenous Random Graphs

Let Kn be the complete graph on n vertices and let {Z(f)}f∈Kn
be inde-

pendent random variables with distribution

P(Z(f) = 1) = p(f) = 1 − P(Z(f) = 0) (2.1)

where 0 ≤ p(f) ≤ 1 and let G be the random graph formed by the union of
all edges f satisfying Z(f) = 1. A path in G is a sequence of vertices P =
(u1, . . . , ut) such that ui is adjacent to ui+1 in G, for each 1 ≤ i ≤ t− 1. The
length of P is the number of edges in P which in this case is t − 1. If P has
the maximum possible length of n − 1, then we say that P is a Hamiltonian
path.

Our first result obtains Hamiltonian paths in G for the following class
of “well-behaved” probability assignments. For constants 0 < α < 1
and c1, c2 > 0 and 0 < p = p(n) < 1, we say that the probability assign-
ment {p(u, v)}1≤u<v≤n in (2.1) is (α, c1, c2, p)−good if for any vertex u and
any set S containing r ≥ αn vertices,

c1rp ≤
∑

v∈S

p(u, v) ≤ c2rp. (2.2)

Here and throughout, constants do not depend on n. Letting EHAM be the
event that G contains a Hamiltonian path, we have the following result.
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Theorem 1 Suppose {p(u, v)} is (α, c1, c2, p)−good for p = Cn− k

k+1 where
C > 0 is a constant and k ≥ 1 is an integer constant. For every

C ≤ 1
10c2

and α ≤ min

(
7
8
,

(
Cc1
8

)k+1
)

, (2.3)

there exists a constant θ > 0 such that

P(EHAM ) ≥ 1 − e−θnp. (2.4)

In other words, the resulting random graph G contains a Hamiltonian path
with high probability, i.e., with probability converging to one as n → ∞.

For example, suppose we consider the particular case when G is homoge-
nous with common edge probability phom ≥ 1

nβ for some 0 < β < 1. If k is
a large enough integer so that 0 < β < k

k+1 < 1, then by direct coupling,
it suffices to demonstrate Hamiltonicity for the homogenous random sub-
graph Glow with edge probability p = Cn− k

k+1 where C is chosen sufficiently
small so that the first condition in (2.3) holds. In this case condition (2.2)
holds trivially with c1 = c2 = 1 and all constant α > 0. Therefore the second
condition in (2.3) is also satisfied and so from (2.4), we then get that Glow

(and therefore G) contains a Hamiltonian path with high probability.
Our proof of Theorem 1 involves a combination of the Pósa rotation tech-

nique (Pósa 1976) and the “single vertex exclusion” method used in Gane-
san (2020) for obtaining Hamiltonicity in inhomogenous random graphs
when k = 1. Throughout, we use the following standard deviation esti-
mate. Let Zi, 1 ≤ i ≤ t be independent Bernoulli random variables satisfy-
ing P(Zi = 1) = pi = 1 − P(Zi = 0). If Wt =

∑t
i=1 Zi and μt = EWt, then

for any 0 < η < 1
2 we have that

P (|Wt − μt| ≥ ημt) ≤ 2 exp
(

−η2

4
μt

)
. (2.5)

For a proof of (2.5), we refer to Corollary A.1.14, pp. 312, Alon and Spencer
(2008).

Proof of Theorem 1: We obtain the Hamiltonian path of G in three steps
with the first two steps are preliminary calculations. In the first step, we
define an event Egood regarding the neighbourhood size of arbitrary sets and
obtain probability estimates for Egood. Next, in the second step, we define
the concept of pivots and use the occurrence of Egood to estimate the number
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of pivots in the maximum length path of G obtained after excluding a single
vertex. Finally, in the third step, we combine the two estimates to show
that π is Hamiltonian with high probability.

Step 1 : Let S ⊂ {1, 2, . . . , n} be any set of size s := #S and let Nout(S)
be the set of all vertices of the complement set Sc, adjacent to at least one
vertex of S. Letting Nout(S) = #Nout(S) denote the size of Nout(S), we
begin by showing that for any set S of size 1 ≤ s ≤ 1

10c2p
, we have

3c1nps

4
≤ ENout(S) ≤ c2nps. (2.6)

Indeed, by definition s ≤ 1
10c2p

= o(n) and so n − s ≥ 7n
8 for all n large.

Therefore using (2.2), we get that the expected number of vertices adjacent
to u in G is at least c1np and at most c2np. This proves (2.6) for the case s = 1
and also the upper bound in (2.6) for general s.

We prove the lower bound in (2.6) by induction on s. Pick a set S of
size 2 ≤ s ≤ 1

10c2p
and for u ∈ S, define Su := S \ {u}. The set Su has

size s − 1 and so by the induction assumption

3c1np(s − 1)
4

≤ ENout(Su) ≤ c2np(s − 1). (2.7)

Using the concentration estimate (2.5) with η > 0 small, we then get that

P (Nout(Su) ≤ (1 + η)c2np(s − 1)) ≥ 1 − e−C0np(s−1) ≥ 1 − e−C0np (2.8)

for some constant C0 > 0, not depending on s. If the event defined in the
left hand side of (2.8) occurs, then there are at least n − (1 + η)c2np(s − 1)
vertices in Sc

u that are not adjacent to any vertex of Su and at least n − 1 −
(1 + η)c2np(s − 1) among these are adjacent to u in Kn.

Recalling that s ≤ 1
10c2p

, we then choose η > 0 small so that

n − 1 − (1 + η)c2np(s − 1) ≥ n − 1 − (1 + η)
10

≥ 7n

8

for all n ≥ N large not depending on s. With this choice of η we get from (2.2)
that the expected number of vertices of Sc adjacent only to u and no other
vertex of S, is at least 7c1np

8 (1 − e−C0np). Thus

ENout(S) ≥ 3c1np(s − 1)
4

+
7c1np

8
(1 − e−C0np) ≥ 3c1nps

4
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and this proves the induction step for the lower bound in (2.6).
Defining Egood(S) :=

{ c1nps
2 ≤ Nout(S) ≤ 4c2nps

}
and using the devia-

tion estimate (2.5) with η = 1
4 , we obtain from the bounds in (2.6) that

P(Egood(S)) ≥ 1 − exp (−2C1nps)

for some constant C1 > 0. There are at most
(
n
s

) ≤ ns choices for S and so
setting Egood :=

⋂
S Egood(S), where the intersection is over all permissible S,

we get from the union bound that

P(Egood) ≥ 1 −
∑

s≥1

ns exp (−2C1nps) .

Since p = Cn− k

k+1 is much larger than logn
n , we have that

ns exp (−2C1nps) = exp (s (log n − 2C1np)) ≤ exp (−C1nps) ,

and so
P(Egood) ≥ 1 −

∑

s≥1

e−C1nps ≥ 1 − 2e−C1np (2.9)

for all n large.
The event Egood as defined above, allows us to count the number of pivots

in the maximum length paths of G as demonstrated in Step 2 below.
Step 2 : Let π = (π(1), π(2), . . . , π(t)) be the longest path in G with

endvertices π(1) and π(t). If S1 is the set of neighbours of π(1) in G, then
all vertices in S1 must also be present in π and so S1 = {π(a1), . . . , π(ar)}
for some integers 2 = a1 < a2 < . . . < ar. For each aj , j ≥ 1 we can do a
Pósa rotation as shown in Fig. 1 and obtain a maximum length path with

Figure 1: The path π with endvertices u and v is shown at the top, together
with a neighbour y of u. We perform a Pósa rotation to obtain a new path
with the pivot x as the endvertex, as illustrated in the bottom figure
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endvertex π(aj − 1). We refer to π(aj − 1), 2 ≤ j ≤ r as first generation
pivots or pivots associated to π(1).

Consider now the pivot π(aj − 1) and let γj = (γj(1), . . . , γj(t)) be a
maximum length path in G with endvertex γj(1) = π(aj − 1), obtained via
the Pósa rotation as described in the previous paragraph. Again all neigh-
bours of π(aj − 1) in the graph G must be present in γj as well and if Sj is
the set of neighbours of π(aj − 1) in G, then we obtain #Sj pivots associ-
ated to π(aj − 1), which we call as second generation pivots. Continuing this
way we define ith−generation pivots for arbitrary i ≥ 1. Summarizing, the
longest path π in G satisfies the following properties:
(p1) All neighbours of the two endvertices of π are present in π itself.
(p2) If v is a ith−generation pivot of π and γv is a maximum length path
obtained from successive Pósa rotations of π and containing v as an endver-
tex, then all neighbours of v belong to γv (and therefore to π) as well.

We now assume that the event Egood described in Step 1 occurs and
estimate the number of pivots in the maximum length path obtained by
excluding a single vertex. Specifically, we perform an iterative pivot counting
procedure consisting of k steps at the end of which we demonstrate that the
overall number of pivots grows linearly in n. Details follow.

For 1 ≤ j ≤ n we let πj be the maximum length path in the graph Gj

obtained by removing the vertex j from G and show by induction that for
each 1 ≤ l ≤ k, there are at least

( c1np
8

)l and at most (8c2np)l pivots
belonging to the lth generation (here we recall that the integer k is defined
via p = Cn− k

k+1 ); i.e., our goal is to obtain the bounds

(c1np

8

)l ≤ #Pl ≤ (8c2np)l (2.10)

for each 1 ≤ l ≤ k.
We begin with the base case l = 1. Indeed if πj = (πj(1), . . . , πj(t))

then since Egood occurs, the vertex πj(1) contains at least c1np
2 neighbours

and at most 4c2np neighbours in G. Therefore there are at least c1np
2 − 1 ≥

c1np
8 vertices adjacent to πj(1) in Gj and so there are at least c1np

8 pivots
associated with πj(1). Each vertex adjacent to πj(1) in Gj gives rise to at
most two pivots and so there are at least c1np

8 and at most 2(4c2np) = 8c2np,
first generation pivots. This completes the proof of (2.10) for the case l = 1.
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To argue for general l, we first see that the Egood probability estimate is
valid as long as (8c2np)l ≤ 1

10c2p
(see step 1). Since p = C

nk/k+1 , we have that

p(8c2np)k = Ck+1(8c2)k ≤ 1
10c2

if C > 0 satisfies the first condition in (2.3). Fixing such a C henceforth,
we now proceed to the induction step. For l ≥ 1, let Pl be the set of
all lth−generation pivots of πj and let

⋃
v∈Pl

Nj(v) be the set of all ver-
tices adjacent to at least one vertex of Pl in Gj , where Nj(v) denotes the set
of all neighbours of v in Gj . By induction assumption

(c1np

8

)l ≤ #Pl ≤ (8c2np)l (2.11)

and due to the occurrence of the event Egood, we have that

c1np

2
·
(c1np

8

)l − 1 ≤ #

(
⋃

v∈Pl

Nj(v)

)
≤ (4c2np)(8c2np)l. (2.12)

Thus the number of (l + 1)th−generation pivots is at most

2 · (4c2np) · (8c2np)l = (8c2np)l+1.

For a lower bound on the number of (l + 1)th−generation pivots, we
pick a lth−generation pivot v ∈ Pl and perform l Pósa rotations to obtain
a path γv,j containing v as an endvertex. In doing so, we remove exactly l
edges from πj and add l other edges, to obtain γv,j . We let Rj(v) be the
union of the set of all endvertices of the l removed edges, l newly added
edges and the endvertices of γv,j so that there are at most 4l + 2 vertices
in Rj(v).

We now obtain a lower bound on the number of pivots that arise out of
some lth generation pivot in Λj :=

⋃
v∈Pl

(Nj(v) \ Rj(v)) . Let w ∈ Λj be
adjacent to v ∈ Pl in Gj . From property (p2) described above, all neighbours
of v in Gj belong to the path πj and so w = πj(x) for some x. Moreover,
because w /∈ Rj(v), both the edges

(πj(x), πj(x + 1)) and (πj(x − 1), πj(x))
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must belong to the path γv,j with v as an endvertex, obtained by performing l
Pósa rotations on πj . Thus at least one of the vertices in

{πj(x − 1), πj(x + 1)},

say for example πj(x − 1), must necessarily be a (l + 1)th−generation pivot
and we say that πj(x − 1) is an (l + 1)th−generation pivot created by
an lth−generation pivot.

Conversely, any (l+1)th−generation pivot created from an lth−generation
pivot is of the form πj(y) and is created from an lth−generation pivot that
is necessarily adjacent to either πj(y − 1) ∈ Λj or πj(y + 1) ∈ Λj . We have a
couple of remarks here. It may happen that more than one lth−generation
pivot itself could be adjacent to either πj(y − 1) or πj(y + 1) or some (l +
1)th−generation pivot is already a yth−generation pivot for some y ≤ l. In
any case, our count of the number of pivots in the (l +1)th generation above
depends only on the neighbours of the lth−generation pivots, i.e., vertices
in Λj . Therefore from the above argument, we get

#Pl+1 ≥ #Λj

2

=
1
2
#

(
⋃

v∈Pl

Nj(v) \ Rj(v)

)

≥ 1
2
#

((
⋃

v∈Pl

Nj(v)

)
\

(
⋃

v∈Pl

Rj(v)

))

≥ 1
2
#

(
⋃

v∈Pl

Nj(v)

)
−

∑

v∈Pl

#Rj(v)

≥ 1
2
#

(
⋃

v∈Pl

Nj(v)

)
− (4l + 2)#Pl, (2.13)

since the number of vertices in any Rj(v) is at most 4l + 2. Plugging the
bounds from (2.11) and (2.12) into (2.13), we get that

#Pl+1 ≥ 1
2

(
c1np

2
·
(c1np

8

)l − 1
)

− (4l + 2)(8c2np)l ≥
(c1np

8

)l+1

for all n large. This obtains (2.10) for the general case.
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From (2.10), we see that the number of (k +1)th−generation pivots is at
least (c1np

8

)k+1
=

(c1
8

)k+1 · n · p(np)k =: Dn,

where D =
(

Cc1
8

)k+1
> 0 is a constant. Summarizing, we have shown that if

the event Egood occurs then there are at least Dn pivots in πj for any 1 ≤
j ≤ n and this completes the second step of the proof.

Step 3 : We now combine the estimates obtained in the previous two
steps to obtain the desired Hamiltonian path. We begin by noting that if the
vertex j does not belong to the maximum length path π, then the longest
path πj in the random graph Gj is also π and more importantly, j is not adja-
cent to any pivot of πj = π; otherwise, we would have a path containing j as
an endvertex and with length strictly larger than π. Therefore letting Qj(πj)
be the event that j is not adjacent to any pivot of πj , we get that

P ({j /∈ π} ∩ Egood) ≤
∑

Γ

P ({πj = Γ} ∩ Qj(Γ )). (2.14)

where the summation is over all deterministic paths Γ not containing j, sat-
isfying (p1) − (p2) and containing at least Dn pivots. The event Qj(Γ ) is
independent of the event {πj = Γ} and moreover if the probability assign-
ment is (α, c1, c2, p)−good for α ≤ D, then we get that P(Qj(Γ )) ≤ e−c1Dnp.
Consequently,

P ({πj = Γ} ∩ Qj(Γ )) = P(πj = Γ )P(Qj(Γ ))
≤ e−c1Dnp

P(πj = Γ )

Summing over Γ we therefore get from (2.14) that P ({j /∈ π} ∩ Egood) ≤
e−c1Dnp and so using (2.9), we get that

P(j /∈ π) ≤ e−c1Dnp + P(Ec
good) ≤ e−c1Dnp + 2e−C1np ≤ e−C2np

for some constant C2 > 0. Therefore by the union bound, we get that π is
Hamiltonian with probability at least 1 − ne−C2np and this completes the
proof of Theorem 1. 	


In Theorem 1 we have obtained sufficient conditions to be satisfied by
the probability assignments, for the existence of Hamiltonian paths. Specif-
ically, (2.2) has “two-sided” conditions on both the upper and lower bounds
of the edge probability sums. A natural question therefore is whether under
weaker conditions, we can say anything about the existence of Hamiltonian
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paths or perhaps at least perfect matchings. For context, we recall that a
set of vertex disjoint edges in the random graph G is called a matching and
a matching W of G is said to be perfect if every vertex except at most one,
is an endvertex of some edge in W. By definition, if G has a Hamiltonian
path π, then picking every alternate edge of π gives us a perfect matching.
Thus the existence of a Hamiltonian path implies the existence of a perfect
matching but the converse, however, is not true.

We now consider probability assignments with “one-sided” conditions
involving only lower bounds and obtain perfect matchings in the resulting
random graph G. For constants 0 < β, γ < 1 and 0 < p = p(n) < 1,
we say that {p(u, v)} is a (β, d1, d2, p)−nice probability assignment if the
following holds for any two vertices u, v : For any two disjoint sets S1, S2 not
containing u or v and having cardinality r ≥ βn each, we have

∑

w∈S1

p(u, w) ≥ d1rp and
∑

w1∈S1,w2∈S2

p(u, w1)p(w2, v) ≥ d2rp
2. (2.15)

Letting EPER be the event that G contains a perfect matching, we have the
following result. As before, constants do not depend on n.
Theorem 2 Suppose {p(u, v)} is (β, d1, d2, p)−nice for some p ≥ logn√

n
and

β ≤ 1
4 . There is a constant D > 0 such that

P(EPER) ≥ 1 − e−D(log n)2 . (2.16)

In other words, the one-sided conditions in (2.15) ensure the existence of per-
fect matchings with high probability. In the next Section, we briefly describe
an application of our result in the context of channel assignment in wireless
networks.

Proof of Theorem 2: For simplicity we assume throughout that n = 4z
is even and let Gbip be the bipartite subgraph of G with left vertex set X =
{1, 2, . . . , 2z} and right vertex set Y = {2z + 1, . . . , n}. We obtain a perfect
matching in Gbip using a bootstrapping technique as follows. In the first
step, we let M be the maximum matching in Gbip (picked according to a
deterministic rule) and estimate the probability p0 that #M ≥ z. In the next
step, we then use the estimate for p0 as a bootstrap to bound the probability
of a perfect matching. We provide the details below.

For L ⊆ X and R ⊆ Y let E (L, R) be the event that no vertex of L
is adjacent to any vertex of R, in Gbip. If #L ≥ z and #R ≥ z, then any
vertex v ∈ L is adjacent to at least z = n

4 vertices of R in Kn and so using
the first condition in (2.15), we get that the expected number of vertices
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adjacent to v in Gbip is at least d1zp. Therefore the total expected number
of edges of Gbip containing one endvertex in L and the other endvertex in R
is at least d1z

2p = d1n2p
16 and consequently,

P (E (L, R)) ≤ exp
(

−d1n
2p

16

)
. (2.17)

Now if the maximum matching M of Gbip has size #M < z, then remov-
ing the edges and vertices of M from Gbip we are left with an edgeless bipar-
tite graph containing at least z left vertices and at least n − 2z − z ≥ z
right vertices. Thus P (#M < z) ≤ P (

⋃
E (L, R)) where the union is over

all sets L ⊆ X and R ⊆ Y satisfying #L ≥ z and #R ≥ z. Let-
ting Elow := {#M ≥ z}, we then get from the union bound and (2.17)
that

P (Ec
low) ≤

∑

L,R
P (E (L, R)) ≤ 4n · exp

(
−d1n

2p

16

)
(2.18)

since there are at most 2n choices each, for L and for R.
Suppose the event Elow occurs and for 1 ≤ j ≤ z let Ej be the event

that M does not have any edge with an endvertex in {wj , vj} where wj ∈ X
and vj ∈ Y. If Ej ∩ Elow occurs, then in the random graph G(j) obtained by
removing the vertices wj and vj from Gbip, the maximum matching M(G(j))
in G(j) is still M. Consequently

P(Ej ∩ Elow) = P

(
Ej ∩ Elow ∩ {M(G(j)) = M}

)

=
∑

E
P

(
Ej ∩ {M(G(j)) = E} ∩ {M = E}

)
(2.19)

where the summation in (2.19) is over all sets of edges E of size at least z and
satisfying the property that no edge of E has an endvertex in the set {wj , vj}.
Moreover,

Ej ∩ {M(G(j)) = E} ∩ {M = E} ⊂ {M(G(j)) = E} ∩ V (E) ,

where V (E) is the event that there is no edge e = (u, v) ∈ E such that vj

is adjacent to u ∈ X and wj is adjacent to v ∈ Y, in the graph Gbip. This
is because if there existed such an edge (u, v), then we could remove (u, v)
from M and add the edges (u, vj) and (wj , v) to get a matching of Gbip whose
size is strictly larger than that of E , a contradiction. This is illustrated in
Fig. 2.

785Dirac-type Theorems for Inhomogenous Random Graphs



Figure 2: Replacing the edge (u, v) with the edges (u, vj) and (wj , v) to get
a bigger matching

From (2.19) and the discussion in the above paragraph, we therefore get
that

P(Ej ∩ Elow) ≤
∑

E
P

(
{M(G(j)) = E}

⋂
V (E)

)

=
∑

E
P

(
M(G(j)) = E

)
P (V (E)) (2.20)

because for any E , the event V (E) depends only on the state of edges contain-
ing an endvertex in {wj , vj} and is therefore independent of {M(G(j)) = E},
by definition. To estimate P(V (E)), we let E = {(xi, yi)}, 1 ≤ i ≤ t, t ≥ z =
n
4 , be the edges in E and obtain that

P(V (E)) ≤
t∏

i=1

(1 − p(wj , yi)p(xi, vj)) ≤ exp

(
−

t∑

i=1

p(wj , yi)p(xi, vj)

)
.

From the second condition in (2.15) we get that

P (V (E)) ≤ e−d2tp2 ≤ exp
(

−d2p
2n

4

)
.

Plugging this into (2.20) we get

P(Ej ∩ Elow) ≤ exp
(

−d2p
2n

4

) ∑

E
P

(
M(G(j)) = E

)

≤ exp
(

−d2p
2n

4

)
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and so from (2.18) we therefore get that

P(Ej) ≤ 4n · exp
(

−d1n
2p

16

)
+ exp

(
−d2p

2n

4

)
=: Q.

Summarizing, we get that at least one of vertices wj and vj belong to
the maximum matching of Gbip with probability at least 1 − Q. There are
at most n2 edges with one endvertex in X and other endvertex in Y and
so applying the union bound, we see that Gbip contains a perfect matching
with probability at least 1 − n2Q. Using the fact that p ≥ logn√

n
, we then get

that P(EPER) ≥ 1−e−D1(logn)2 for some constant D1 > 0 and this completes
the proof of Theorem 2. 	


3 Channel Assignment Problem

In this section, we briefly describe an application of our results in the
context of channel assignment problem in wireless networks. Let Kn,n be
the complete bipartite graph with vertex sets X = Y = {1, 2, . . . , n} and
let {Z(u, v)}1≤u,v≤n be positive independent random variables with Fu,v

denoting the distribution of Zu,v.
In the context of wireless networks, the set X denotes the set of users

and Y denotes the set of channels to be assigned to the users with the
constraint that no two users are assigned the same channel. The random
variable Z(u, v) denotes the fading gain (Goldsmith 2005) of the uth user
on the vth channel and in many practical scenarios, the fading gains are
independent but not necessarily identically distributed. It is of interest to
assign the “best possible” channel to each user and one straightforward way
to implement this would be to set a predetermined threshold λ and assign
each user a distinct channel whose fading gain is at least λ. The natural
question is whether such an assignment does in fact exist and we use perfect
matchings described in the previous section to demonstrate an answer.

Indeed, let Gbip be the random bipartite graph obtained by retaining all
edges (u, v) satisfying Z(u, v) > λ and we set p(u, v) := P(Zu,v > λ). If
the condition (2.15) in Theorem 2 holds, then we are guaranteed a perfect
matching in Gbip with high probability, i.e., with probability converging to
one as n → ∞. Any perfect matching in Gbip provides a valid channel assign-
ment as described before and so the condition (2.15) could be interpreted as
a sufficient condition for assigning each user a distinct channel, with fading
gain at least λ.

787Dirac-type Theorems for Inhomogenous Random Graphs



Finally, we remark that the iterative analysis described in our paper could
also be potentially extended to preferential attachment models (Piva et al.
2021) and we plan to analyze applicability to these models in the future.
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