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Abstract
The paper addresses asymptotic estimation of normal means under sparsity.
The primary focus is estimation of multivariate normal means where we
obtain exact asymptotic minimax error under global-local shrinkage prior.
This extends the corresponding univariate work of Ghosh and Chakrabarti
(2017). In addition, we obtain similar results for the Dirichlet-Laplace prior
as considered in Bhattacharya et al. (2015). Also, following van der Pas et al.
(2017), we have been able to derive credible sets for multivariate normal
means under global-local priors.
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1 Introduction

Estimation of normal means under sparsity started a while ago. Its impor-
tance is felt for the analysis of high dimensional data. For example, in
microarray experiments, there is a multitude of genes, but only a few have
impact on a certain disease. A foundational article appears in Donoho et al.
(1992), who provided an asymptotic minimax estimation rate for estimation
of normal means with a large majority of zeros, but with also a few signifi-
cant departures from zeros. The idea was pursed in a Bayesian framework by
Castillo and van der Vaart (2012) who provided the same asymptotic min-
imax estimation rate under a class of priors with “exponential decay”
(see (2.2) of their paper for its definition).

The present work addresses the same problem, but stems from several
recent excellent articles of Bhattacharya et al. (2015), van der Pas et al.
(2014), van der Pas et al. (2016) and Ghosh and Chakrabarti (2017). In
particular, our paper has more direct structural connection with the work of
Ghosh and Chakrabarti (2017), but extends their work in certain directions.

0123456789().: V,-vol

http://crossmark.crossref.org/dialog/?doi=10.1007/s13171-023-00315-9&domain=pdf
http://orcid.org/0000-0001-6545-5258


Z. Qin and M. Ghosh

It may be pointed out that the priors of Bhattacharya et al. (2015) or
Ghosh and Chakrabarti (2017) can be brought under the general framework
of van der Pas et al. (2014), but each has its own salient features which enable
one to provide a more concrete set of results. In particular, these priors, now
commonly referred to as “global-local” priors following Carvalho et al. (2009,
2010), are scale mixtures of normal priors with the scale parameters involving
both global and local components. The global components try to shrink the
normal means towards zero, while the local parameters try to balance the
same with the end of identifying and distinguishing the true signals from
the noises. While the work of Ghosh and Chakrabarti (2017) considers a
single global parameter and utilizes the same as a tuning parameter, Bhat-
tacharya et al. (2015) considered essentially multiple global parameters and
assigned certain priors on them. These ideas will be made more specific in
the following sections.

We first find the asymptotic minimax error for estimation of multivariate
normal means under sparsity in the nearly-black sense (Castillo and van der
Vaart, 2012). It is the same as the asymptotic minimax error in the univariate
case, which was proved by Donoho et al. (1992).

We then consider estimation of multivariate normal means under global-
local priors. Like Ghosh and Chakrabarti (2017), we obtain exact asymptotic
minimaxtity results as well in this situation. Further, in the framework of
Bhattacharya et al. (2015), we obtain asymptotic minimaxity results in the
multivariate case. This is the case where we put priors to the global param-
eters.

The final contribution of this paper is finding credible sets for multi-
variate normal means following the framework of van der Pas et al. (2017),
who considered the univariate case. We have considered a general class of
global-local priors which includes the now famous horseshoe prior, as well
as a more specific class of priors which is in the framework of Bhattacharya
et al. (2015). Like van der Pas et al. (2017), we have been able to identify
parameter vectors for which the posteriors give good coverage, and others
for which they do not.

The outline of the remaining sections is as follows. In Section 2.1, we find
the asymptotic minimax error in the multivariate setting. In Section 2.2, we
consider estimation of multivariate normal means and obtain exact asymp-
totic minimax error. We also find out the corresponding posterior con-
traction rates around both the estimator and the true means. Section 3
addresses results related to credible sets of multivariate normal means. Some
final remarks are made in Section 4. The proofs of some technical lemmas
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are given in Appendix A. The proofs of the main theorems are given in
Appendix B.

2 Point Estimation of Multivariate Normal Means

2.1 Asymptotic Minimax Error under Nearly-Black Sparsity Suppose
( 1) = 1 . To estimate multiple normal means, Ghosh

and Chakrabarti (2017) used a general global-local prior in which the global
parameter is treated as a tuning parameter. The exact asymptotic minimax-
ity was established under the prior. There, the true means 0 (1 )
are assumed to be sparse in the nearly-black sense (Castillo and van der
Vaart, 2012, Donoho et al., 1992), meaning that the cardinality of the non-
zero 0 ’s, say , is ( ), as . The set of nearly-black mean vectors is
denoted by 0[ ] = : =1 1( = 0) with = ( ). Donoho
et al. (1992) provides the asymptotic minimax error,

inf sup
0 0[ ] =1

0 0

2
= 2 log (1 + (1)) as (1)

In the multivariate situation, the true means 0 (1 ) being
assumed to be sparse in the nearly-black sense also means that =1 1( 0 =
0) with = ( ). We denote the set of nearly-black multivariate means
by 0[ ] = 0 =1 : 0 = 1 =1 1( 0 = 0) . One
can prove that, in the multivariate setting, the asymptotic minimax error
using the Mahalanobis distance loss is the same as the asymptotic minimax
error using the squared error loss in the univariate setting. We use to
denote the Mahalanobis norm, e.g., 2 = 1 , where is the
positive definite population covariance matrix.
Theorem 1 Suppose that ( ), independently, for = 1 ,
with a positive definite covariance matrix , and that the true mean vectors

=1 are sparse in the nearly-black sense. If we measure the error of an
estimator using the Mahalanobis distance loss, then, as ,

inf sup
0 0[ ] =1

0 0
2 = 2 log (1 + (1)) (2)

Remark 1 When is positive definite, the Mahalanobis norm is
equivalent to the 2-norm 2 in the sense of equivalent norms, which means
that there exist two positive real constants and such that 0 , for
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each , 2 2. Specifically, = 1
max( ), inverse

of the largest eigenvalue of , and = 1
min( ), inverse of the smallest

eigenvalue of . So, Theorem 1 will not give us an exact asymptotic mini-
max error under the 2-norm unless satisfies certain eigenvalue conditions.
Instead, we can get both lower and upper bounds of the minimax error under
the 2-norm. Since both bounds are of the same rate, 2 log ( ) (1+ (1)),
the minimax error under the 2-norm must be of the same rate as well, and
will only differ from it by up to a constant factor.

2.2 Minimax Estimation of Multivariate Normal Means Now, we first
extend the results of Ghosh and Chakrabarti (2017) to the multivariate case.
We begin with a general global-local prior model

(i) ( ), = 1 , is known positive definite;

(ii) 2 (0 2 ), = 1 , where (0 1) is a sequence of
positive constants to be chosen later, 0 as ;

(iii) ( 2) = ( 2) 1 ( 2), = 1 , where 0 and is a slowly
varying function.

In this model, the global parameter is assumed to be a tuning parameter.
Note that the horseshoe prior (Carvalho et al., 2009, 2010) is a special case
of this prior in the univariate setup with = 1 2.

The following regularity assumptions are made:

(I) L is non-decreasing in its argument with 0 ( ) ;

(II) 0 min( ) max( ) , where min( ) and max( ) denote
the minimum and maximum eigenvalues of .

We estimate using the posterior means under the global-local prior,
i.e.,

= ( ) = (1 ) where = (1 + 2 ) 1 (3)

and is the shrinkage factor. The estimators using a prior (iii) are denoted

by specifically.
We prove the following theorem under this model, in which (4) and (5)

concern the error contributed by the zero and non-zero true means, respec-
tively, and (6) is then immediate following the previous two results. In par-
ticular, when 0 1, we already have an upper bound for the error.
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Theorem 1 provides the minimax lower bound, which matches the upper
bound here. This fact actually finishes both the proofs of Theorem 1 and (7).
As shown in Theorem 2, this general class of global-local priors attains the
asymptotic minimax rate in the multivariate setting, and when 0 1,
it attains the exact asymptotic minimax error.
Theorem 2 Assume that the true means are sparse in the nearly-black
sense. Under the regularity assumptions (I) and (II), using the global-local
prior with a tuning parameter, i.e., a model satisfying (i), (ii) and (iii), if

= ( )
1+

, where 0 and 0 min(1 ), then, for any valid
choice of and ,

lim sup
0 0[ ] : 0 =0

0
2 log = 0 (4)

and

lim sup sup
0 0[ ]

: 0 =0
0 0

2

2 log( )
min(1 ) (5)

Consequently,

lim sup sup
0 0[ ]

=1 0 0
2

2 log( )
min(1 ) (6)

In particular, since the minimax error (2) provides a lower bound, when
0 1, one gets the result

lim sup
0 0[ ]

=1 0 0
2

2 log( )
= 1 (7)

The following theorem provides results on the rates of posterior contrac-
tion for this prior around both the Bayes estimators and the true means.
By (8), the posterior distributions contracts around the Bayes estimator at
least as fast as at the minimax rate. However, by (9), the rate of posterior
contraction around the true means would be slower than the minimax rate.
Theorem 3 Under the assumptions of Theorem 2, we have

lim sup
0 0[ ]

0
(

=1

2 log( ) ) = 0 (8)
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and

lim sup sup
0 0[ ]

0
(

=1

0
2 log( ) ) = 0 (9)

for any such that lim = .
Next we extend the work of Bhattacharya et al. (2015) in the present

multivariate framework. We consider the following prior in which, while (i)
remains the same in our earlier formulation, we replace (ii) and (iii) respec-
tively by

(ii’) 2 (0 2 ), = 1 ;

(iii’) 2 and are mutually independent. Also, 2’s are independent with
( 2) exp( 2 2), = 1 , while ’s are also independent with
( ) exp( (2 )) 1, where 0 and will be chosen later

and 0 1.

As noted by Bhattacharya et al. (2015) as well, the Dirichlet-Laplace priors
can be rewritten in the above formulation, except for that the authors put a
Gamma prior on while we put an Inverse-Gamma prior on it. Due to this
discrepancy, we refer the prior defined by (ii’) and (iii’) as the Exponential-
Inverse-Gamma prior.

It is worth mentioning that writing = 2 , one gets ( ) ( +
) 1, and one can directly use the for inferential purposes. Further, this

particular formulation is a special case of van der Pas et al. (2016), who has
a very general result concerning asymptotic minimaxity of univariate normal
means. However, it seems more convenient to work with separate priors for 2

and , and the explicit nature of these priors makes the calculation smooth.
As an aside, has a beta prime prior with = 1 and = , and this is
the prior considered in Armagan et al. (2011) and Griffin and Brown (2017).

With the above formulation, the estimators of the are denoted as .
We will prove Theorems 4 in this setup. It shows that the prior attains the
exact asymptotic minimax error as well.
Theorem 4 Assume that the true means are sparse in the nearly-black
sense. Under the regularity assumption (II), using the Exponential-Inverse-
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Gamma prior, i.e., a model satisfying (i), (ii’) and (iii’) above, if =
( )

1+

, where 0, then, for any valid choice of ,

lim sup
0 0[ ] : 0 =0

0
2 log = 0 (10)

and

lim sup sup
0 0[ ]

: 0 =0
0 0

2

2 log( )
1 (11)

Consequently,

lim sup
0 0[ ]

=1 0 0
2

2 log( )
= 1 (12)

We also have the following results regarding the posterior contraction
rate around the Bayes estimator and the true means. The same contraction
rates are observed as using the tuning parameter model.
Theorem 5 Under the assumptions of Theorem 4, we have

lim sup
0 0[ ]

0
(

=1

2 log( ) ) = 0 (13)

and

lim sup sup
0 0[ ]

0
(

=1

0
2 log( ) ) = 0

(14)
for any such that lim = .

3 Credible Sets of Multivariate Normal Means

In this section, we first study coverage probabilities of credible sets con-
structed under global-local priors defined by (ii) and (iii). The global param-
eter is treated as a tuning parameter. We consider credible sets of the form:

= : 2 (1+ )( ) (15)
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for some ( 0) to be chosen later and ( ) is determined from

( 2 ( ) ) = 1

In the following, we will omit the subscript in and for notational
simplicity.

Following van der Pas et al. (2017), we view the true mean vectors as in
three categories:

:= 0 : 0
2

:= 0 : 0
2 log

1

:= 0 : 0
2 log

1

for some positive constants , and , and some that goes to
infinity as goes to zero. We will show that, the proposed credible sets will
cover the true means in either or with a desired probability, while the
true means in will not be covered with probability tending to one. The
results are summaried in the following theorem.
Theorem 6 Consider the global-local prior with a tuning parameter , i.e.,
a model satisfying (i), (ii) and (iii), with 1, under the regularity assump-
tions (I) and (II). Suppose that 0, 2 and 2 , and that

and 0 as 0. Then, given , for the credible sets of
form (15) with 2 ( 2 ) (1+ ) for some fixed and 0,

0 ( 0 ) 1 if 0 (16)

0 ( 0 ) 1 if 0 (17)

0 ( 0 ) 1 if 0 (18)

as 0.
Remark 2 From the proof of the theorem, the conclusions for 0 in either

or do not rely on any specific choice of , while only the conclusion for
has the requirement on . To make the credible sets as narrow as possible,

noticing that 2 ( 2 ) (1+ ), we should choose to be as close to
as possible. As for , noticing that

(1+ )( ) 2 ( ( ) 2 ) (1+ )
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the choice should depend on ( ) 2 . For instance, when ( ) 2

1, we can choose as large as possible, so that (1+ )( ) would essen-
tially become 2 . On the other hand, when ( ) 2 1, it would be
more preferable to choose closer to 0. This observation also motivates an
individualized choice of instead of a common among all the subjects, so
that each credible set can be narrowed as much as possible while maintaining
the theoretical coverage probability.

Assuming sparsity in the nearly-black sense, most true means would be in
the set . This fact immediately leads to a high overall coverage probability,
i.e., the following corollary.
Corollary 1 Under the setup of Theorem 6, further assume that the true
means 0 are sparse in the nearly-black sense. Then, for almost all =
1 , as 0,

0 ( 0 ) 1

Next, we study coverage probabilities of credible sets constructed under
the Exponential-Inverse-Gamma priors defined by (ii’) and (iii’). We consider
credible sets of the same form as in the previous setup:

= : 2 (1+ )( ) (19)

for some ( 0) to be chosen later and ( ) is determined from

( 2 ( ) ) = 1

Here, we divide the true mean vectors as in the following three categories:

:= 0 : 0
2

:= 0 : 0
2 log

1

:= 0 : 0
2 log

1

for some positive constants , and , and some that goes to
infinity as goes to zero. And similar results regarding the coverage prob-
abilities are observed under this prior.
Theorem 7 Consider the Exponential-Inverse-Gamma prior, i.e., a model
satisfying (i), (ii’) and (iii’), under the regularity assumption (II). Suppose
that 0, 2 and 2 , and that and 0
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as 0. Then, given , for the credible sets of form (19) with
2 ( 2 ) (1+ ) for some fixed and 0, for 1 2

0 ( 0 ) 1 if 0 (20)

0 ( 0 ) 1 if 0 (21)

0 ( 0 ) 1 if 0 (22)

as 0.
The following corollary is also immediate due to the nearly-black sparsity.

Corollary 2 Under the setup of Theorem 7, further assume that the true
means 0 are sparse in the nearly-black sense. Then, for almost all =
1 , as 0,

0 ( 0 ) 1

4 Final Remarks

The paper addresses asymptotic estimation of multivariate normal means
under global-local priors. We first find the asymptotic minimax error in the
multivariate setup. Then, the asymptotic minimax error is obtained by treat-
ing the global parameter as a tuning parameter. The same result is obtained
under Dirichlet-Laplace priors. Also, credible sets are obtained under global-
local priors extending the idea of van der Pas et al. (2017) in the multivariate
case.
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Appendix A: Lemmas

A.1 Lemmas for the Multivariate Tuning Parameter Model Regarding the
multivariate tuning parameter model, we can establish the following lemmas.
Under the model (i) - (iii), the posterior density of is given by

( ) 2+ 1(1 ) 1 1
exp

2
1

In the following, we will use ( 0) to denote a generic constant.
Lemma 1 Under the multivariate global-local prior model with treating the
global parameter as a tuning parameter and under the regularity assumption
(I), assuming 0 as , for arbitrary such that 0 min(1 ),
when is sufficiently large,

(1 ) exp
1

2
(A1)

Proof For an arbitrary constant 0,

(1 )

= 2 1 + 2 1

=
0 1 + 2 ( 2

+1) 2 2 exp
1

2(1+ 2 )
2

0 (1 + 2 ) 2 ( 2) 1 ( 2) exp
1

2(1+ 2 )
2

(
1

2
) 1 ( 2 ( ))

(A2)

where

1 =
0

1 + 2 ( 2
+1) 2 2 2 (A3)

and

2 = 1 + 2 2 2 1 2 (A4)

But

2 1 + 2 2 2 1 2 = (A5)
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Next, by choosing 0 min(1 ),

1

1

0
( 2)( 2) 1 ( 2) 2+

1
( 2 ) 1+ (1+ 2 ) 2 ( 2) 2

1 + 1( ) 1

(A6)
Combining (A2)-(A6), (1 ) exp

1

2 , when is
sufficiently large.

Lemma 2 Under the multivariate global-local prior model with treating the
global parameter as a tuning parameter and under the regularity assumption
(I), for arbitrary constants 0 1 and 0 1,

1[ ] exp
(1 )

2
1 (A7)

Proof For an arbitrary constant 0 1,

1[ ]

=

1 2+ (1 ) 1 1 exp 2
1

1
0

2+ 1(1 ) 1 1 exp 2
1

1 2+ (1 ) 1 1 exp 2
1

0
2+ 1(1 ) 1 1 exp 2

1

exp
(1 )

2
1

1 2+ (1 ) 1 1

0
2+ 1(1 ) 1 1

(A8)
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Now observe that

1
2+ (1 ) 1 1

=
(1 ) ( )

0
(1 + 2 ) ( 2+ )( 2 (1 + 2 ) 1) 1 ( 2)

2

(1 + 2 )2

=
(1 ) ( )

0
(1 + 2 ) ( 2+1)( 2) 1 ( 2) 2

0
( 2) 1 ( 2) 2 = 1

(A9)
By assumption (I) and 1,

0

2+ 1(1 ) 1 1

0

2+ 1 1

1

0

2+ 1

=
1 ( ) 2+

2 +

(A10)

Combining (A8) - (A10),

1[ ] exp
(1 )

2
1 (A11)

Lemma 3 Under the multivariate global-local prior model with treating the
global parameter as a tuning parameter and under the regularity assumption
(I), for an arbitrary constant 0 1,

( 1[ ] ) 1 (A12)
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Proof For an arbitrary constant 0 1,

1[ ]

=
0

2+ (1 ) 1 1 exp 2
1

1
0

2+ 1(1 ) 1 1 exp 2
1

(1 ) 1

1

0
2+ exp 2

1

0
2+ 1 exp 2

1

=
(1 ) 1

1

1 2
0

2
1

2+
exp ( )

1 2
0

2
1

2+ 1
exp ( )

=
(1 ) 1

1 1

1 2
0

2+ exp ( )
1 2

0
2+ 1 exp ( )

(A13)

Integrating the numerator by parts,

ξ 1 /2

0

tk/2+a exp ( t)dt = (k/2 + a)

ξ 1 /2

0

tk/2+a 1 exp ( t)dt
ξ T

i
1

i

2

2 +a

exp
ξ T

i
1

i

2
.

(A14)

Combining (A13) and (A14),

1[ ]
1 (A15)

A.2 Lemmas for the Multivariate Exponential-Inverse-Gamma Model
Under an Exponential-Inverse-Gamma model (i), (ii’) and (iii’) the posterior
density of is given by

( )
+

2
1
(1 + ) 1 exp

1

2

Now, we give three basic inequalities involving the Exponential-Inverse-
Gamma prior.
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Lemma 4 Under the multivariate Exponential-Inverse-Gamma model, assum-
ing 0 as , for large ,

(1 ) exp
1

2
(A16)

Proof Firstly,

E(1 κi i) =

1

0
(1 κi)κ

d+ 2 1

i exp
κ 1

2
(1 κi + κicn) d 1dκi

1

0
κ

d+ 2 1

i exp
κ 1

2
(1 κi + κicn) d 1dκi

exp( T
i

1
i/2)

1

0
(1 κi)κ

d+ 2 1

i (1 κi + κicn) d 1dκi

1

0
κ

d+ 2 1

i (1 κi + κicn) d 1dκi

:= exp( T
i

1
i/2)

N

D
.

Now,

1

1

+
2

1
(1 + ) 1

1

1

+
2

1
( + ) 1

= (2 ) ( +1)
1

1

+
2

1

= (2 ) ( +1) 1 (1 ) +
2

+ 2

( +1) + 2 1
2

2

= 1
+ 2 1

2
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Next,

=
1

0
(1 )

+
2

1
(1 + ) 1

1

0
(1 )

+
2

1
(1 ) 1

=
1

0

+
2

1
(1 )

= Beta(1
2

+ )

Therefore, when is sufficiently large,

(1 ) exp( 1 2)

Lemma 5 Under the multivariate Exponential-Inverse-Gamma model, for
arbitrary constants 0 1 and 0 1,

( 1[ ] ) exp
1
2

(1 ) 1 (A17)

Proof For arbitrary constants 0 1 and 0 1,

E(κi1[κ >ξ] i)

=

1

ξ
κiκ

d+ 2 1

i exp
κ 1

2
(1 κi + κicn) d 1dκi

1

0
κ

d+ 2 1

i exp
κ 1

2
(1 κi + κicn) d 1dκi

1

ξ
κ

d+ 2
i exp

κ 1

2
(1 κi + κicn) d 1dκi

ξδ

0
κ

d+ 2 1

i exp
κ 1

2
(1 κi + κicn) d 1dκi

exp
1

2
ξ(1 δ) T

i
1

i

1

ξ
κ

d+ 2
i (1 κi + κicn) d 1dκi

ξδ

0
κ

d+ 2 1

i (1 κi + κicn) d 1dκi

exp
1

2
ξ(1 δ) T

i
1

i

1

ξ
κ

d+ 2
i (1 κi + κicn) d 1dκi

ξδ

0
κ

d+ 2 1

i (1 + cn) d 1dκi
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exp
1

2
ξ(1 δ) T

i
1

i (1 + cn)d+1 d + k/2

(ξδ)d+k/2

1

ξ

(1 κi + κicn) d 1dκi

K exp
1

2
ξ(1 δ) T

i
1

i
(1 κi + ξcn) d

d

1

ξ

K exp
1

2
ξ(1 δ) T

i
1

i c d
n .

Lemma 6 Under the multivariate Exponential-Inverse-Gamma model, for
an arbitrary constant 0 1,

( 1[ ] ) 1 (A18)
Proof For an arbitrary constant 0 1,

( 1[ ] )

=
0

+
2 exp

1

2 (1 + ) 1

1
0

+
2

1
exp

1

2 (1 + ) 1

0

+
2 exp

1

2 (1 + ) 1

0

+
2

1
exp

1

2 (1 + ) 1

(1 ) 1

(1 + ) 1

0

+
2 exp

1

2

0

+
2

1
exp

1

2

(1 ) 1

(1 + ) 1 1

1 2
0 exp ( ) +

2

1 2
0 exp ( ) +

2
1

Integrating by parts,

1 2

0
exp ( ) +

2

= exp ( ) +
2

= 1 2

=0
+( +

2
)

1 2

0
exp ( ) +

2
1

Therefore,
1 2

0 exp ( ) +
2

1 2
0 exp ( ) +

2
1

+
2
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Hence,
( 1[ ] ) 1

Appendix B: Proofs of the Main Theorems

B.1 Proofs of Theorems in Section 2
Proof of Theorem 1 For each ( ), define = ( 1 ) :=

1 2 and = ( 1 ) := 1 2 . So, all the components
of ’s are independently normally distributed, i.e., ( 1) =
1 = 1 .

Given estimators , if we use = 1 2 to estimate ’s, then

2 = 2 =
=1

( )2

Also, since 0[ ] would imply that 0[ ], when we let
= , we have

sup
0[ ] =1 =1

( )2 sup
0[ ] =1

2

Finally, since is positive definite, there is a one-to-one correspondence
between =1 and =1 =1 . So the above inequality still hold, if
we further take the infinum over all possible estimators:

inf sup
0[ ] =1 =1

( )2 inf sup
0[ ] =1

2

Donoho et al. (1992) provides the result for the left hand side, which is,
as ,

inf sup
0[ ] =1 =1

( )2 = 2 log( )(1 + (1))

= 2 log( )(1 + (1))

The last equality holds because we let = .
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So we have a minimax lower bound now,

inf sup
0[ ] =1

2 2 log( )(1 + (1))

As we will see in (6) and (12), when using some particular priors, the error
of the Bayes estimate of ’s will be at most 2 log( )(1 + (1)). This
fact provides an upper bound for the minimax error, which coincides with
the lower bound, and finishes this proof.

Proof of Theorem 2 We first prove (4). Observe that

2 = (1 )2 2 (1 ) 2

Denote the 2-norm by 2. Then, making use of Lemma 1, for a sequence of
positive constants 1 to be specified later with as ,

0 (1 ) 2 1[ 2
2 ]

0 exp 1 2 2
21[ 2

2 ]

=
2
2

2
2 exp 1 2 1 2

=
2
2

2
2

( )
= +1 (B19)

where ( ) =
2

( 2+1) is the volume of a Euclidean ball of radius r in
k-dimensional Euclidean space.

Moreover, under assumption (II),

0 (1 ) 2 1[ 2
2 ]

0
2 1[ 2

min( 1) ]
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Noting that under 0 = 0, 2 2, one gets

0
2 1[ 2

min( 1) ]

=
min( 1)

exp
2

2 1

( 2)2 2

=2
( min( 1) ) 2

exp ( )
2

( 2)

2 exp min
1 4

( min( 1) ) 2
exp

2

2

( 2)

exp min
1 4

2
2 2

+2

Now choosing = 4 1
min

1 (1 + ) log( ), with 0, one gets

0 (1 ) 2 1[ 2
2 ] ( )1+ (B20)

Finally, choosing = ( )
1+

, the theorem follows from (B19) and
(B20),

0 (1 ) 2 ( )1+ (log( )) +1 + ( )1+

( )1+ (log( )) +1 as

Summing over all ’s for which 0 = 0, one gets

sup
0 0[ ] : 0 =0

0
2 log = (1) as

Now we prove (5). Use the inequality

E 0

R

i 0i
2
Σ

=E 0 (1 E (κi i)) i i + i 0i
2
Σ

=E 0 E (κi i)
2

i
2
Σ + i 0i

2
Σ 2 1/2( i 0i), E (κi i)

1/2
i

E 0 E (κi i)
2

i
2
Σ + E 0 i 0i

2
Σ

+2 E 0 i 0i
2
ΣE 0 E (κi i)

2
i

2
Σ

1
2
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But 0 0
2 = , the above becomes

0 0
2

0 ( )2 2

+2
1
2

1
2

0
( )2 2 +

0 ( ) 2

+2
1
2

1
2

0
( ) 2 +

Since log( ) 0, as , it suffices to show that

lim sup sup
0 0[ ]

: 0 =0
0 [ ( ) 2 ]

4 log( )
1 (2 min(1 )) (B21)

and

lim sup sup
0 0[ ]

: 0 =0

1
2

0
[ ( ) 2 ]

log( )
= 0 (B22)

In view of Lemma 2, for sufficiently large 0, uniformly in 0 = 0,

1[ ]
2 1[ 2 ]

2 exp
(1 )

2
2 1[ 2 ]

exp
(1 )

2

( ) ( ) log

(B23)

by choosing = 1+ 2
(1 ) log , with , and recalling that =

( )
1+

.
Then summing over all ’s for which 0 = 0, one gets

lim sup sup
0 0[ ]

: 0 =0
0 1[ ]

2 1[ 2 ]

log( )
= 0

(B24)
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Finally,

0 1[ ]
2 1[ 2 ]

0
2 1[ 2 ]

1 + 2
(1 )

log

(B25)

Since the result above is independent of any specific choice of the param-
eters, by making 0, 0, min(1 ), 1 and 0, and
summing over all ’s for which 0 = 0, one gets

lim sup sup
0 0[ ]

: 0 =0
0 1[ ]

2 1[ 2 ]

4 log( )

1 (2 min(1 ))
(B26)

Together with Lemma 3 and (B24), this leads to (B21).
Altogether Lemma 2, (B23) and (B25) also imply that

0 [ ( ) 2 ] log (1 + (1)) as (B27)

Again summing over all ’s for which 0 = 0, one gets (B22). This com-
pletes the proof of (5).

(6) follows (4) and (5), immediately. In particular, when 0
1, Theorem 1 provides a lower bound for the estimation error and (7)
follows.
Proof of Theorem 3 By Markov’s inequality and the independence of sam-
ples,

0
(

=1

2 log( ) )

0
(

=1

2 ) log( )

=
=1

0 ( 2 ) log( )
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Since
( (1 ) )

we have
( 2 )

= ( 2 )

= (1 ) (
2

1
)

= (1 )

Now we only need to find a bound for 0 (1 ). When 0 = 0,

0 (1 ) 1

When 0 = 0, letting be a sequence of positive numbers that will be
chosen later, using Lemma 1, for 0 min(0 ),

0 (1 )
= 0 (1 )1[ 2

2 ] + 0 (1 )1[ 2
2 ]

0 exp 1 2 1[ 2
2 ] + 0 1[ 2

2 ]

= ( ) + ( 2 )
+ 2 exp( 2)

where ( ) is the volume of a Euclidean ball of radius r in k-dimensional
Euclidean space, and the probability is bounded using the Chernoff bound
for the 2 random variables.

For some 0, choose = 2(1 + ) log( ) and = ( )(1+ ) .
Then,

sup
0 0[ ] =1

0 ( 2 ) log( )

+ ( )( + 2 exp( 2))
log( )

0

as . This proves (8).
Next, since

( 0
2 ) 2 ( 2 ) + 2 ( 0

2 )
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by Markov’s inequality, (6) and (8) immediately lead to (9).

Proof of Theorem 4 The proof of (10) is similar to the proof of (4), but now
using Lemma 4. We start from

2 = (1 )2 2 (1 ) 2

Then, for a sequence of positive constants 1 to be specified later
with as ,

0 (1 ) 2 1[ 2
2 ]

0 exp 1 2 2 1[ 2
2 ]

+1

and,

0 (1 ) 2 1[ 2
2 ]

0
2 1[ 2

min( 1) ]

exp min
1 4

By choosing = 4 1
min

1 (1 + ) log( ) and = ( )
1+

, with
0, one gets

0 (1 ) 2 ( )1+ (log( )) +1 + ( )1+

( )1+ (log( )) +1 as

and hence

sup
0 0[ ] : 0 =0

0
2 log = (1) as

The proof of (11) is similar to the proof of (5), but now using Lemmas 5
and 6. Again, it suffices to show that

lim sup sup
0 0[ ]

: 0 =0
0 [ ( ) 2 ]

2 max( ) log( )
1 (B28)
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and

lim sup sup
0 0[ ]

: 0 =0

1
2

0
[ ( ) 2 ]

log( )
= 0 (B29)

By Lemma 5, for sufficiently large 0, uniformly in 0 = 0,

1[ ]
2 1[ 2 ]

2 exp
(1 )

2
2 1[ 2 ]

exp
(1 )

2

( ) log

by choosing = 2(1+ )
(1 ) log , with , and recalling that =

( )
1+

. So,

lim sup sup
0 0[ ]

: 0 =0
0 1[ ]

2 1[ 2 ]

log( )
= 0

(B30)
Also,

0 1[ ]
2 1[ 2 ]

0
2 1[ 2 ]

2(1 + )
(1 )

log

(B31)

By making 0, 0, min(1 ), 1 and 0, one gets

lim sup sup
0 0[ ]

: 0 =0
0 1[ ]

2 1[ 2 ]

2 log( )
1

(B32)
Together with Lemma 6 and (B30), this leads to (B28).
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Altogether Lemma 5, (B30) and (B31) also imply that

0 [ ( ) 2 ] log (1 + (1)) as (B33)

Consequently, one gets (B29). This completes the proof of (11).
Finally, (12) follows the previous two results and Theorem 1.

Proof of Theorem 5 Similar to the Proof of Theorem 3, we only need to find
a bound for 0 (1 ). When 0 = 0,

0 (1 ) 1

When 0 = 0, letting be a sequence of positive numbers that will be
chosen later, using Lemma 4,

0 (1 )
= 0 (1 )1[ 2

2 ] + 0 (1 )1[ 2
2 ]

+ 2 exp( 2)

For some 0, choose = 2(1 + ) log( ) and = ( )(1+ ) .
Then,

sup
0 0[ ] =1

0 ( 2 ) log( )

+ ( )( + 2 exp( 2))
log( )

0

as . This proves (13).
Next, since

( 0
2 ) 2 ( 2 ) + 2 ( 0

2 )

by Markov’s inequality, (12) and (13) immediately lead to (14).

B.2 Proofs of Theorems in Section 3
Proof of Theorem 6 We use for in this proof.
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Proof of (16). Look at the case where 0
2 . Note that we could

write = 0 + , where (0 ) and hence 2 2. So,

0
2 = 0 (1 ) 2

= ( ) 0 (1 ) 2

2 ( )2 0
2 + 2 (1 )2 2

2 + 2 (1 ) 2

By Lemma 1, for any fixed ,

(1 ) exp
1

2
exp 0

2 exp 2

We will show that, for small enough ,

( ) 2 (1 + (1)) (B34)

for some 0 which we will fix later and any fixed ( ) with,
specifically, = 0

1 ( ) here. Given this, for fixed (1 + )
and for any fixed ,

P 0 ( 0i CR
i ) = P 0 ( 0i i

2
Σ Lr

a/(1+ρ)
i (α, τn))

P 0 (Kτn + Kτη
ne

2

i
2
Σ Kτa/(1+ρ)

n (1 + o(1)))

P 0 (Kτn + Kτη
ne

2

i
2
Σ Kτa/(1+ρ)

n (1 + o(1)) i
2
Σ χ2

k,α)

P ( i
2
Σ χ2

k,α)

1 (1 α) = 1 α,

as 0, since the left hand side of the inequality in the conditional
probability is of a higher order of infinitesimal.

Now, it remains to prove (B34). Due to the normality of the posterior

2 ((1 ) (1 ) )

applying Anderson’s lemma, we have

( 2 ( ) 2) ( (1 ) 2 ( ) 2)
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Thus,

=
0

( 2 ( ) 2) ( 2 ) 2

0
( (1 ) 2 ( ) 2) ( 2 ) 2

Recall that ( 2 ) (1+ 2 ) 2( 2) 1 ( 2) exp(
1

2(1+ 2 ) ). Let

( 2 ) (1 + 2 ) 2( 2) 1 ( 2) be another density. Then, since
( 2 ) ( 2 ) and ( (1 ) 2 ( ) 2) are

both increasing in 2

0
( (1 ) 2 ( ) 2) ( 2 ) 2

0
( (1 ) 2 ( ) 2) ( 2 ) 2

On the other hand, since (1 ) 2 (1 ) 2 2, and
1 (1 + (1)) when 2 for any 0. Thus, for some fixed

( 0) to be determined later,

0
( (1 ) 2 2 (1 + (1)) 2) ( 2 ) 2

( (1 ) 2 2 (1 + (1)) 2) ( 2 ) 2

( (1 ) 2 2 (1 ) 2) ( 2 ) 2

= ( 2 )

Since, by the dominated convergence theorem,

( 2 ) =
(1 + 2 ) 2( 2) 1 ( 2) 2

0 (1 + 2 ) 2( 2) 1 ( 2) 2

( 2) 1 ( 2) 2

0 ( 2) 1 ( 2) 2

( 2) 1 2 = ( )

121



Z. Qin and M. Ghosh

First fixing to be such that ( ) , if we further fix ( )
with = 0

1 ( ) , then

0
( (1 ) 2 2 2(1 + (1)) 2) ( 2 ) 2

( )

0
( (1 ) 2 ( ) 2) ( 2 ) 2

This implies that ( ) 2 (1 + (1)) which completes the proof
of the first part.

Proof of (17) For the case where 0
2 log 1 , we start

with the inequality

0 + 0

For 0 ,

0 log
1 1 2

0 + 0 log
1 1 2

0

if

0 0 log
1 1 2

the probability of which converges to 1 as 0.
We now study ( ) in this case. We will find an upper bound for
( ). As the first ingredient, for 0,

( 2 )

=
(1 + 2 ) 2( 2) 1 ( 2) exp

2

2(1+ 2 )
2

0 (1 + 2 ) 2( 2) 1 ( 2) exp
2

2(1+ 2 )
2
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The denominator

0
(1 + 2 ) 2( 2) 1 ( 2) exp

2

2(1 + 2 )
2

exp
2

2

2

1
(1 + 2 ) 2( 2) 1 ( 2) 2

exp
2

2
(3) 2 (1)

2

1
( 2) 1 2

= exp
2

2

Hence,

( 2 ) exp
2

2
( 2) 1 2

= exp
2

2

(B35)

Next, by the inequality

2 2 (1 ) 2 + 2 (1 ) 2

for 0,

1
2

2 (1 ) 2

would imply that

(1 ) 2

Now,

(
1
2

2 (1 ) 2 2)

( (1 ) 2 2)
(B36)
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Using (B36),

0
( 2 2 +2 sup

2
(1 ) 2 2) ( 2 ) 2

0
( 2 2 +2 sup

2
(1 ) 2 2) ( 2 ) 2

+ ( 2 )

0
( 2 2 + 2 (1 ) 2 2) ( 2 ) 2

+ ( 2 )

0
( (1 ) 2 2) ( 2 ) 2 + ( 2 )

Since 1 1+ when 2 , we can bound the first term above by
2 via

0
( (1 ) 2 2

2 1 +
2) ( 2 ) 2

0
( (1 ) 2 2

2(1 ) 2) ( 2 ) 2

2

As for the second term, by (B35), when is fixed, for large enough ,

( 2 ) 2 (B37)

This leads to

0
( 2 ( ) 2) ( 2 ) 2

=

0
( 2 2 +2 sup

2
(1 ) 2 2) ( 2 ) 2
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if = 2
2 (1 + ) and is large enough. Thus, when 2

0 log 1 , for small enough ,

( ) 2 2
2 1 +

+ 2 sup
2

(1 ) 2

2 2
2 1+

+4 sup
2

(1 ) 2 +4 sup
2

(1 ) 2

2 2
2 + 8 2

log
1

Again, applying Lemma 1, when 2
0 log 1 , for fixed ,

2 (1 ) 2

exp 2 2 2

exp 0 log
1

2 0 log
1

= 0 2 log
1

If we choose to be such that = 0 2, in which the factor makes
(B37) hold, we then have, as 0,

2 i
2
Σ + 2r

a/(1+ρ)
i (α, τn) Kτη K0/2

n log
1

τn
+ K τ1 K0/2a

n log
1

τn

a/(1+ρ)

= o(1),

if we require 2 and fix and 0 to be such that 0 2 2 .
This leads to that, when 2

0 log 1 , for some such that
and 0 as 0,

0
2 2 2 + 2 (1+ )( )

Finally, by the inequality

0
2 2 0

2 + 2 2

the fact that
0

2 2 2 + 2 (1+ )( )
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would imply that

0
2 (1+ )( )

So,

0 ( 0 )

= 0 ( 0
2 (1+ )( ))

0 ( 0
2 (1+ )( ) 0

2 ( 0 )2 log 1 )

( 0
2 ( 0 )2 log 1 )

= ( 0
2 ( 0 )2 log 1 )

1

as 0, for any fixed 0.
Proof of (18). Consider the case where 0

2 log 1 . We write

0 = 0 ( )
+ ( )

Applying both Lemmas 2 and 3, for any fixed (0 1),

( ) 2 2 2

2
2

+ 2 exp
(1 )

2
2

2
2

Further,
= 0 + 0

in which 0
2 log 1 , by assumption, and 2 2 with proba-

bility 1 . Since 0, when 2 2 , we will have

log
1 1 2

2 1 2

and, consequently,

2 log
1

(1 + (1))
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By choosing , , and to be such that (1+ (1)) 2
(1 ) , e.g., = 3

and (1 ) = 3 4, when 2 2 , we will have, as 0,

( ) 2 (1)

hence,

0
2 2 + (1)

2

= 2 (1 + (1)) (B38)

Then, we find a lower bound for ( ) in this case. Making use of the
posterior normality and Anderson’s lemma again,

=
0

( 2 ( ) 2) ( 2 ) 2

0
( (1 ) 2 ( ) 2) ( 2 ) 2

On the other hand, since 1 (1 + ) = 1 + (1) if 2

with = (log 1 )1 3, for some fixed ,

0
( (1 ) 2 2 (1 + ) 2) ( 2 ) 2

( (1 ) 2 2 (1 + ) 2) ( 2 ) 2

( (1 ) 2 2 (1 ) 2) ( 2 ) 2

= ( 2 )

We now study the posterior probability in a situation where 2

log 1 (1 + (1)):

( 2 )

=
0 (1 + 2 ) 2( 2) 1 ( 2) exp

2

2(1+ 2 )
2

0 (1 + 2 ) 2( 2) 1 ( 2) exp
2

2(1+ 2 )
2

:=
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Next,

2( +1)

( +1)
(1 + 2 ) 2( 2) 1 ( 2) exp

2

2(1 + 2 )
2

(2 + 3) 2 exp
2

2(2 + )

2( +1)

( +1)
( 2) 1 2

= (2 + 3) 2 exp
2

2(2 + ) + 1

Next, fixing a constant 0, when is large enough,

N =
g /τ

0

(1 + λ2
i τn) k/2(λ2

i )
a 1L(λ2

i ) exp
i

2
Σ

2(1 + λ2
i τn)

dλ2
i

=
c/τ

0

+
g /τ

c/τ

(1 + λ2
i τn) k/2(λ2

i )
a 1L(λ2

i ) exp
i

2
Σ

2(1 + λ2
i τn)

dλ2
i

=:N1 + N2.

The first term

1 =
0

(1 + 2 ) 2( 2) 1 ( 2) exp
2

2(1 + 2 )
2

0
( 2) 1 ( 2) exp

2

2(1 + )
2

exp
2

2(1 + ) 0
( 2) 1 ( 2) 2

= exp
2

2(1 + )

When 2 log 1 (1 + (1)),

1 (2 + 3) 2 + 1
exp

2

2(2 + )

2

2(1 + )

(2 + 3) 2 + 1
exp

2
log

1 1
(1 + )

(1 + (1))

= (2 + 3) 2 ( + 1) 2(1+ )
(1+ (1))

= (1)
(B39)
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as 0, if is chosen properly, e.g., = 1 3. Our choice of makes sure
that the above is (1) as 0, given that = (log 1 )1 3. Moreover,

2 = (1 + 2 ) 2( 2) 1 ( 2) exp
2

2(1 + 2 )
2

(1 + ) 2 exp
2

2(1 + )
( 2) 1 2

(1 + ) 2 exp
2

2(1 + )
( ) +1

It follows that

2 (2 + 3) 2 ( + 1) ( ) exp
2

2(1 + )(2 + )

Since we have chosen = (log 1 )1 3, when 2 log 1 (1+ (1)),
we will have, as 0,

2 = (1) (B40)

Combining (B39) and (B40), when 2 log 1 (1+ (1)), as 0,

( 2 ) = (1)

and hence

0
( (1 ) 2 2 (1 + ) 2) ( 2 ) 2

( 2 )
= (1 (1))

Here, let = for some fixed . For small enough , we will have

0
( (1 ) 2 2 (1 + ) 2) ( 2 ) 2

(1 (1))

0
( (1 ) 2 ( ) 2) ( 2 ) 2
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It follows that

( ) 2 (1 + ) = 2 (1 + (1)) (B41)

when 2 log 1 (1 + (1)).
As a reminder, when is small enough, 2 2 implies that

2 log 1 (1 + (1)).
So, by (B38) along with (B41), in the case where 0

2 log 1 , for
any fixed , as 0,

0 ( 0 ) = 0 ( 0
2 (1+ )( ))

0 ( 0
2 (1+ )( ) 2 2 )

( 2 2 )

0 ( 2 (1+ (1)) ( 2 ) (1+ )(1+ (1)) 2 2 )

( 2 2 )

1 (1 ) = 1

if we choose 2 ( 2 ) (1+ ), e.g., = 2 2 ( 2 ) (1+ ).

Proof of Theorem 7 We use for in this proof.
Proof of (20). We first find a lower bound for ( ). Recall that (
) + 2 1(1 + ) 1 exp( 1 2). Similar to the

proof of (16), let ( ) + 2 1(1 + ) 1 be another
density. Also, under the setup of this theorem,

((1 ) (1 ) )

Now we can proceed similarly as the proof of (B34). For some ( 0) and
some ( 1) to be determined later,

1

0
( (1 ) 2 2 ) ( )

1

0
( (1 ) 2 2 ) ( )

1

0
( (1 ) 2 2 (1 ) ) ( )

= ( 1 )
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Since

( 1 ) =
1
1

+ 2 1(1 + ) 1

1
0

+ 2 1(1 + ) 1

1
1

1

1
1 (1 ) + 2 1( + (1 )) 1

= 1 (2 ) +1

(1 ) + 2 1

suppose 1 2, when is small enough, if we fix = 2, for example,

( 1 )

On the other hand, by Anderson’s lemma,

=
1

0
( 2 ( ) ) ( )

1

0
( (1 ) 2 ( ) ) ( )

So,

1

0
( (1 ) 2 2 ) ( )

1

0
( (1 ) 2 ( ) ) ( )

This implies that
( ) 2 (B42)

For the case where 0
2 . Again,

0
2 = 0 (1 ) 2

= ( ) 0 (1 ) 2

2 ( )2 0
2 + 2 (1 )2 2

2 + 2 (1 ) 2
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Using Lemma 4 and (B42), when we choose to be such that (1 + )
1, e.g., = 1 + 2,

P 0 ( 0i CEIG
i ) = P 0 ( 0i i

2
Σ Lr

d/(1+ρ)
i (α, cn))

P 0 (Kcn + Kcd
ne

2

i
2
Σ (χ2

k,Aαcv
n)d/(1+ρ))

P 0 (Kcn + Kcd
ne

2

i
2
Σ (χ2

k,Aαcv
n)d/(1+ρ)

i
2
Σ χ2

k,α)

P ( i
2
Σ χ2

k,α)

1 (1 α) = 1 α,

as 0, since the left hand side of the inequality in the conditional
probability is of a higher order of infinitesimal.

Proof of (21) For the case where 0
2 log 1 , similar to

the proof of (17), for 0 ,

0 log
1 1 2

0 + 0 log
1 1 2

0

if

0 0 log
1 1 2

the probability of which converges to 1 as 0.
Using (B36) again,

1

0
( 2 2 +2 sup (1 ) 2 ) ( )

1

( 2 2 +2 sup (1 ) 2 ) ( )

+ ( )
1

( 2 2 + 2 (1 ) 2 ) ( )

+ ( )
1

( (1 ) 2 ) ( ) + ( )
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For the first term, let = 2
2(1 ),

1

( (1 ) 2 2
2(1 ) ) ( )

1

( (1 ) 2 2
2(1 ) ) ( )

2

For the other term, when is fixed, if = 1 (2 +2), as 0,

( )

=
1 (2 +2)

0
+ 2 1(1 + ) 1 exp( 1 2)

1
0

+ 2 1(1 + ) 1 exp( 1 2)
1 (2 +2)

0 ( (2 +2) + (1 (2 +2))) 1

exp( 1 2) 1
1 (1 ) + 2 1( + (1 )) 1

=
2(1 + ( +2) (2 +2) ) 1

exp( 1 2) (1 ) + 2 1(2 ) 1

exp( 1 2) 2 2

So,

1

0
( 2 ( ) ) ( )

=
1

0
( 2 2 +2 sup (1 ) 2 ) ( )

if = 2
2(1 ) and = 1 (2 +2). Thus, when 2

0 log 1 ,
for small enough ,

ri(α, cn) 2χ2
k,α/2(1 Bn) + 2 sup

κ B
i (1 κi) i

2
Σ

2χ2
k,α/2c

d/(2d+2)
n + 4 sup

κ B
E(1 κi i) i

2
Σ + 4 sup

κ B
(1 κi) i

2
Σ

2χ2
k,α/2c

d/(2d+2)
n + 8cd/(2d+2)

n i
2
Σ

Kcd/(2d+2)
n log

1

cn
.
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Finally, by the inequality

0
2 2 0

2 + 2 2

the fact that
0

2 2 2 + 2 (1+ )( )

would imply that

0
2 (1+ )( )

Applying Lemma 4, when 2
0 log 1 ,

2 (1 ) 2

exp 2 2 2

exp 0 log
1

2 0 log
1

= 0 2 log
1

We then have, as 0,

2 i
2
Σ + 2r

d/(1+ρ)
i (α, cn) Kc

d K0/2
n log

1

cn
+ K cd/(2d+2)

n log
1

cn

d/(1+ρ)

= o(1),

if we require 2 and fix 0 to be such that 0 2 . This
implies that when 2

0 log 1 , for some such that and
0 as 0,

0
2 2 2 + 2 (1+ )( )

Finally,

0 ( 0 )

= 0 ( 0
2 (1+ )( ))

0 ( 0
2 (1+ )( ) 0

2 ( 0 )2 log 1 )

( 0
2 ( 0 )2 log 1 )

= ( 0
2 ( 0 )2 log 1 )

1
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as 0, for any fixed 0.
Proof of (22). Similar to the proof of (18), using Lemmas 5 and 6, when
0

2 log 1 and 2 2 , we have, as 0,

2 log
1

(1 + (1))

and, for (1 + (1)) 2
(1 ) ,

0
2 2 (1 + (1)) (B43)

Then, we find a lower bound for ( ) in this case. Making use of the
posterior normality and Anderson’s lemma again,

=
1

0
( 2 ( ) ) ( )

1

0
( (1 ) 2 ( ) ) ( )

On the other hand, since 1 1 if , for some fixed ,

1

0
( (1 ) 2 2 (1 ) ) ( )

0
( (1 ) 2 2 (1 ) ) ( )

0
( (1 ) 2 2 (1 ) ) ( )

= ( )
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When 2 log 1 (1 + (1)) as ,

( )
1 + 2 1(1 + ) 1 exp( 1 2)

1
1

1
+ 2 1(1 + ) 1 exp( 1 2)

1 1 exp( 1 2)
1
1

1 (1 1 ) + 2 1( 1 + (1 1 )) 1 exp( 1 2)

= exp( (1 ) 1 2)(1 + (1))

exp (1 ) log
1

(1 + (1)) 2 (1 + (1))

= (1 ) (1+ (1)) 2 = (1)

since we have already chosen (1 + (1)) 2
(1 ) 2 .

Let = for some fixed . For small enough , we will have

1

0
( (1 ) 2 2 (1 ) ) ( )

(1 (1))

1

0
( (1 ) 2 ( ) ) ( )

It follows that, as 0,

( ) 2 (1 ) = 2 (1 + (1)) (B44)

when 2 log 1 (1 + (1)).
So, by (B43) along with (B44), in the case where 0

2 log 1 , for
any fixed , as 0,

P 0 ( 0i CEIG
i ) = P 0 ( 0i i

2
Σ Lr

d/(1+ρ)
i (α, cn))

P 0 ( 0i i
2
Σ Lr

d/(1+ρ)
i (α, cn) i

2
Σ χ2

k,α)

P ( i
2
Σ χ2

k,α)
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P 0 (χ2
k,α(1 + o(1)) L(χ2

k,β)d/(1+ρ)(1 + o(1)) i
2
Σ χ2

k,α)

P ( i
2
Σ χ2

k,α)

1 (1 α) = 1 α,

if we choose 2 ( 2 ) (1+ ), e.g., = 2 2 ( 2 ) (1+ ).
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