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Abstract
This article presents a bivariate extension of the Teissier distribution, whose
univariate marginal distributions belong to the exponentiated Teissier family.
Analytic expressions for the different statistical quantities such as conditional
distribution, joint moments, and quantile function are explicitly derived. For
the proposed distribution, the concepts of reliability and dependence mea-
sures are also explored in details. Both the maximum likelihood technique
and the Bayesian approach are utilised in the process of parameter estimation
for the proposed distribution with unknown parameters. Several numerical
experiments are reported to study the performance of the classical and Bayes
estimators for varying sample size. Finally, a bivariate data is fitted using the
proposed distribution to show its applicability over the bivariate exponential,
Rayleigh, and linear exponential distributions in real-life situations.
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1 Introduction

For modelling lifetime data, the exponential, Weibull, and Gamma distri-
butions have been extensively used in recent past with wide applications
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in reliability, economics, medical sciences, etc. However, these distributions
have a number of limitations when it comes to handling diverse classes of
complex data. They mainly lack the ability to analyse non-monotone hazard
rate data sets. The development of new families of flexible distributions that
may easily explain the complicated behaviour of the data was motivated
by the limitations associated with existing classical probability models, see
Gupta and Kundu (2009), Gupta et al. (2022), Kundu and Gupta (2017),
Jodra et al. (2017), Sharma et al. (2022).

In 1934, the French biologist Georges Teissier developed a distribution for
modelling animal species’ mortality rates as a result of ageing only. Author
of Laurent (1975) discovered that Teissier’s distribution is also useful for
modelling and analysing various other real-life phenomena arise in biological
and demographical studies. A non-negative random variable X is said to
follow the Teissier distribution (TD) with scale parameter θ, if its probability
density function (PDF) is given by (see Teissier, 1934)

fX(x, θ) = θ
(
eθx − 1

)
eθx−eθx+1, x > 0, θ > 0. (1)

We may observe that fX(x, θ) can also be expressed as follows

fX(x, θ) = θ
(
eθx − 1

)
SX(x),

where SX(x) = eθx−eθx+1, x > 0, θ > 0 is survival function associated with
the random variable X. We can easily explore that the TD is a member of the
exponential family with increasing hazard rate function and may be useful
in reliability analysis. Readers are encouraged to follow Muth (1977) and
Jodra et al. (2015) for more information regarding its statistical properties.

Jodra et al. (2017) suggested a two-parameter TD and explored about
how it may be used in reliability theory. Singh et al. (2020) proposed a family
of distributions using the TD with application to the uniform, Lomax and
Weibull distribution. They also presented fitting of two real data sets using
the Teissier-Weibull distribution. Recently, Sharma et al. (2022) introduced a
two parameter extension of the Teissier distribution which shows increasing,
decreasing, and bathtub shapes for its hazard rate function. They also inves-
tigated its important statistical properties with a real application. Poonia
and Azad (2022) consider an Alpha power exponentiated Teissier distribu-
tion and applied it for climate datasets. A bounded form of Teissier distri-
bution on unit interval has also been studied by Krishna et al. (2022). The
TD with location parameter is introduced by Singh et al. (2022). Recently,
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Sharma et al. (2023) investigated an additive hazards model based on the
Teissier and Weibull distributions and they used it to model bathtub shaped
hazard rate data sets.

The joint distribution is an extremely important component in the pro-
cess of modeling the dependence of random variables. In this paper, we focus
our attention to model bivariate random variables. In recent years, statis-
ticians have become increasingly interested in the construction of bivari-
ate distributions with specified marginals. Statistics literature has offered a
number of cutting-edge methods for building bivariate distributions based
on conventional univariate distributions. A family of bivariate distributions
can be created using a variety of useful techniques, mainly those based
on the marginal and conditional distributions, the cumulative hazard rate
function, order statistic, transmuted transformation, etc. For further infor-
mation on these methods, see the following citations: Balakrishnan and
Lai (2009), Alegŕıa and Déniz (2008), Ali Dolati, Mohammad Amini, and
SM Mirhosseini (2014), Kundu and Gupta (2017), Samanthi and Sepanski
(2019), Gupta et al. (2022), Pathak and Vellaisamy (2020). In addition to
these methods, in recent years, copula functions have emerged as an impor-
tant tool for the development of the families of multivariate distributions.
Recently, a number of authors have developed a variety of bivariate distribu-
tions in order to analyse lifetime data using copula. However, the weakness
of the copula approach lies in selecting a suitable copula from the data. We
suggest readers to follow Balakrishnan and Lai (2009) for more information
on copulas and construction of the bivariate distributions.

Dolati et al. (2014) proposed and studied a remarkable technique for
building bivariate distributions based on order statistics. It is worthwhile to
mention here that the marginals of bivariate distributions constructed using
this technique are proportional reversed hazard rate models. Mirhosseini
et al. (2015) proposed a new family of generalized bivariate exponential dis-
tributions and studied its distributional properties. Pathak and Vellaisamy
(2020) proposed a new bivariate generalized linear exponential distribution
and derived expressions for some of its statistical quantities. They also com-
pared the proposed model with generalized bivariate exponential and gen-
eralized bivariate Rayleigh distribution along with a real life application. A
novel bivariate generalized Weibull distribution has also been proposed and
studied by Pathak et al. (2022). Recently, Arshad et al. (2023) constructed
a new family of bivariate distributions using different marginals that can be
useful in various real situations.
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This article aims to introduce a new family of bivariate Teissier (BT) dis-
tributions via minimum order statistic approach. The proposed distribution
is a three parameter absolutely continuous distribution and its marginals fol-
low the exponentiated Teissier distribution. The suggested BT distribution
has few parameters and it is capable to accommodate a variety of density
shapes. To the best of our knowledge, the BT distribution under considera-
tion has not been investigated in the literature. The BT distribution shows
the positive dependence and can be effectively used for various practical
applications. Several other dependence properties for the proposed distribu-
tion can be easily explored. We derive the closed form expressions for various
important statistical measures such as conditional density, joint moments,
regression function, and quantile function. The maximum likelihood and
Bayes estimators cannot be obtained in closed algebraic forms due to the
implicit form of the joint PDF. Therefore, the unknown parameters of the
model are estimated numerically under both the maximum likelihood and
Bayesian methodologies. The Bayes estimation was carried out using the
Markov Chain Monte Carlo (MCMC) method. We also present a real data
analysis to show how the suggested BT model performs better than the
competing bivariate distributions.

The following is how this article is structured. Section 2 describes the
model’s development with interpretation and some of its important proper-
ties. The formulae for conditional expectation, product moments, and regres-
sion functions for the BT distribution are given. The Lambert-W function
(see Knuth, 1996 and Sharma et al., 2022) is used to calculate the ana-
lytical formulation of the bivariate quantile function. Measures of depen-
dence, reliability, and the notion of ageing are also discussed here. Section 3
deals with parameter estimation for the BT distribution. Section 4 contains
extensive numerical investigations. Finally, Section 5 discusses a real-world
data application of the suggested model. Section 6 brings the paper to a
conclusion.

2 Proposed Bivariate Model and Interpretation

This section describes the bivariate distribution development approach. The
BT distribution is introduced here, with its density and survival functions.
Consider a sequence of independent Bernoulli trials with probability of
α/k, 0 < α < 1, k = 1, 2, . . . of the kth trail. Let N be the number of trials
that are required to achieve the first success. According to Pillai and Jayaku-
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mar (1995), the random variable N follows the Mittag-Leffler distribution
defined by the following probability mass function,

P [N = n] =
(−1)n−1α (α − 1) . . . (α − n + 1)

n!
, n = 1, 2, 3, . . .

The probability generating function of N is given by

g(t) = E
(
tN

)
= 1 − (1 − t)α, 0 < α < 1, t ∈ [0, 1].

Let (W1, W2, . . .) and (V1, V2, . . .) be two sequences of mutually indepen-
dent and identically distributed random variables. The distribution/survival
function of Wi and Vi, i = 1, 2, . . . are denoted by F1/S1 and F2/S2, respec-
tively. Define X = min (W1, W2, . . . , WN ) and Y = min (V1, V2, . . . , VN ). If
N follows a Mittag-Leffler distribution, (X, Y ) is said to follow a bivariate
distribution proposed by Dolati et al. (2014).

The joint cumulative distribution function (CDF) of (X, Y ) is derived as
follows.

F (x, y) = P [X ≤ x, Y ≤ y],
= P [min (W1, W2, . . . , WN ) ≤ x,min (V1, V2, . . . , VN ) ≤ y],
= (1 − (S1(x))n)(1 − (S2(y))n),

=
∞∑

n=1

(1 − S1(x)n) (1 − S2(y)n)P [N = n],

=
∞∑

n=1

(1 − S1(x)n − S2(y)n + (S1(x)S2(y))n)P [N = n],

= (1 − g(S1(x)) − g(S2(y)) + g(S1(x)S2(y))) ,

= (1 − S1(x))α + (1 − S2(y))α − (1 − S1(x)S2(y))α . (2)

The distribution defined in equation (2) may be interpreted as the joint
distribution of the survival times of series systems. We here assume that
system’s components follow the Teissier distribution, Wi ∼ Teissier(θ1) and
Vi ∼ Teissier(θ2), i = 1, 2, . . . , N with the PDF given in equation (1). The
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joint CDF of (X, Y ) is given by

F (x, y) =
(
1 − eθ1x−eθ1x+1

)α
+

(
1 − eθ2y−eθ2y+1

)α

−
(
1 − exp

(
θ1x + θ2y − eθ1x − eθ2y + 2

))α
. (3)

The joint PDF of (X, Y ) is given by

f(x, y) = αθ1θ2
(
1 − eθ1x

) (
1 − eθ2y

)
eφ(x,y,ν)

(
1 − eφ(x,y,ν)

)α−2 [
1 − αeφ(x,y,ν)

]
, (4)

where φ(x, y, ν) =
(
θ1x − eθ1x + θ2y − eθ2y + 2

)
, ν = (θ1, θ2), θ1 > 0, θ2 >

0, 0 < α < 1. We use BT(θ1.θ2, α) to denote the BT distribution defined in
(4).

We use the following expansions to derive various mathematical/
statistical properties of the BT(θ1, θ2, α),

S(x, y) =
∞∑

j=1

(
α

j

)
(−1)j+1ejφ(x,y,ν),

f(x, y) = θ1θ2

(
1 − eθ1x

)(
1 − eθ2y

) ∞∑
j=1

(
α

j

)
(−1)j+1j2ejφ(x,y,ν),

where S(x, y) denotes the survival function of (X, Y ).
The joint CDF (3) and PDF (4) are displayed for two different parameter

combinations in Fig. 1. For different choices of the model parameters, these
plots have different shapes.

The copula associated with the random vector (X, Y ) is given by

C(u, v) = u + v −
(
1 − (1 − u1/α)(1 − v1/α)

)α
, u, v ∈ (0, 1), 0 < α < 1.

It is introduced in Dolati et al. (2014) and also studied in Pathak and Vel-
laisamy (2020).

2.1 Conditional Distributions And Moments Knowing how one vari-
able is related to another in a bivariate situation is always important. In
this section, we derive the conditional distribution along with its expected
value that may be used to fit regression model. We further derive the expres-
sion of the joint moment of (X, Y ). We further derive the expression of the
joint moments of (X, Y ). The proofs have been omitted since they are so
straightforward. Results without proofs are stated below.
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Figure 1: Surface plots of F (x, y) and f(x, y) of the BT distribution: In (a)
and (b), θ1 = 0.25, θ2 = 0.5, α = 0.4. In (c) and (d), θ1 = 1.5, θ2 = 1,
α = 0.9

Proposition 1 Suppose the random vector (X, Y ) follows the BT(θ1, θ2, α).
The conditional PDF and CDF of Y |X = x are given by

f (y|x) =
θ2(eθ2y − 1)eφ(x,y,ν)

(
1 − eφ(x,y,ν)

)α−2
(1 − αeφ(x,y,ν))(

1 − eθ1x−eθ1x+1
)α−1 ,

F (y|x) = 1 − e(θ2y−eθ2y+1)
(
1 − eφ(x,y,ν)

)α−1

(
1 − e(θ1x−eθ1x+1)

)α−1 ,

respectively.
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Proposition 2 Suppose the random vector (X, Y ) follows the BT(θ1, θ2, α).
The conditional expectation of Y |X = x is given by

E (Y |X = x) =
θ1θ2

(
1 − eθ1x

)

fx(x)

∞∑
j=1

(
α

j

)
(−1)j+1j2ej(θ1x−eθ1x+1) ej

θ2
2

[
E1

1−j(j) − E1
−j(j)

]
,

where Em
s (z) = 1

Γ (m+1)

∫ ∞
1 (log u)mu−se−zudu denotes the generalised

integro-exponential function (see Milgram, 1985).
Proposition 3 Suppose the random vector (X, Y ) follows the BT(θ1, θ2, α).
The product moment of (X, Y ) is derived as follows.

E
(
XaY b

)
= θ1θ2

∞∑
j=1

(
α

j

)
(−1)j+1j2

[
Ea

1−j(j) − Ea
−j(j)

]

×
[
Eb

1−j(j) − Ea
−j(j)

]
,

where Em
s (z) is defined in Proposition 2.

2.2 Quantile Function Vineshkumar and Nair (2019) proposed a
method of deriving bivariate quantile functions. In their approach, the quan-
tile functions of the unconditional and conditional random variables were
utilized to produce the joint quantile function. In fact, we have F̄ (x, y) =
P (X > x)P (Y > y|X > x) for random vector (X, Y ).
Definition 1 Suppose that the random vector (X, Y ) follows a bivariate
continuous distribution with marginals/quantiles F1/Q1 and F2/Q2, respec-
tively. The bivariate quantile function of (X, Y ) is defined by the pair

(Q1 (u1) , Q21 (u2|u1)) ,

where

Q1(u1) = inf (x|F1(x) ≥ u1, 0 ≤ u1 ≤ 1) ,

and

Q21(u2|u1) = inf [y|P (Y ≤ y|X > Q1(u1)) ≥ u2, 0 ≤ u2 ≤ 1] .

Proposition 4 Let (X, Y ) be the BT distributed random vector with PDF
given in (4) whose marginals follow the exponentiated Teissier distribution by
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Sharma et al. (2022). The bivariate quantile function of the BT distribution
is given by the pair

(Q1 (u1) , Q21 (u2|u1)) ,

where

Q1(u1) = − 1
θ1

+
1
θ1

log(1 − u1) − 1
θ1

W−1
(

u1 − 1
e

)
,

Q21(u2|u1) = − 1
θ2

+
1
θ2

log(1 − η) − 1
θ2

W−1
(

η − 1
e

)
,

1−[1−(1−u1)(1−u2)]
1/α

(1−u
1/α
1 ) = (1 − η) and W−1 denotes the Lambert-W function.

The Lambert-W function provides the inverse of the function f(w) = wew,
where w is any complex number.

2.3 Dependence, Reliability and Ageing Properties In statistics litera-
ture, numerous concepts of dependence have been developed for the study of
dependence among random variables. We start by outlining some important
foundational notions of the dependence. Further information can be found
in Nelsen (2007).
Definition 2 We say that (X, Y ) is positive quadrant dependent (PQD) (or
negative quadrant dependent (NQD)) if

F (x, y) ≥ (≤)FX(x)FY (y) for all x and y.

Also, X and Y are positively correlated if Cov(X, Y ) ≥ 0.
Definition 3 We say F (x, y) is positively regression dependent if

P (Y > y|X = x) is increaing in x for all values of y.

Definition 4 Y is left tail decreasing in X (denoted as LTD(Y |X)) if
P (Y ≤ y|X ≤ x) is a non-increasing function in x for all y.
The totally positivity of order 2 (TP2) (or reverse rule of order 2 (RR2)) is a
strong concept of dependence and PQD, regression dependence, and left tail
decreasing properties are employed by TP2. To establish theses properties
for BT distribution it is suffices to derive TP2 property for BT distribution.
For a bivariate density, the TP2 property is defined by

f(x, y)f(x1, y1) − f(x1, y)f(x, y1) ≥ (≤) 0, for all x ≤ x1 and y ≤ y1.
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Holland and Wang (1987) defined a local dependence function γ(x, y) in
terms of density function for measuring dependence between X and Y as

γ(x, y) =
∂2

∂x∂y
ln f(x, y).

A bivariate density f(x, y) is said to be TP2 (RR2) if and only if γ(x, y) ≥
(≤) 0.
For the BT distribution, we have the following result.
Proposition 5 Let (X, Y ) ∼ BT (θ1, θ2, α). Then, for 0 < α ≤ 1, f(x, y) is
TP2.
Proof Taking logarithm of (4), we get

ln f(x, y) = ln(αθ1θ2) + ln(1 − eθ1x) + ln(1 − eθ2y) + φ(x, y, ν)
+(α − 2) ln(1 − eφ(x,y,ν)) + ln(1 − αeφ(x,y,ν)). (5)

Differentiating (5) partially with respect to x and y, we get

γ(x, y)=θ1θ2(1 − eθ1x)(1 − eθ2y)eφ(x,y,ν)

[
(2 − α)

(1 − eφ(x,y,ν))2
− α

(1−αeφ(x,y,ν))2

]
.

(6)
For 0 < α ≤ 1, from (6), we see that γ(x, y) ≥ 0. This completes the

proof.
For a bivariate random vector (X, Y ), the hazard rate function is defined by
(see Basu, 1971)

r(x, y) =
f(x, y)
S(x, y)

,

where f(x, y) and S(x, y) denote the PDF and survival function, respectively.
For the BT family, the bivariate hazard rate function is

r(x, y)=
αθ1θ2

(
1−eθ1x

) (
1−eθ2y

)
eφ(x,y,ν)

(
1−eφ(x,y,ν)

)α−2 (
1−αeφ(x,y,ν)

)
{
1 − (

1 − eφ(x,y,ν)
)α} .

It may be observed that for α = 1, which leads to independence of X and
Y , the bivariate hazard rate function can be expressed in terms of marginal
hazard rate functions as

r(x, y) =θ1θ2

(
eθ1x − 1

)(
eθ2y − 1

)

=r∗(x)r∗(y),
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where r∗(x) =
fX(·)
SX(·) is marginal survival hazard rate function of X.

Let (X, Y ) be a bivariate random vector with joint survival function S(x, y).
Define the hazard components of (X, Y ) as (see Johnson and Kotz, 1975)

r1(x, y) = r(y|Y > y) = − ∂

∂x
ln S(x, y)

and
r2(x, y) = r(y|X > x) = − ∂

∂y
lnS(x, y).

Then the hazard gradient of a bivariate random vector (X, Y ) is
(r1(x, y), r2(x, y)).
For the BT distribution, we have

r1(x, y) =
αθ1(1 − eθ1x)eφ(x,y,ν)

(
1 − eφ(x,y,ν)

)α−1

{
1 − (

1 − eφ(x,y,ν)
)α}

and

r2(x, y) =
αθ2(1 − eθ2y)eφ(x,y,ν)

(
1 − eφ(x,y,ν)

)α−1

{
1 − (

1 − eφ(x,y,ν)
)α} .

The following result demonstrates the monotonic property of the hazard
components.
Proposition 6 Let (X, Y ) ∼ BT (θ1, θ2, α). Then

(i) r1(x, y) is decreasing in y.

(ii) r2(x, y) is decreasing in x.

Proof If a bivariate density f(x, y) satisfies the TP2 property, then by Shaked
(1977), the conditional hazard rate r1(x, y) is decreasing in y and r2(x, y) is
decreasing in x, respectively. Hence, considering TP2 property of BT distri-
bution along with Shaked (1977) results, we complete the proof.
Proposition 7 The BT distribution in (3) is bivariate decreasing hazard
rate.

3 Parameters Estimation

Estimating the BT distribution’s parameters might be a challenging job. In
this part, we address the problem of estimation under both Bayesian and

77



V. K. Sharma et al.

maximum likelihood estimation methodologies. The likelihood based tech-
nique becomes difficult to apply when there are several parameters. On the
other hand, utilizing sophisticated sampling methods like Gibbs sampler and
Metropolis-Hastings (MH) algorithm, Bayes estimates may be easily com-
puted. In this section, we suggest applying Bayes estimation to infer about
the unknown parameters of the BT distribution. The numerical computa-
tion of Bayes estimates would be achieved through the utilisation of the MH
algorithm.

The log-likelihood function based on a paired data of size n from the BT
distribution is given by

log 	 (θ1, θ2, α) = n [log α + log θ1 + log θ2] +
n∑

i=1

log(eθ1xi + 1)

+
n∑

i=1

log(eθ2yi + 1)

+
n∑

i=1

φ(xi, yi, ν) + (α − 1)
n∑

i=1

log
(
1 − eφ(xi,yi,ν)

)

+
n∑

i=1

log
(
1 − αeφ(xi,yi,ν)

)
. (7)

The maximum likelihood estimates (MLEs) of the BT distribution
parameters are obtained by maximizing the log-likelihood function (7) or
equivalently by solving the following log-likelihood equations,

n

α
+

n∑
i=1

log(1 − eφi) +
n∑

i=1

−eφi

(1 − αeφi)
= 0, (8)

n

θ1
+

n∑
i=1

xie
θ1xi

(1 + eθ1xi)
+

n∑
i=1

xi(1 − eθ1xi) − (α − 2)
n∑

i=1

xi(1 − eθ1xi)eφi

1 − eφi

+ α

n∑
i=1

xi(1 − eθ1xi)eφi

1 − αeφi
= 0, (9)

n

θ1
+

n∑
i=1

yie
θ1yi

(1 + eθ1yi)
+

n∑
i=1

yi(1 − eθ1yi) − (α − 2)
n∑

i=1

xi(1 − eθ1yi)eφi

1 − eφi

+ α

n∑
i=1

yi(1 − eθ2yi)eφi

1 − αeφi
= 0. (10)
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Analytical solution to the log-likelihood equations (8), (9) and (10) are
not achievable under any circumstances. As a result, in order to obtain the
numerical MLEs, we make use of a numerical approach like Newton-Raphson
method. We suggest to use R packages namely optim() and DEoptim() for
numerical maximization of the log-likelihood function given in (7).

In traditional statistical reasoning, we regarded the model parameters
as constant. In practical scenarios, it is possible for the model parameters
to vary over the duration of life testing. Because of this, it makes sense
to think of the parameters as random variables. In the Bayesian paradigm,
the parameters are viewed as a random variable following a known (Prior)
distribution. The prior distribution represents the knowledge or belief about
the unknown parameters. Prior to considering some data in the form of
observations, we must first establish the prior distributions of the model
parameters. For Bayes estimation of bivariate models, we refer the readers
to Hanagal and Ahmadi (2009), Kundu and Gupta (2017), Pena and Gupta
(1990), Pradhan and Kundu (2016) and articles cited therein.

In this study, we consider independent gamma prior distributions for the
unknown parameters θ1, θ2 and beta prior distribution for α,

π (θi) ∼ Gamma(ai, bi); bi, ai, θi > 0, i = 1, 2,

π (α) ∼ Beta(ai, bi); b3, a3 > 0, α ∈ (0, 1),

where (a1, a2, a3, b1, b2, b3) are the hyper-parameters and assumed to be
known. The joint prior distribution of θ1, θ2 and α is given by

π (θ1, θ2, α) = π (θ1)π (θ2) π (α) .

The likelihood function and prior distribution are used to derive the joint
posterior distribution of the parameters, which is given by

π (θ1, θ2, α|(X, Y )) =
π (θ1, θ2, α) 	 (θ1, θ2, α)∫ ∞

0

∫ ∞
0

∫ ∞
0 π (θ1, θ2, α) L (θ1, θ2, α) dθ1dθ2dα

, (11)

where 	(.) is the likelihood function.
Bayes estimator of any parametric function s(θ1, θ2, α) under squared

error loss function is defined by

E[s(θ1, θ2, α)] =

∫ ∞
0

∫ ∞
0

∫ ∞
0 s(θ1, θ2, α)π (θ1, θ2, α) 	 (θ1, θ2, α) dθ1dθ2dα∫ ∞

0

∫ ∞
0

∫ ∞
0 π (θ1, θ2, α) L (θ1, θ2, α) dθ1dθ2dα

.

(12)
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It is not possible to construct the Bayes estimators in closed-forms from
the posterior distribution given in (11). We may solve the integral given
above using an approximation technique to get the Bayes estimates numer-
ically. Here, we present the use of the MH method to derive the Bayes esti-
mates of the parameters of the BT distribution. We may draw the observa-
tions from the joint posterior distribution using the MH algorithm. These
produced samples are used to get the Bayes estimates. Bayes estimates are
means of the respective posterior samples under squared error loss function.
We can also calculate the highest posterior density (HPD) intervals based
on the quantiles of the generated posterior samples. For implementing the
MH algorithm, we use the following steps,

Step 1: Start with the initial guess as Φ0 for the parameter under consider-
ation.

Step 2: Set j=1, generate a candidate parameter Φ∗
j from the (asymptoti-

cally symmetric) proposal distribution q(Φj−1, Φ
∗
j )=N(Φj , var(Φj)),

where Φj and var(Φj) are suitably chosen.

Step 3: Accept candidate parameter value Φj as

Φj =

⎧
⎨
⎩

Φ∗
j , with probability φ(Φ∗

j , Φj−1)

Φj−1, with probability 1 − φ(Φ∗
j , Φj−1)

where

φ(Φ∗
j , Φj−1) = min

(
1,

π(Φ∗)q(Φj−1, Φ
∗
j )

π(Φ0)q(Φ∗
j , Φj−1)

)
.

Step 4: Set J = J + 1

Step 5: Repeat the steps 2 − 4, m times and obtain Φj ; j = 1, 2, ..., m.

Step 6: Under the squared error loss function, Bayes estimate, say Φ̂Bayes of
the parameter Φ is the mean of generated sample from the posterior
distribution, which is given by

Φ̂Bayes = E(Φ|data) =
1

m − m0

m∑
i=m0+1

Φi

where, m0 is the burn-in-period of the Markov chain.

80



A Bivariate Teissier Distribution: Properties, Bayes...

Step 7: The HPD intervals are obtained by using the approach of Chen and
Shao (1999).

4 Simulation Study

This part conducts a simulation study to evaluate the effectiveness of
the MLE and Bayes estimation techniques covered in the sections above.
The simulation investigation is conducted for various distinct parameter
combinations with varying values of the sample size. We take the follow-
ing values of the parameters for simulation experiments; θ1 = (0.5, 1, 2),
θ2 = (0.5, 1, 2) and α = (0.3, 0.5, 0.7). For each given parameter combi-
nation, we draw different-sized observations from the BT distribution, like
n = (30, 50, 100, 200). The MLEs and Bayes estimates of the BT distribution
are computed for each simulated sample. For a given sample size, the mean
squared error (MSE) and bias of all the estimators are computed using the
5000 simulated samples for each combination of the parameters.

We make use of the gamma and beta prior distributions in order to
produce the Bayes estimates, and the primary task at hand is to select the
hyper-parameters. We can notice several proposals to apply priors and elicit
hyper-parameters by utilizing the moments matching approach from the past
research that has been conducted and published. For simulation study, we
consider prior mean (Mπ) equals true parameter value with known prior
variance (Vπ). The prior variance gives us an indication of how confident we
should be in our prior guess. A high prior variance indicates that there is less
confidence in the prior assumption, and the prior distribution that results
from this has a relatively flat shape. On the other hand, a low prior variance
is indicative of a higher level of confidence in the prior guess.

We also study performance of the Bayes estimates with respect to
the prior variance. We take prior mean as Mπ(θ1) = θ1, Mπ(θ2) = θ2
and Mπ(α) = α. Two combinations of the prior variance considered are
{Vπ(θ1) = 1, Vπ(θ2) = 1, Vπ(α) = 0.2} and {Vπ(θ1) = 0.1, Vπ(θ2) = 0.1
Vπ(α) = 0.01}. These Bayes estimates are referred to as Bayes-1 and Bayes-
2, respectively. The squared error loss function is assumed while calculating
the Bayes estimates. We obtain 10000 samples from the posterior distribu-
tion using the MH algorithm and among which the first 1000 samples were
discarded for the burn-in period.

For implementing MH algorithm, we need to consider a proposal density
from which random sample is easily obtainable. There are various choices
(mainly uniform and normal) considered in literature for the proposal den-

81



V. K. Sharma et al.
T
ab

le
1:

B
ia

s
an

d
M

SE
of

th
e

M
L
E

s
an

d
B

ay
es

es
ti

m
at

es
fr

om
si

m
ul

at
ed

sa
m

pl
es

fo
r

di
ffe

re
nt

pa
ra

m
et

er
va

lu
es

an
d

sa
m

pl
e

si
ze

n
Θ

M
L
E

B
ay

es
-1

B
ay

es
-2

θ 1
θ 2

α
θ 1

θ 2
α

θ 1
θ 2

α

30
0.

5,
0.

5,
0.

5
0.

01
58

0.
01

71
0.

04
10

0.
00

92
0.

01
06

0.
04

61
0.

00
50

0.
00

62
0.

01
57

0.
00

31
0.

00
31

0.
01

05
0.

00
29

0.
00

29
0.

01
25

0.
00

24
0.

00
24

0.
00

25
50

0.
01

06
0.

01
02

0.
02

84
0.

00
65

0.
00

62
0.

03
01

0.
00

50
0.

00
38

0.
01

61
0.

00
17

0.
00

17
0.

00
58

0.
00

16
0.

00
16

0.
00

62
0.

00
15

0.
00

15
0.

00
23

10
0

0.
00

64
0.

00
67

0.
02

07
0.

00
44

0.
00

48
0.

02
13

0.
00

37
0.

00
34

0.
01

67
0.

00
08

0.
00

08
0.

00
28

0.
00

08
0.

00
08

0.
00

28
0.

00
07

0.
00

08
0.

00
18

20
0

0.
00

40
0.

00
36

0.
01

74
0.

00
31

0.
00

26
0.

01
76

0.
00

29
0.

00
30

0.
01

58
0.

00
04

0.
00

04
0.

00
14

0.
00

04
0.

00
04

0.
00

15
0.

00
04

0.
00

04
0.

00
12

30
1,

2,
0.

5
0.

03
16

0.
06

85
0.

04
10

0.
01

82
0.

04
09

0.
04

64
0.

00
92

0.
01

79
0.

01
52

0.
01

22
0.

04
94

0.
01

05
0.

01
13

0.
04

29
0.

01
24

0.
00

82
0.

02
03

0.
00

24
50

0.
02

11
0.

04
08

0.
02

84
0.

01
28

0.
02

37
0.

03
04

0.
00

95
0.

01
22

0.
01

57
0.

00
68

0.
02

69
0.

00
58

0.
00

64
0.

02
46

0.
00

62
0.

00
52

0.
01

58
0.

00
22

10
0

0.
01

29
0.

02
70

0.
02

07
0.

00
87

0.
01

84
0.

02
14

0.
00

69
0.

01
40

0.
01

56
0.

00
33

0.
01

27
0.

00
28

0.
00

32
0.

01
21

0.
00

28
0.

00
29

0.
00

95
0.

00
17

20
0

0.
00

80
0.

01
44

0.
01

74
0.

00
60

0.
01

03
0.

01
76

0.
00

70
0.

01
04

0.
01

62
0.

00
15

0.
00

61
0.

00
14

0.
00

14
0.

00
59

0.
00

15
0.

00
14

0.
00

54
0.

00
12

30
2,

1,
0.

5
0.

06
32

0.
03

42
0.

04
10

0.
03

60
0.

02
10

0.
04

64
0.

01
42

0.
01

18
0.

01
53

0.
04

89
0.

01
24

0.
01

05
0.

04
27

0.
01

13
0.

01
24

0.
02

04
0.

00
82

0.
00

24
50

0.
04

22
0.

02
04

0.
02

84
0.

02
53

0.
01

20
0.

03
02

0.
01

63
0.

00
70

0.
01

56
0.

02
70

0.
00

67
0.

00
58

0.
02

47
0.

00
64

0.
00

62
0.

01
57

0.
00

53
0.

00
22

82



A Bivariate Teissier Distribution: Properties, Bayes...

T
ab

le
1:

co
nt

in
ue

d
n

Θ
M

L
E

B
ay

es
-1

B
ay

es
-2

θ 1
θ 2

α
θ 1

θ 2
α

θ 1
θ 2

α

10
0

0.
02

58
0.

01
35

0.
02

07
0.

01
76

0.
00

93
0.

02
14

0.
01

32
0.

00
65

0.
01

64
0.

01
32

0.
00

32
0.

00
28

0.
01

25
0.

00
31

0.
00

28
0.

00
97

0.
00

28
0.

00
17

20
0

0.
01

61
0.

00
72

0.
01

74
0.

01
20

0.
00

52
0.

01
77

0.
01

08
0.

00
57

0.
01

56
0.

00
58

0.
00

15
0.

00
14

0.
00

56
0.

00
15

0.
00

15
0.

00
54

0.
00

14
0.

00
12

30
2,

2,
0.

5
0.

06
32

0.
06

85
0.

04
10

0.
03

58
0.

04
07

0.
04

61
0.

01
39

0.
01

80
0.

01
51

0.
04

89
0.

04
94

0.
01

05
0.

04
25

0.
04

26
0.

01
23

0.
02

01
0.

02
00

0.
00

24
50

0.
04

45
0.

03
95

0.
02

88
0.

02
73

0.
02

24
0.

03
06

0.
01

63
0.

01
21

0.
01

55
0.

02
73

0.
02

75
0.

00
57

0.
02

47
0.

02
51

0.
00

60
0.

01
54

0.
01

55
0.

00
21

10
0

0.
02

62
0.

02
49

0.
02

18
0.

01
77

0.
01

65
0.

02
24

0.
01

30
0.

01
40

0.
01

55
0.

01
29

0.
01

31
0.

00
28

0.
01

23
0.

01
25

0.
00

29
0.

00
97

0.
00

94
0.

00
17

20
0

0.
01

69
0.

01
72

0.
01

78
0.

01
27

0.
01

30
0.

01
81

0.
01

34
0.

01
04

0.
01

61
0.

00
62

0.
00

61
0.

00
15

0.
00

61
0.

00
59

0.
00

15
0.

00
53

0.
00

53
0.

00
12

83



V. K. Sharma et al.

T
ab

le
2:

B
ia

s
an

d
M

SE
of

th
e

M
L
E

s
an

d
B

ay
es

es
ti

m
at

es
fr

om
si

m
ul

at
ed

sa
m

pl
es

fo
r

di
ffe

re
nt

pa
ra

m
et

er
va

lu
es

an
d

sa
m

pl
e

si
ze

n
Θ

M
L
E

B
ay

es
-1

B
ay

es
-2

θ 1
θ 2

α
θ 1

θ 2
α

θ 1
θ 2

α

30
1,

1,
0.

3
0.

06
25

0.
06

39
0.

06
96

0.
03

90
0.

04
02

0.
06

82
0.

02
52

0.
02

65
0.

04
54

0.
02

13
0.

02
17

0.
00

85
0.

01
79

0.
01

82
0.

00
84

0.
01

20
0.

01
23

0.
00

36
50

0.
04

72
0.

04
61

0.
06

48
0.

03
33

0.
03

22
0.

06
40

0.
02

28
0.

02
25

0.
04

94
0.

01
19

0.
01

18
0.

00
62

0.
01

04
0.

01
04

0.
00

62
0.

00
81

0.
00

79
0.

00
37

10
0

0.
03

40
0.

03
34

0.
05

89
0.

02
71

0.
02

66
0.

05
85

0.
02

24
0.

02
19

0.
05

25
0.

00
56

0.
00

54
0.

00
44

0.
00

51
0.

00
49

0.
00

44
0.

00
44

0.
00

43
0.

00
35

20
0

0.
02

75
0.

02
56

0.
05

73
0.

02
41

0.
02

21
0.

05
71

0.
02

23
0.

02
10

0.
05

38
0.

00
30

0.
00

28
0.

00
38

0.
00

28
0.

00
26

0.
00

38
0.

00
26

0.
00

25
0.

00
33

30
1,

1,
0.

7
0.

02
16

0.
02

20
0.

02
46

0.
02

20
0.

02
24

0.
06

37
0.

00
70

0.
00

75
0.

00
44

0.
00

90
0.

00
86

0.
01

22
0.

00
97

0.
00

93
0.

02
15

0.
00

66
0.

00
63

0.
00

21
50

0.
01

33
0.

01
36

0.
02

06
0.

01
30

0.
01

32
0.

04
23

0.
00

47
0.

00
49

0.
00

82
0.

00
49

0.
00

49
0.

00
80

0.
00

52
0.

00
52

0.
01

28
0.

00
40

0.
00

40
0.

00
23

10
0

0.
00

74
0.

00
75

0.
01

30
0.

00
61

0.
00

62
0.

01
99

0.
00

36
0.

00
37

0.
00

90
0.

00
24

0.
00

24
0.

00
41

0.
00

24
0.

00
24

0.
00

51
0.

00
21

0.
00

21
0.

00
21

20
0

0.
00

45
0.

00
43

0.
00

77
0.

00
36

0.
00

34
0.

01
03

0.
00

29
0.

00
26

0.
00

71
0.

00
12

0.
00

12
0.

00
19

0.
00

12
0.

00
12

0.
00

21
0.

00
11

0.
00

11
0.

00
14

84



A Bivariate Teissier Distribution: Properties, Bayes...

sity. In this study, we use independent normal distributions with means
(θ̂1, θ̂2, α̂) with variance (V (θ̂1), V (θ̂2), V (α̂)) where the variances are esti-
mated using the observed Fisher’s information matrix.

The following interpretation may be drawn from the simulations results
shown in Tables 1 and 2: The MSEs of the MLEs and Bayes estimates
of BT distribution parameters decrease as the sample size increase for the
give parameter combination. In general, as the true value of a parameter is
increased while the rest of the parameters are held constant, the MSEs of
the MLE and Bayes estimates of that parameter increase. We also discovered
that Bayes estimates derived from the flat prior behave similar to the MLEs.
The Bayes-2 estimates (derived from the prior with low variance) outperform
the MLE and Bayes-1 procedures.

5 Real Data Application

In this part, a real-life application of the BT distribution is shown to assess
its suitability over other existing distributions in practice. We consider the
UEFA Champions League data set for this purpose (see Meintanis, 2007).
The bivariate data set shows the time (in minutes) of any team’s first kick
goal (X) and the time of the home team’s first goal (Y ). Pathak and Vel-
laisamy (2020) recently utilized this data set to determine the goodness of fit
of the bivariate generalized linear failure rate distribution. They also looked
at numerous dependent measures including Kendall’s tau, Blest’s measure,
and Spearnam’s footrule coefficients. Based on these measures, it was dis-
covered that the data set has a positive dependency.

Data modelling is accomplished in three phases. (I) First, we examine
the exponential Teissier distribution (ETD)’s goodness-of-fit over its sub-
model, which demonstrates the relevance of the shape parameter introduced
by Sharma et al. (2022). At the reviewer’s request, we also compare the
ETD’s fitting results to those of the Birnbaum-Saunders distribution (BSD)
(see Balakrishnan and Kundu, 2019 and Naderi et al., 2020) (II) Next, the
bivariate families of the Teissier and linear failure rate exponential distribu-
tions are compared. (III) We then present MLE and Bayes estimates of the
BT parameters for the UEFA data sets. The asymptotic and HPD intervals
are also provided for the BT distribution parameters.

The joint probability of the observed data for the provided model is
measured by likelihood function, and its larger value is anticipated from the
best fitted model. The Kolmogorov-Smirnov (KS) test is used to determine
if the data set conforms to a certain probability distribution and is based
on the close agreement between empirical and fitted CDFs. We test the
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Table 4: Fitting of bivariate distributions for the UEFA Champions League
data
Parameters Exponential Rayleigh Linear Exponential Teissier
a1 0.02445 0.00001 θ1 0.02060
a2 0.03043 0.00311 θ2 0.02335
b1 0.00074 0.00079
b2 0.00104 0.00092
θ 1.00000 0.71314 0.75905 α 0.61045
−	 340.523 323.825 323.703 322.670
AIC 687.047 653.650 657.405 651.340
BIC 691.880 658.483 665.460 656.173

goodness-of-fit of all the distributions for the given data set at 5% level of
significance.

For the Teissier and exponentiated Teissier distributions for X and Y
individually, the MLEs, log-likelihood function, KS statistic, and associated
p-value are determined. Table 3 displays the MLEs with standard errors
(SEs) and marginal fitting results. We deduced from this table that the
ETD offers a somewhat better fit than its sub-model. We can also see that
the BSD do not fit the given data sets as evident from the p-value.

Now we fit the BT and bivariate linear failure rate exponential (BLFRE)
to the UEFA data set and compare their fitting results. The BLFRE distribu-
tion has five parameters and it includes bivariate exponential and Rayleigh
distributions as special cases. We apply model selection selection crite-
ria based on likelihoods, such as Akaike information criterion (AIC) and
Bayesian information criteria (BIC), to select the best fitted distribution.
The AIC is defined as −2 log 	̂ + 2p, where 	̂ represents the estimated likeli-
hood value and p represents the number of parameters calculated using the
data. Thus, it is easy to see that the AIC assesses goodness-of-fit, but it

Table 5: The MLE and Bayes estimates of the BT distribution parameters
along with CI and HPD intervals for UEFA data set
Estimation θ1 θ2 α

MLE (SE) 0.02060 (0.00186) 0.02335(0.001795) 0.61045(0.09585)
CI (0.0169, 0.0242) (0.0198, 0.0269) (0.4206, 0.7963)
Bayes (SE) 0.02046(0.001813) 0.02306(0.00174) 0.61743 (0.09285)
HPD (0.01661, 0.02363) (0.01940, 0.02631) (0.4263, 0.7880)
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also penalizes overfitting caused by adding parameters, which is pretty sen-
sible because increasing the number of parameters contributes to complexity
in parameter estimation. The BIC is defined similarly as −2 log 	̂ + p log n,
where n in the data size. Because the AIC and BIC are based on negative
log-likelihood, lower values refer to a better fitting model.

Table 4 for the UEFA data set shows the MLEs, negative log-likelihood,
AIC, and BIC for bivariate exponential, Rayleigh, GLFRE, and Teissier
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Figure 2: The density and trace plots for the poeterior samples of θ1, θ2 and
α based on the real data
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distributions. It should be noticed that the Teissier distribution has the
lowest AIC and BIC values. This demonstrates the superiority of the BT
distribution for the UEFA data set over the bivariate family of the GLFRE
distributions.

Table 5 consists of the MLEs and Bayes estimates of the BT distribution
parameters along with SEs and 95% confidence intervals. We observe that
the SE of Bayes estimates is smaller than that of the MLEs. Figure 2 show
the frequency distribution and simulation runs of the posterior samples of
the BT distribution parameters. The figures show that the posterior sam-
ple’s distribution for each parameter is nearly bell-shaped and these MCMC
samples are well-mixed.

6 Conclusions

Through the use of an order statistic, we introduced a three parameter bivari-
ate Teissier distribution in this study. The univariate marginals of this dis-
tribution are members of the Teissier distribution. The joint and conditional
moments, as well as the quantile function, are explicitly derived. The bivari-
ate Teissier distribution is a novel addition to distribution theory because
it has never been explored previously. Some notions of local dependence are
thoroughly examined. The distribution exhibits positive dependency and
may be beneficial in a variety of practical applications. Maximum likelihood
and Bayes estimation techniques are used to estimate the model parame-
ters. A number of numerical experiments are also carried out to analyse
how the estimates behave for various parameter combinations with differ-
ent sample sizes. Finally, an application to a practical data set is shown
to demonstrate the bivariate Teissier distribution’s usefulness in practical
situations. In future research works, the proposed bivariate model can be
utilised to represent many reliability/survival analysis issues, such as stress-
strength reliability, competitive risk modelling, and accelerated life testing,
among others. As suggested by a referee, it may be worthwhile to undertake
a research in the case of outliers, see Nooghabi and Naderi (2022).
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