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Abstract
We give two prediction intervals for Generalized Linear Models that take
model selection uncertainty into account. The first is a straightforward exten-
sion of asymptotic normality results and the second includes an extra opti-
mization that improves nominal coverage for small-to-moderate samples.
Both PI’s are wider than would be obtained without incorporating model
selection uncertainty. We compare these two PI’s with three other PI’s.
Two are based on bootstrapping procedures and the third is based on a
PI from Bayes model averaging. We argue that for general usage the opti-
mized asymptotic normality PI’s work best unless sample sizes are large in
which case the PI’s based only on asymptotic arguments that include model
selection will be easier and equivalent. In an Appendix we extend our results
to Generalized Linear Mixed Models.

AMS (2000) subject classification. Primary 62J12; Secondary 62M20.
Keywords and phrases. Prediction interval, generalized linear model, post-
model selection.

1 Introduction

Linear models and their extensions - generalized linear, linear mixed, and
generalized linear mixed models - are the workhorses of statistical analysis.
Aside from formulating such models, analysts have to chose amongst com-
peting models usually in the same class. Typically, model selection is from
a model list (often chosen pre-experimentally) and done after the data is
collected. There are numerous model selection procedures, but regardless of
which model is chosen, it will have variability inherited from the data. The
main topic of this paper is how to take this variability due to model selection
into account properly when making predictions.

Common practice in many predictive contexts is to choose a model and
then use it to generate predictions. Such plug-in methods are pragmatic but
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neglect the uncertainty dure to model selection or, pehaps more commonly,
variable selection. Here we propose prediction intervals (PI’s) for generalized
linear models (GLM’s) that are modified by the model selection principle
(MSP) used for variable selection so that their nominal coverage is asymp-
totically correct at least in the limit of large sample sizes. This is important
because Hong et al. (2018a) showed that using model selection procedure
procedures can result in predictive intervals with lower than nominal cover-
age if the PI’s do not take the uncertainty of the MSP into account.

The post-model-selection inference problem has gained wide interest in
recent years. Notably, the post-selection inference (‘PoSI’) intervals intro-
duced in Berk et al. (2013) are universally valid for any model selection
principle (MSP). However, PoSI intervals are known to be conservative (see
Leeb et al. (2015)) partially because they allow for any ad-hoc MSP to be
used. The PoSI framework was used to construct universally valid (over all
MSP’s) confidence intervals for the mean of a predictive distribution in LM’s
in Bachoc et al. (2019). Universally valid confidence regions for the simulta-
neous inference problem are constructed (Kuchibhotla et al., 2020).

A different approach was proposed by Efron (2014) who used bootstrap
intervals to address the post-model-selection inference problem under a sin-
gle MSP in somewhat the same spirit as we do here. Earlier, Stine (1985)
introduced bootstrapped predictive intervals in linear regression, but these
intervals did not consider uncertainty due to model selection. Leeb (2009)
introduced a model selection procedure based on cross-validation techniques
and proved that using this technique, the resulting prediction interval from
the selected model is approximately valid. While this is a seemingly strong
and useful result, it holds only in the high sparsity case – low enough parame-
ter dimension in the limit of large n. More recently, predictive intervals based
on Shorth – i.e. the shortest interval containing a pre-specified number of
values – for GLM’s and GAMs are studied in Stine (2021). While these inter-
vals are valid, and account for uncertainty due to the MSP, they are not as
intuitive and general as the ones we propose in Sec. 3.

Our methodology is in contrast to the PoSI-based intervals from Berk
et al. (2013) that essentially widen PI’s until the nominal coverage is
achieved. Indeed, the PoSI intervals take the pessimistic (if practical) view
that model developers will use MSP’s that are not theoretically sound. Our
approach is optimistic in that we assume a proper MSP with well known the-
oretical properties will be used. This allows us to incorporate the variability
from a given generic MSP into our PI’s.
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Here, we present two PI’s in the context of GLM’s. They account for
the uncertainty of an MSP in an intuitive manner. They are easy to under-
stand and, importantly, easy to implement. One is based on an asymptotic
argument that includes variability due to model selection. The other also
includes a finite sample optimization to improve predictive coverage in small
and moderate sample cases. It is this latter PI that we advocate for general
use.

The structure of this paper is as follows. In Sec. 2 we define the notation
and setting needed for our approach. In Sec. 3, we present the main theorem
that gives a PI’s dependent on an MSP for the case of GLM’s. We then give a
finite sample improvement for use with this PI in small-to-moderate sample
settings. We also define three other intervals, two based on bootstrapping
and one from a Bayes model average. In Sec. 4 we present simulation results
to argue that our optimized asymptotic PI is the best of the five we com-
pared. Finally, in Sec. 5 we summarize the implications of our work. In the
Appendices, we extend our methodology to GLMM’s.

2 Notation and Setting

Throughout this paper we assume model selection and variable selection
are synonymous and exclude parameter estimation. Let Dn = {(y1, x1), . . . ,
(yn, xn)} where Yi = yi is an outcome of the response variable and xi is
a value of the d-dimensional explanatory variable. We use superscripts to
indicate vectors, thus yn = (y1, . . . , yn)T . Let m ∈ M be a candidate model,
i.e., selection of variables, in the full collection of models M. We define a
variable selection procedure M = M(Dn) which takes the available data and
maps it to a subset of variables based on some objective function we denote
Q. We denote a chosen set of variables by m̂ = arg minm Q(m, Dn), i.e., by
the model that they form.

We think of Q as an objective function such as the Akaike or Bayes
information criterion (AIC, BIC) or as a penalized loss function. For instance,
for linear models, if Q is the AIC, we have

QAIC(m, Dn) = −2 ln(p(yn|Xn
m, β̂MLE

m )) + 2d, (2.1)

where β̂MLE
m is the maximum likelihood estimator (MLE) in model m ∈ M <

and d is the number of parameters in m that must be estimated. Now, Q
defines a function

M : Dn �→ M
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from the data Dn into the model space. We think of the variable selection
procedure as an estimation problem where the function M : R

n×R
n×d �→ M

is the estimator and is conceptually disjoint from parameter estimation.
Other choices for Q include the BIC given by

QBIC(m, Dn) = 2 ln(p(yn|Xn
m, β̂MLE

m )) + d log(n), (2.2)

and the general Bethel-Shumway class of information criteria defined in
Bachoc et al. (1988). Unlike AIC, the BIC and the Bethel-Shumway class of
information criteria are consistent for model/variable selection.

2.1 Variable Selection In the predictive context, the interpretation of
a parameter in a linear model is consistent across models: If the parameter,
say βj , appears in multiple models it always means the expected change
in Y for a unit change in xj holding other explanatory variables constant.
With this in mind, we re-express an MSP M based on Q as follows. Let
X = (x1, . . . , xd), and write M = {δ̂1, . . . , δ̂d} where for j = 1, . . . , d

δ̂j = δ̂j(Dn) =

{
1 if Xj is selected under Q
0 otherwise.

For the true model we have mT = {δ1,T , . . . , δd,T } where

δj,T =

{
1 if Xj ∈ mT

0 otherwise.

Define the set MS to be the set containing all 2d possible vectors of zeros and
ones M can take so we can regard M ⊆ MS . Assuming mT ∈ MS , we want
to the estimate the true value βT = (βδ1,T

1 , . . . , β
δd,T

d ) (where a superscript of
zero means that parameter (and its variable) falls out of the model) by

β̂M = (β̂ δ̂1
1 , . . . , β̂ δ̂d

d ),

where we have ensured dim(β̂M ) = dim(βmT
). If δ̂j = 0, then by default we

set β̂δ̂j
= βj = 0 and we have that δj,T = 0 is equivalent to βj = 0. Thus, we

assume we can estimate all parameters in any chosen model.
For clarity, we define the consistency of variable selection under M and

henceforth assume it. We say that M is a consistent MSP if and only if, with
probability under the true model mT going to one, M selects the variables
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in mT asymptotically correctly. More formally, we say that M(Dn) selects
the model with variables xδ1

1 , . . . , xδd

d . So, M is consistent if and only if all

δ̂j(M(Dn)) → δj(mT ) (2.3)

in the probability defined by mT ; Eq. 2.3 assumes mT is not mis-specified.
We specify our target of inference as βT = βmT

and note

βmT
=

(
X ′

mT
XmT

)−1
X ′

mT
E(Y )

in the linear models context where the subscript mT indicates which explana-
tory variables are in the design matrix. This is in contrast to the random
target of inference

βM =
(
X ′

MXM

)−1
X ′

ME(Y )

defined in Berk et al. (2013). Thus, for linear models, we define the estimate
M̂ for βj under M using Dn by

β̂M̂,j =

⎧⎪⎨
⎪⎩

[(
X ′

M̂
XM̂

)−1
X ′

M̂
y

]
j

if δ̂j = 1

0 if δ̂j = 0.

Now there are two steps in the process of obtaining the true model. The
first step is to estimate the δj ’s. In this step we would like M to give δ̂j = 1
if δj,T = 1. However, M may also give δ̂j = 1 even if δj,T = 0. In this case,
our definition allows the estimate β̂δj

to be zero. Thus, even if M includes
variables that are not in MT we can still estimate their coefficients to be
zero which allows M → mT asymptotically (as seen in Theorem 3.1).

2.2 Prediction in Generalized Linear Models As noted, we restrict
attention to GLM’s here and discuss GLMM’s in the appendices. To be
more precise, suppose Y ∼ G(μ, R) where G is an exponential family with
mean μ and variance R. Then the pdf of Y given the canonical parameter θ
is

f(y|θ) = e
yθ−b(θ)

a(φ)
+c(y,φ) (2.4)

where φ is a scale parameter. In one parameter exponential families such
as Poisson or Binomial distributions, a(φ) = 1. From Eq. 2.4 we have the
following:

• E(Y |X) = ∂b(θ)
∂θ = μ,
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• V ar(Y |X) = a(φ)∂2b(θ)
∂θ2 = a(φ)V (μ),

• I(θ) = V ar(�(θ|y, φ)), where � is the log-likelihood, see Eq. 2.7.

Following standard GLM practice, we model the mean of Y by trans-
forming it to a linear function of the explanatory variables. The function
we use to transform E(Y ) = μ is called the link function and we denote it
by g(·). Note that g(·) is a continuous invertible function. This gives us the
linear predictor

η = g(E(Y |X)) = g(μ) = Xβ (2.5)

and we define the inverse link function to be the inverse of g(·) which is

μ = E(Y |X) = g−1(Xβ). (2.6)

Here, we assume that X is of full rank, to avoid problems with estimability.
Note that the canonical parameter θ is a function of μ so we write θ =

θ(μ) = θ(g−1(Xβ)). Now we can write the log-likelihood of Eq. 2.4 as

�(β|y, φ) =
y

(
θ(g−1(Xβ))

) − b(θ(g−1(Xβ)))
a(φ)

+ c(y, φ). (2.7)

For ease of exposition, we start by assuming φ is known and use the maximum
likelihood estimators (MLE’s) for β, denoted generically by β̂. Although β̂
does not have a closed form expression outside the normal case, the Newton-
Raphson algorithm or Fisher scoring can be used to find it. Conditions for
the consistency and asymptotic normality for the MLE are well-known (see
Theorems 2 and 3 in the classic paper Fahrmeir and Kaufmann (1985)) and
henceforth assumed. We comment on estimating φ after proving Theorem
3.1.

Suppose the inferential goal is predicting the next outcome Y n+1. The
usual point predictor under a consistent MSP M is

Ŷ n+1
M = μ̂M = g−1(X ′n+1

M β̂M ), (2.8)

where β̂M is the MLE for β whether found in closed form or by some iterative
algorithm that generates consistent and asymptotically normal estimates.
Henceforth, our focus in on constructing valid PI’s for Eq. 2.8. Note that
n + 1 just denotes a generic outcome we don’t yet have. It need not be the
first outcome after the n data point.
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3 Candidate PI’s

In this section we define four PI’s. The first is derived in Theorem 3.1 below.
The second is an improvement on this PI by incorporating an extra opti-
mization to ensure more rapid convergence to the nominal coverage for small
sample sizes. Both of these are in Sec. 3.1. In Sec. 3.2 we give our third and
fourth intervals are based on bootstrapping approach. (We define a fifth in
Sec. 4.) We will argue that our optimized interval provides the best perfor-
mance.

3.1 Main Result and Two PI’s One choice for a PI uses asymptotic
normality of the point predictor Eq. (2.8). Define the statistic

Zpred = Zpred(M) =
Ŷ n+1

M − Y n+1√
V ar(Ŷ n+1

M − Y n+1)
. (3.1)

It is the predictor for a future outcome that includes variable selection in
its numerator and hence has a larger denominator to account for the extra
variability. We have the following result giving our first PI. When we need
to indicate this interval in contrast to others we use a superscript AN .
Theorem 3.1 Suppose Y n, Y n+1 come from an exponential family distribu-
tion as defined in Sec. 2.2.1 and let M be a consistent MSP. Suppose also
that the MLE is consistent and asymptotically normal with variance decreas-
ing as O(1/n). An asymptotically (1 − α) coverage PI for a new outcome is
PI(M) = PIα(M) given by

g−1(X ′n+1
M β̂M ) ± z1−α/2

√[
d

dη
g−1(η̂n+1

M )

]2

X ′n+1
M V ar(β̂M )Xn+1

M + a(φ)V (μ̂)M . (3.2)

Remark: Any consistent and asymptotically normal estimator can be used
in place of the MLE if the corresponding modifications are made to the proof.
Proof The key quantity we want to control asymptotically is

√
n(X ′n+1

M β̂M − X ′n+1
mT

βmT
). (3.3)

To do so, define the ‘good’ set

Sn = {ω|∀j, δ̂j(ω) = δj,T }

and let 1Sn
be the indicator that ω ∈ Sn. Note that for ease of exposition we

have expressed the random variables δ̂ in terms of the underlying measure

1 See Eq. 2.4 and the conditions following it.
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space. Letting 1Sc
n

be the indicator that ω is in the complement of Sn we
can write

√
n(X ′n+1

M β̂M − X ′n+1
mT

βmT
) =

√
n(X ′n+1

M β̂M − X ′n+1
mT

βmT
)1Sn

+
√

n(X ′n+1
M β̂M − X ′n+1

mT
βmT

)1Sc
n
. (3.4)

There are now three technical steps. First, we show that
√

n1Sc
n

= op(1).
The union of events bound gives

P (Sc
n) ≤

p∑
j=1

P (|δ̂j − δj,T | > η),

for some η > 0, so using symmetry in the MSP it is enough to show

lim
n→∞ P (|δ̂j − δj,T | > 1/

√
n) = 0

for any j. It is easy to see that

lim
n→∞ P (|δ̂j − δj,T | > 1/

√
n) = lim

n→∞ P (|δ̂j − δj,T | = 1) (3.5)

because δj,T and δ̂j are either 1 or 0. Now because we have chosen a consistent
MSP we have

lim
n→∞ P (|δ̂j − δj,T | = 1) = 0.

Hence, the left hand side of Eq. 3.5 is also equal to zero and we get
√

n1Sc
n

=
op(1).

Second, dealing with the ‘bad’ set first, observe the second term on the
RHS of Eq. 3.4 is

√
n(X ′n+1

M β̂M − X ′n+1
M βmT

+ X ′n+1
M βmT

− X ′n+1
mT

βmT
)1Sc

n

=
√

n(X ′n+1
M β̂M − X ′n+1

M βmT
)1Sc

n
+

√
n(X ′n+1

M βmT
− X ′n+1

mT
βmT

)1Sc
n

= X ′n+1
M

√
n(β̂M − βmT

)1Sc
n

+
√

n(X ′n+1
M − X ′n+1

mT
)βmT

1Sc
n
. (3.6)

In both terms of Eq. 3.6 we use
√

n1Sc
n

= op(1) so continuing the equality
gives

X ′n+1
M (β̂M − βmT

)oP (1) + (X ′n+1
M − X ′n+1

mT
)βmT

oP (1). (3.7)
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It is easy to see that X ′n+1
M is a real vector and that consistency of β̂M

gives that (β̂M − βmT
) = OP (1) so Slutsky’s theorem gives the first term in

Eq. 3.7 is oP (1). Similarly, βmT
is a constant and (X ′n+1

M − X ′n+1
mT

) = O(1)
so Slutsky’s theorem gives the second term in Eq. 3.7 also goes to zero in
probability. Thus, the second term on the RHS of Eq. 3.4 goes to zero in
probability.

Third, it remains to deal with the first term on the right of Eq. 3.4
involving the good set. Note that on the good set M = mT . So,

√
n(X ′n+1

M β̂M − X ′n+1
mT

βmT
)1Sn

=
√

n(X ′n+1
mT

β̂mT
− X ′n+1

mT
βmT

)1Sn

= X ′n+1
mT

[√
n(β̂mT

− βmT
)
]
1Sn

. (3.8)

Again, we use a Slutsky’s theorem argument. The first factor X ′n+1
mT

is
bounded. The factor in square brackets is asymptotically normal because
we are using the MLE. And the last factor 1Sn

→ 1 in probability.
Thus, putting all thesse pieces together we get

√
n(X ′n+1

M β̂M − X ′n+1
mT

βmT
) D→ N

(
0, X ′n+1

mT
V ∗

mT
Xn+1

mT

)
.

To get a predictive distribution, we observe that using the delta method
on the link function gives

√
n

(
g−1(X ′n+1

M β̂M ) − g−1(X ′n+1
mT

βmT )
)

D→ N

(
0,

[
d

dη
g−1(ηn+1

mT
)

]2

X ′n+1
mT

V ∗
mT

Xn+1
mT

)

(3.9)
where ηn+1

mT
= X ′n+1

mT
βmT

.
Since Ŷ n+1

M = ŶM (Xn+1) = g−1(X ′n+1
M β̂M ) and Y n+1 = Y (Xn+1) =

g−1(X ′n+1
mT

βmT
), the variance of Ŷ n+1

M − Y n+1 is

V ar(Ŷ n+1
M − Y n+1) = V ar(Ŷ n+1

M ) + V ar(Y n+1)

= V ar(g−1(X ′n+1
M β̂M )) + a(φ)V (μ)

≈ 1
n

[
d

dη
g−1(ηn+1

mT
)
]2

X ′n+1
mT

V ∗
mT

Xn+1
mT

+ a(φ)V (μ̂)

(3.10)

due to Eq. 3.9. Again, because Y n+1 is a random variable, and not a param-
eter, we must consider the variance of it as well, which we get assuming it



D. Dustin and B. Clarke

will come from the exponential family distribution as Y1, . . . , Yn. This quan-
tity, however, is impossible to compute because we do not know mT . Hence,
we must replace mT with M , making the variance a random quantity that
depends on model selection. Thus, we must replace μ with μ̂ in Eq. 3.10.

Now we use Eq. 3.1 as a pivotal quantity to get
1 − α ≤ P (|Zpred| < z1−α/2)

= P

(∣∣∣Ŷ n+1 − Y n+1
∣∣∣ < z1−α/2

√
V ar(Ŷ n+1 − Y n+1)

)

=P

(
Ŷ n+1−z1−α/2

√
V ar(Ŷ n+1−Y n+1)<Yn+1 <Ŷ n+1+z1−α/2

√
V ar(Ŷ n+1−Y n+1)

)
.

(3.11)

Hence using Eq. 3.10
⎡
⎣g−1(X ′n+1

M β̂M ) ± z1−α/2

√
1

n

[
d

dη
g−1(η̂n+1

M )

]2

X ′n+1
M V ∗

MXn+1
M + a(φ)V (μ̂M )

⎤
⎦

is the 100(1 − α)% prediction interval we call PIAN for Y n+1 ��
In the general case, we may not know φ and hence we need to estimate it.

There are three main approaches to obtain the estimate φ̂. The approaches
are the deviance approach, the Pearson approach and the Fletcher approach.
The deviance approach is to estimate φ using

φ̂D =
D̂

n − d

where D̂ = 2φ
a(φ)

∑n
i=1(Yi(g(Yi) − θ̂i) − b(g(Yi)) + b(θ̂i)). Note here the a(φ)

is proportional to φ so D̂ does not depend on φ.
The Pearson approach uses

φ̂P =
∑n

i=1(yi − μ̂i)2

(n − d)V (μ̂i)
.

We use the Pearson approach in our simulated example in Sec. 4.1 because
in the Gaussian setting, it is an unbiased estimator of φ. If there is over-
dispersion in the data, the approach in Fletcher (2012) approach may be
better than both the deviance and Pearson approach.

In the non-Gaussian case the estimates of the dispersion parameter are
often biased and can lead to the width of our PI being larger or smaller than
required depending on the direction of the bias. This issue may be alleviated
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by using the PI we describe next because it offers a data driven adjustment
to the width of the interval to optimize the coverage.

We end this subsection with a small sample improvement on the PI from
Theorem 3.1. Note that Eq. 3.2 uses the standard normal quantile to define
the predictive interval. However, we can adjust the width of the interval to
correct for poor coverage. To do this, let PI(M, C) denote the interval in
Eq. 3.2 with the normal quantile replaced by C and consider the interval

PI(Cα,M ) = g−1(X ′n+1
M β̂M ) ± Cα,M ×√[

d

dη
g−1(η̂n+1

M )

]2

X ′n+1
M V ar(β̂M )Xn+1

M + a(φ)V (μ̂) (3.12)

where Cα,M is chosen to satisfy

Cα,M = arg min
C

P
(
Y n+1 ∈ PI(M, C)

)
(3.13)

for all C such that P
(
Y n+1 ∈ PI(M, C)

) ≥ 1 − α. Importantly, this prob-
ability also sees the random variable M and hence inherits the uncertainty
associated with M as well as Y n+1. This is in the same spirit of the PoSI
constant in Berk et al. (2013). That is, we enlarge Cα,M to account for the
uncertainty in M . We can approximate Cα,M using Monte Carlo cross vali-
dation.

We begin by choosing an interval on R
+ denoted C = [Clow, Chigh] that

we will perform the line search on to estimate Cα,M . Next, we randomly split
Dn into L ∈ N test and train sets, Dtrain,� and Dtest,� for � = 1, . . . , L. Then,
in the Gaussian case, for each � we estimate β by

β̂� = (X ′
train,M,�Xtrain,M,�)−1X ′

train,M,�ytrain,�

using Dtrain,m, and form the predictor Ŷ test
M,� = g−1(Xtest,M,�β̂�). In the non-

Gaussian case we estimate β̂� with the MLE using the Newton-Rapshon or
Fisher scoring algorithms. Now form the prediction interval PIM,�(C)

Ŷ n+1
M,� ± C

√[
d

dη
g−1(η̂n+1

test,M,�)

]2

X ′n+1
test,M,�V ar(β̂)test,M,�X

n+1
test,M,� + a(φ)V (μ̂)M,�

(3.14)

and for each C ∈ C, check if ytest,� ∈ PIM,�(C). Then we choose the value C
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that gives us 1−α coverage for the Monte Carlo samples. More formally, we
can approximate Cα,M by

ĈMC =arg min
C

1
L

L∑
�=1

∣∣∣∣∣∣
1

#(Dtest,�)

#(Dtest,�)∑
i=1

Iytest,�∈PIM,�(C)−(1−α)

∣∣∣∣∣∣ (3.15)

where Iytest,�∈PIM,�(C) is the indicator that the test values are in the con-
structed intervals.

Using ĈMC , we define the follow PI

PI(M)ĈMC

= Ŷ n+1
M ± ĈMC

√[
d

dη
g−1(η̂n+1

M )

]2

X ′n+1
M V ar(β̂M )Xn+1

M + a(φ)V (μ̂).

(3.16)
The intuition behind using this interval in place of the PI in Theorem 3.1

is that, in finite samples, the difference between z1−α/2 and ĈMC can be
interpreted as the added variability due to model uncertainty.

3.2 Two Bootstrap Based PI’s In the frequentist setting, perhaps the
most natural way to obtain a PI that takes into account both the uncertainty
of model selection and the uncertainty associated with the distribution of
the new outcome is to make use of the bootstrap. Accordingly, to form our
first bootstrapped PI, we use the bootstrap to estimate the distribution of

μ̂M = E(Y n+1|Xn+1
M ) = g−1(Xn+1

M β̂M ) (3.17)

and we bootstrap to estimate the distribution of φ̂M when necessary. This
gives bootstrap samples μ̂M,b and φ̂M,b for b = 1, . . . , B. Then for each of
the bootstrapped mean μ̂M,b and dispersion parameter φ̂M,b, we generate a
new observation from the distribution of Y n+1|Xn+1, μ, φ, i.e. G.

Let p̂(μ̂) be the bootstrapped density of Eq. 3.17, p̂(φ) be the boot-
strapped density of φM , and p̂(Y n+1) be the resulting estimated density of
Y n+1.

The procedure is as follows. For b = 1, . . . , B,

• generate μ̂M,b = g−1(Xn+1
M,b β̂M,b) using the known link function and the

bootstrap sample, denoted μ∗
1, . . . , μ

∗
B

• if there is a dispersion parameter to estimate, generate B bootstrap
replications of φM , denoted φ∗

1, . . . , φ
∗
B

• generate observations y∗
1 | μ∗

1, φ
∗
1, . . . , y

∗
B | μ∗

B, φ∗
B, by randomly gener-

ating a new observation from G.
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The sample y∗
1, . . . , y

∗
B can be used to estimate an approximate marginal

predictive distribution for Y n+1. To obtain the PI, we use the appropriate
percentile interval from this distribution. That is, to obtain a 100(1 − α)%
PI we use the interval

PIboot = [q∗
1−α/2, q

∗
α/2] (3.18)

where q∗
α is the α quantile from p̂(Y n+1). The use of p̂(μ̂) and, if needed,

p̂(φ) to obtain the estimated predictive distribution p̂(Y n+1) allows p̂(Y n+1)
to inherit the variability from p̂(μ̂), p̂(φ), and the variability that is already
associated with the known parametric distribution G. Hence, the interval
Eq. (3.18) is typically widened due to the uncertainty of the model selection
procedure as well as the uncertainty of the distribution of Y n+1.

In the GLM setting, coverage for the PI in Eq. 3.18 should be closer to
the 1 − α nominal coverage than the PI resulting from ignoring the model
uncertainty. Note that as n → ∞ the variability due to model uncertainty
will go to 0 and this interval will converge to the standard PI. Bootstrap
PI’s for the Gaussian case are studied in a fairly narrow (small d and mod-
erate n) setting in Hong et al. (2018b). These authors suggest that in this
setting the bootstrap distribution fails to assess the uncertainty of model
selection accurately. We explore different simulation settings to evaluate the
performance of bootstrap intervals in Sec. 4.

Our second bootstrapped PI is formed as follows. Recall the interval in
Theorem 3.1 is a random because it depends on M . It is directly usable for
predictions, but we must use M̂ in place of M to get a confidence statement.
Nevertheless, we provide an approximate interval by “smoothing” over M ,
which accounts for the uncertainty of M in both the center and width of the
interval. This is similar to the approach used in Efron (2014) for estimation.
The method we propose is to use p̂(μ̂), the bootstrap the distribution of
μ̂M = g−1(η̂M ) as described earlier in this Subsection, to obtain an approx-
imation for the predictor and its variance that accounts for model selection
uncertainty.

Specifically, we use

μ̃ =
1
B

B∑
b=1

μ∗
b
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for the point predictor. We approximate the variance of μ̂M with

V ar(μ∗) = V̂ ar(μ̂M )

=
1

B − 1

B∑
b=1

(μ∗
b − μ̃)2

≈
[

d

dη
g−1(η̂n+1

M )
]2

X ′n+1
M V ar(β̂M )Xn+1

M ,

and the estimated variance of the predictive distribution is given by

V ar(Y ∗) = V̂ ar(Y n+1)

=
1

B − 1

B∑
b=1

(y∗(μ∗
b) − ȳ∗)2

≈ a(φ)V (μ̂M )

where ȳ∗ = 1
B−1

∑B
b=1 y∗(μ∗

b). We treat Y ∗ as a random variable approxi-
mating Y n+1. Note also that we are required to estimate V (μ̂M ) in Eq. 3.2,
but this again is a random variable so we use the bootstrap to account for
the uncertainty in M for this term also. Since we have assumed φ is known
we do not need to estimate a(φ). Now as an ad-hoc fix, we rewrite Eq. 3.2
to give our second bootstrapped PI

PI(M)S-boot = μ̃ ± z1−α/2

√
V ar(μ∗) + V ar(Y ∗)). (3.19)

4 Simulation Results for GLM’s

We give two contexts in which the PI’s we have defined in Eqs. 3.2, 3.12,
3.18, and 3.19 can be readily found. Respectively, these intervals are labeled
the asymptotic normal PI (AN), the optimized AN ĈMC , the bootstrapped
(boot) PI, and the ‘smoothed’ asymptotic normal (S-boot) PI. In addition
to the intervals we have derived, we give the BMA PI’s as well as the ‘Naive’
PI’s obtained by applying the inverse link to the endpoints of a confidence
interval for the mean on the linear predictor scale; practitioners often regard
this as an acceptable and ‘pragmatic’ solution.

We include the BMA PI for comparison because it is often used to
account for model uncertainty. For the full details on BMA, see Hoeting
et al. (1999). For our implementation of BMA here, we used the BAS pack-
age in R, and we used Zellner-Siow priors on the model coefficients and a
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uniform across model prior. In this case the ”models” are referring to a col-
lection of explanatory variables used in the GLM. The PI’s we present in our
results for BMA are the highest posterior density intervals from the BMA
posterior predictive distribution.

The naive PI is given by

PInaive(M) = [g−1(η̂M,low), g−1(η̂M,high)]

where
η̂M,low = X ′n+1

M β̂M − z1−α/2

√
X ′n+1

M V ar(β̂M )Xn+1
M ,

and
η̂M,high = X ′n+1

M β̂M + z1−α/2

√
X ′n+1

M V ar(β̂M )Xn+1
M .

In Sec. 4.1 we present these intervals for the standard Gaussian case and
in Sec. 4.2, we present the prediction intervals for binomial regression, i.e.,
a more general case of logistic regression. For both cases we use 500 new
observations from their respective distribution and calculate the estimated
predictive coverage using

̂coverage =
1

500

500∑
i=1

Iynew
i ∈PIi(Xnew

i ,Xn,yn), (4.1)

where each PIi(Xnew
i , Xn, yn) depends on the data and the new observed

explanatory variables. For the PIs that require bootstrapping we resample
the data 500 times to obtain the bootstrapped distributions.

4.1 Gaussian Linear Models In the standard case, we assume Y ∼
N(μ, σ2), and the log likelihood is

L(μi, σ
2|yi) =

yiμi − (μ2
i /2)

σ2
−

(
y2i
2σ2

+ log(σ
√

2π

)
,

the canonical parameter is θi = μi, b(θ) = μ+i2/2, a(φ) = σ2, and V (μi) = 1.
In this case we need to estimate the dispersion parameter to estimate σ2.

The linear predictor uses the identity link function and the point predic-
tor is

Ŷ n+1
M = X ′n+1

M β̂M .

The asymptotic normal PI from Eq. 3.2 for Y n+1 is

PI(M)AN =
[
Ŷ n+1

M ± z1−α/2σ̂M

√
X ′n+1

M (X ′
MXM )−1Xn+1

M + 1
]

.
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Our simulation results for Gaussian data includes coverage and width
estimates for the normal PI in Eq. 3.2, the PI Eq. (3.14) using ĈMC , the
bootstrap PI in Eq. 3.18, and the ‘smoothed’ normal interval Eq. (3.19).
We do not include the Naive interval because in the Gaussian case it is
equivalent to AN. For the interval using ĈMC , we do a grid search for the
value of Cα,M on the interval from 1.95 to 5 in increments of 0.05. Here we
have used 1000 Monte Carlo samples, and used a 70/30 train/test split for
evaluating coverage on the test set.

The simulation setup is as follows. First, we consider two model selection
procedures, BIC and AIC. Both methods are implemented in R using the
step() function by setting the respective penalties for BIC and AIC. We also
use BMA implemented with the BAS package in R with prior specification
discussed in Sec. 4. We consider various choices for n (30,50,100,200) and
choose p = 25. We randomly generate values for σ and β once, and fix those
values throughout the simulations. Accordingly, let

β = (β1, . . . , β25)′ = (6.43, 4.39, 4.26, 4.11, 0, . . . , 0)′

and σ = 0.93. We simulate n observations for the design matrix X according
to

X ∼ MV Np(0, Ip),

and then draw and n × 1 vector of observations from Y ∼ N(Xβ, σ2In). We
then calculate estimated coverage using Eq. 4.1. Ideally, we want coverage
close to 0.95. When choosing between competing PI’s with good coverage,
we prefer the one with the narrowest width. The results are seen in Table 1.

For the bootstrap based intervals we use the procedure outlined in
Sec. 3.2. In this setting, the steps are as follows, for b = 1, . . . , B,

• generate μ̂M,b = g−1(Xn+1
M,b β̂M,b) = Xn+1

M,b β̂M,b using the identity link
function and the bootstrap sample, denoted μ∗

1, . . . , μ
∗
B

• generate φ̂M,b = σ̂2
M,b = 1

n−d

∑n
i=1(yi − μ̂M,b)2 denoted φ∗

1, . . . , φ
∗
B

• generate observations y∗
1 | μ∗

1, φ
∗
1, . . . , y

∗
B | μ∗

B, φ∗
B, by randomly gener-

ating a new observation from N (μ̂M,b, σ̂
2
M,b).

Note that the differences between using AIC and BIC are negligible, so
we describe the performance of each PI only once (rather than once for each
MSP). It is seen in Table 1 that AN has low coverage for n = 50, but gets
close to the nominal coverage for the larger sample sizes. For n = 50, both
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Table 1: Simulation results for Gaussian data with p = 25 and p0 = 4
n MSP Interval Coverage Avg.Width (SE)
50 AIC AN 0.88 3.63 (0.17)

ĈMC 0.98 5.5 (0.35)
boot 0.99 8.8 (1.87)
S-boot 1 14.2 (3.81)

BIC AN 0.88 3.63 (0.18)
ĈMC 0.98 5.37 (0.26)
boot 0.99 8.4 (1.78)
S-boot 1 13.79 (3.80)

BMA 0.89 3.98 (0.11)
100 AIC AN 0.91 3.63 (0.08)

ĈMC 0.93 4.08 (0.09)
boot 0.92 3.81 (0.26)
S-boot 0.95 4.43 (0.41)

BIC AN 0.92 3.70 (0.06)
ĈMC 0.94 3.97 (0.05)
boot 0.92 3.74 (0.22)
S-boot 0.94 4.25 (0.33)

BMA 0.93 3.73 (0.05)
200 AIC AN 0.92 3.70 (0.05)

ĈMC 0.93 3.96 (0.06)
boot 0.91 3.64 (0.14)
S-boot 0.93 3.95 (0.16)

BIC AN 0.94 3.75 (0.03)
ĈMC 0.94 3.92 (0.03)
boot 0.92 3.65 (0.12)
S-boot 0.94 3.91 (0.14)

BMA 0.92 3.74 (0.03)

S-boot and boot give at least the nominal coverage and arguably reasonable
width of PI’s to be useful. Here, ĈMC gives close to the stated 95% coverage
and is noticeably narrower than both S-boot and boot, so it is the preferred
PI.

When n = 100 and 200, we observe all of the 5 PIs are roughly equal
in terms of coverage and width. Since AN is the easiest to implement as it
does not require any bootstrapping or cross validation, we recommend using
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it with relatively large n. For intermediate n we recommend using ĈMC as
it gives appropriate coverage and is narrower than the other PIs.

We give the optimal choices for ĈMC for each sample size in Table
2. We observe that as sample size increases, ĈMC decreases as expected.
This reflects the fact that as we gather more data, the uncertainty in model
selection also decreases. Overall, the PI using ĈMC is able to capture the
uncertainty due to model selection for smaller sample size such that it gives
appropriate coverage. In larger sample sizes ĈMC decreases because we have
chosen a consistent MSP and there is less uncertainty in model selection
when with a larger sample. Thus, we recommend using this PI to ensure the
interval is wide enough to have proper coverage regardless of the sample size.

4.2 Binomial Regression Suppose we have n independent but not iden-
tically distributed random variables following Yi ∼ Bin(ri, pi) so E(Yi) =
ripi. We write W = Yi

ri
as our response to model the proportion of success,

and then we convert back to number of successes to form our predictive
interval. Now we have E(W ) = pi and the log likelihood for a given i is
given by

L(pi|wi) =
wi log

(
pi

1−pi

)
+ log(1 − pi)

1
ri

+ log
(

ri

nwi

)
,

which reveals the canonical parameter

θi = logit(pi) = log
(

pi

1 − pi

)
.

We also see that a(φ) = 1
ri

, b(θi) = − log(1 + eθi) = − log(1 − pi), and thus

V (pi) =
∂2b(θi)

∂p2i
=

pi(1 − pi)
ri

.

Table 2: Gaussian cross validation results for the optimal choice for ĈMC

n MSP ĈMC

50 AIC 2.95
BIC 2.90

100 AIC 2.20
BIC 2.10

200 AIC 2.10
BIC 2.05
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Thus the linear predictor is defined by the logit link as

E

(
Yi

ri

)
= g(pi) = log

(
pi

1 − pi

)
= X ′

iβ

and the inverse link function, which gives the probability of success, is given
by

pi = g−1(X ′
iβ) =

1
1 + e−X′

iβ
.

Of course, we do not know pi, so we estimate pi by

p̂i = g−1(X ′
iβ̂) =

1

1 + e−X′
iβ̂

.

Given n observations Y1, . . . , Yn, our goal is to predict the total number of
successes Yn+1 in rn+1 trials while accounting for model selection. We denote
the predicted probability of success p̂n+1

M and its value is given by

p̂n+1
M =

1

1 + e−X′n+1
M β̂M

.

Recalling that

E(Yn+1) = rn+1 · g−1(X ′n+1β) = rn+1 · pn+1,

the form of the post-model selection AN PI for a binomial random variable
is

PI(M)AN = rn+1 · p̂n+1
M ±

z1−α/2 · rn+1

√√√√√ e−2η̂n+1
M(

1 + e−η̂n+1
M

)4X ′n+1
M V ar(β̂M )Xn+1

M +
1

rn+1
p̂M (1 − p̂M )

(4.2)

where the factor rn+1 in the width of the intervals comes from the the dis-
tribution in Eq. 3.9 being multiplied by this factor. The interval in Eq. 4.2
gives a prediction interval for total number of successes in rn+1 trials.

In the setting described above, our simulations are as follows. Let X ∼
MV Np(0, Ip) and

β = (β1, . . . , β25)′ = (0.252, 0.171, −0.268, 0.09, 0, . . . 0)′.
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Now we calculate the estimated coverage using Eq. 4.1. Again, we want
coverage close to 0.95 and narrow width.

For the interval using ĈMC , we again use 100 Monte Carlo samples and
a 70/30 train/test split.

To implement the bootstrap based intervals, we use the same bootstrap
procedure to generate the bootstrap intervals as what is outlined in Sec. 3.2.
In this scenario we do not need to estimate a dispersion parameter because
φ = 1

r , is known and hence the same for each bootstrap sample. The steps
are as follows. For b = 1, . . . , B:

• generate μ̂M,b = g−1(Xn+1
M,b β̂M,b) = 1

1+e
−X

n+1
M,b

β̂M,b
using the identity link

function and the bootstrap sample, denoted μ∗
1, . . . , μ

∗
B

• generate observations y∗
1 | μ∗

1, r, . . . , y
∗
B | μ∗

B, r, by randomly generating
a new observation from Bin(r, p̂M,b).

The simulated results are given in Table 3.
For n = 50, the Naive interval has very poor coverage for both AIC and

BIC. Using AIC and the AN interval results in undercoverage, but it is much
better than the Naive PI. This is also true using BIC as the MSP. Both S-
boot and boot are conservative, give coverage larger than the stated coverage.
The width of both S-boot and boot make the intervals fairly uninformative
despite having better coverage than Naive and AN. Finally, we observe ĈMC

performs noticeably better than the other PI’s. This suggests that the cross
validation step to widen the asymptotic normal PI is useful.

Looking at the n = 100 and n = 200 cases, we see the Naive interval
is worse than in the smaller sample case. AN gives very good coverage and
the smallest width among all of the PIs for both AIC and BIC. The other 3
PIs, S-boot, boot, and ĈMC give close stated coverage but they are slightly
wider than the AN interval. When n = 200 we see Naive is by far the worst
among the 5 PIs, but the other 4 are roughly the same with AN and ĈMC

having perhaps slightly better coverage and narrower PIs than S-boot and
boot.

These results confirm two main points. First, the AN PI achieves the
stated 95% coverage as given in Theorem 3.1 when the sample size is large
enough. Second ĈMC always gives appropriate coverage, and appears to
reduce to AN as n increases. This leads us to recommend using ĈMC , espe-
cially for small and intermediate sample sizes, and use AN for large n.
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Table 3: Simulation results for binomial data with r = 30
n MSP Interval Coverage Avg Width (SE)
50 AIC Naive .51 4.9 (1.35)

AN 0.83 9.51 (0.93)
ĈMC 0.97 15.55 (0.78)
boot 1 20.82 (3.35)
S-boot 1 28.31 (2.22)

BIC Naive .48 4.03 (1.08)
AN 0.90 9.56 (0.76)
ĈMC 0.98 14.35 (0.74)
boot 1 17.81 (3.06)
S-boot 1 23.36 (3.93)

100 AIC Naive .46 3.29 (0.86)
AN 0.94 9.42 (0.87)
ĈMC 0.99 13.01 (0.61)
boot 0.99 11.99(1.66)
S-boot 0.99 14.11(2.22)

BIC Naive .43 2.77 (0.69)
AN 0.95 9.38 (0.79)
ĈMC 0.99 12.67 (0.54)
boot 0.99 11.57 (1.47)
S-boot 1 13.38 (2.00)

200 AIC Naive .37 2.43 (0.90)
AN 0.94 8.91 (1.60)
ĈMC 0.94 9.15 (0.87)
boot 0.97 9.37 (1.96)
S-boot 0.97 10.08(2.10)

BIC Naive .37 2.18 (0.79)
AN 0.94 8.93 (1.56)
ĈMC 0.95 9.01 (0.83)
boot 0.98 9.30 (1.82)
S-boot 0.97 9.75 (1.92)

Again, we list the optimal cross validation constants in Table 4. As in
the Gaussian case, we see that ĈMC decreases as the sample size increases.
However, in the Binomial case, ĈMC is noticeably larger than the Gaussian
case. This may be due to the fact that we are using a normal PI for data
that is not normal.
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Table 4: Binomial cross validation results for the optimal choice for ĈMC

n MSP ĈMC

50 AIC 5.00
BIC 4.40

100 AIC 4.10
BIC 3.90

200 AIC 3.00
BIC 2.85

5 Discussion

Our main contribution is the PI in Theorem 3.1, and the small sample correc-
tion using ĈMC given in Eq. 3.14. Much of the literature on GLM prediction
has focused on confidence intervals around predictors, which we refer to as
the ‘Naive’ PI, rather than true prediction intervals. That is, it is common
for analysts to apply the inverse link function to the endpoints of a confi-
dence interval in the linear predictor scale. This approach does not account
for uncertainty appropriately because it uses the variability on the linear
predictor scale rather than the data scale. Here we have presented PI’s that
are derived on the model-scale rather than the linear-predictor scale.

We have presented several PI’s that take model uncertainty (as well
as parameter uncertainty) into account. The PI derived in Theorem 3.1
accounts for model uncertainty via the consistency of the MSP. This PI
severely underperforms in terms of predictive coverage in small sample size,
e.g. n ≈ p, cases but as n → ∞ the predictive coverage is roughy the nominal
1−α coverage. The boot and S-boot PIs tend to be too wide, suggesting far
too much model uncertainty for these PIs to be useful. That is, these two
PI’s overcorrect the width of the intervals for the uncertainty in the MSP’s
used here. Again as n increases, both boot and S-boot become usable (due
to the MSP choosing the correct model). At this point, the bootstrapping is
not necessary because PIAN performs well with large samples.

Taken together, our results provide valid post-model-selection PIs for
GLM’s for moderate and large samples with the small sample corrected PI
being the preferred option overall.
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Appendices

Appendix 5.A Extension to GLMM’s

The approach described in Sec. 2.2 to obtain valid prediction intervals after
model selection extends naturally to the class of generalized linear mixed
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models. Here we assume the random variable Y |X, β, Z, U ∼ G where G is a
distribution in the exponential family. We write the linear predictor as

η = g(E(Y |U)) = g(μ|U) = Xβ + ZU (5.1)

where β is the vector of fixed effects, U is a random effect such that U ∼
N(0, ΣU ). X and Z are their respective design matrices. The mean function
is

μ = E(Y |U) = g−1(η) = g−1(Xβ + ZU)

and the variance is
V ar(Y |U) = V 1/2

μ AV 1/2
μ

where V
1/2
μ = diag

[√
V (μ)

]
and A = diag [1/a(φ)].

As with GLM’s, model selection is often performed when forming predic-
tors. In the GLMM setting model selection can be done on both X and Z,
however here we focus on model selection on the design matrix X. Analo-
gous to the GLM case, we state an asymptotic normal predictive interval For
GLMM’s that is derived in the same way as the GLMM. The only difference
is the random effects part of the linear predictor. However, recall the random
effects have expectation 0, so the location of the asymptotic distribution does
not change. The variance, on the other hand, does increase. This is seen in
Eq. 5.2 as the width has an extra term for the variance of the random effects:
We get that PI(M, Cα) = g−1(η̂n+1

M )±

Cα

√[
d

dη
g−1(η̂n+1

M )

]2 (
X ′n+1

M V ar(β̂M )Xn+1
M + Z′n+1V ar(û)Zn+1

)
+ a(φ)V (μ̂). (5.2)

Appendix 5.B GLMM Bootstrap Intervals

As with the GLM AN interval, we can approximate the variance of g−1(η̂n+1
M )

using bootstrapping and replace Eq. 5.2 with

PI(M, Cα) = g−1(η̂n+1
M ) ± z1−α/2

√
ˆV ar(g−1(η̂n+1

M ))boot + a(φ)V (μ̂) (5.3)

where ˆV ar(g−1(η̂n+1
M ))boot is simply the variance of the bootstrapped distri-

bution of g−1(η̂n+1
M ).

We can also use the bootstrap approach, in same way as with the GLM,
to obtain a bootstrap distribution for a new outcome. In the GLMM
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setting, we bootstrap the expected value of the distribution for a new
outcome,

μ̂M = g−1(X ′n+1
M β̂ + Z ′n+1û).

and we bootstrap to estimate the distribution of φ̂M when necessary. This
gives bootstrap samples μ̂M,b and φ̂M,b for b = 1, . . . , B. Then for each of
the bootstrapped mean μ̂M,b and dispersion parameter φ̂M,b, we generate a
new observation from the distribution of Y n+1|Xn+1, μ, φ, i.e. G.

Let p̂(μ̂) be the bootstrapped density of Eq. 3.17, p̂(φ) be the bootstrapped
density of φM , and p̂(Y n+1) be the resulting estimated density of Y n+1.

The procedure is as follows. For b = 1, . . . , B,

• generate μ̂M,b = g−1(Xn+1
M,b β̂M,b+Z ′n+1û) using the known link function

and the bootstrap sample, denoted μ∗
1, . . . , μ

∗
B

• if there is a dispersion parameter to estimate, generate B bootstrap
replications of φM , denoted φ∗

1, . . . , φ
∗
B

• generate observations y∗
1 | μ∗

1, φ
∗
1, . . . , y

∗
B | μ∗

B, φ∗
B, by randomly gener-

ating a new observation from G.

The sample y∗
1, . . . , y

∗
B can used to obtain the predictive interval by extract-

ing the appropriate percentile interval from this distribution. Thus the PI
is

[q∗
1−α/2, q

∗
α/2], (5.4)

the 1−α/2 and α/2 quantiles from y∗
1, . . . , y

∗
B which inherits the uncertainty

of M , β̂ and û. These intervals are implementable assuming we already have
estimates β̂ and û. Regardless of which method is used to form predictors,
we theoretically can use both intervals Eq. 5.3 or Eq. 5.4 because predictors
and mean and variance functions, as well as the uncertainty associated with
the MSP can be obtained through the bootstrap procedure. Thus, a closed
form solution of parameter estimates is not necessary to obtain valid PI’s.
Also, we can, at least theoretically, still use both of the intervals presented to
account for the uncertainty of model selection in the random effects design
matrix.

Appendix 5.C Computational Issues for GLMM’s

The theoretical and bootstrap based intervals we have proposed to cap-
ture the uncertainty of model selection are not implementable, at least yet.
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This is due to convergence issues with implementing GLMM’s. Estimation
in GLMM’s requires integrating out the random effects, and these integrals
do not have closed form solutions. Thus, numerical integration is necessary,
making the integrals computationally hard.

In practice, now, there is no a single best approach so one tries many
approaches until the algorithm converges. Once convergence is achieved, clas-
sical approaches to assess model fit are used. In the bootstrapping approach,
we require estimation over many repeated samples of the data and this would
require convergence of the estimates in the GLMM over each resample. The
estimates require numerical integration for each resample of the data which
requires a person trying several algorithms until one works. We attempted
this, but we were unsuccessful because convergence in each resample using
a fixed numerical integration method is not feasible.
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