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Abstract

The problem of estimating the variance of a multivariate normal distribu-
tion is considered under quadratic loss. A large class of generalized Bayes
minimax estimators for the variance is found. This class include estimators
obtained by Ghosh (1994). A simulation study shows superior performance
of our estimators.
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1 Introduction

Let X and S be independent random variables having

X ∼ Np

(
θ, σ2Ip

)
, S ∼ σ2χ2

n, (1.1)

where Np

(
θ, σ2Ip

)
denotes the p-variate normal distribution with unknown

mean vector θ and covariance matrix σ2Ip, where Ip denotes the p×p identity
matrix, and χ2

n denotes a chisquare variable with n degree of freedom. We
consider the problem of estimating σ2 when the loss function is

L
(
δ;σ2

)
=

(
δ

σ2
− 1

)2

, (1.2)

where δ = δ(X,S) is an estimator of σ2.
The best affine equivariant estimator is δ0 = (n + 2)−1S which is a

minimax estimator with constant risk 2(n+ 2)−1. Stein (1964) showed that
δ0 can be improved by considering a class of scale equivariant estimators δ =
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(n+ 2)−1 (1− φ(F ))S for F = X′X
S . He found a specific better estimator

δS = (n+ 2)−1 (1− φS(F )
)
S, where φS(F ) = max

{
0, p−(n+2)F

p+n+2

}
. Brewster

and Zidek (1974) obtained an improved generalized Bayes estimator δBZ =
(n+ 2)−1 (1− φBZ(F )

)
S, where

φBZ(F ) = 1− n+ 2

p+ n+ 2

∫ 1
0 λ

p
2
−1(1 + λF )−

p+n
2

−1dλ
∫ 1
0 λ

p
2
−1(1 + λF )−

p+n
2

−2dλ
. (1.3)

They also gave a general sufficient condition for minimaxity, using an in-
tegral expression of the difference in risks between δ0 and δ. Strawderman
(1974) derived another sufficient condition for minimaxity. Using conditions
of Brewster and Zidek (1974), Ghosh (1994) obtained a class of general-
ized Bayes estimators for σ2. Maruyama and Strawderman (2006) proposed
another class of improved generalized Bayes estimators.

In this paper, we derive a large class of generalized Bayes minimax es-
timators of σ2 which contains estimators of Ghosh (1994) as special cases.
To do so, we use techniques of Wells and Zhou (2008) and Brewster and
Zidek (1974). Section 3 considers some examples of classes of generalized
Bayes minimax estimators. In particular, Example 1 demonstrates that a
result in Ghosh (1994) follows from our main theorem. Section 4 compares
the minimax estimators of Sections 2, 3 and the equivariant estimator δ0 by
simulation.

2 A class of generalized Bayes minimax estimators

In this section, we consider the problem of estimating σ2 in (1.1) under
the loss function (1.2). Our main result is Theorem 2.2. Before stating
and proving this theorem, we state a theorem due to Brewster and Zidek
(1974) and Kubokawa (1994), discuss a class of priors, borrow some nota-
tions from Wells and Zhou (2008) and state and prove two technical lemmas
(Lemmas 2.1 and 2.2).

Brewster and Zidek (1974) derived general sufficient conditions for min-
imaxity of estimators having the form δ = (n+ 2)−1 (1− φ(F ))S, where
φ(F ) is a function of F = X′X

S . For the purpose of verifying the minimaxity
of a generalized Bayes estimator, we use the following specialized result.

Theorem 2.1. The estimator δ(X,S) given by

δ = (n+ 2)−1 (1− φ(F ))S (2.1)

is minimax for σ2 under the loss function (1.2) provided that the following
conditions hold
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I. φ(F ) is nonincreasing,

II. 0 ≤ φ(F ) ≤ φBZ(F ), where φBZ(F ) is given by (1.3).

Proof. See Brewster and Zidek (1974) and Kubokawa (1994).

Now, we construct generalized Bayes minimax estimators of σ2 under
the loss function (1.2). To do so, we consider the following class of prior
distributions.

For η = σ2, let the conditional distribution of θ given ν and η be normal
with zero mean vector and covariance matrix νη−1Ip and let the generalized
density of (ν, η) given by h(ν, η) = ηbg(ν), ν > 0, η > 0, where b > −n+p

2 −1
and g(ν) is a continuously differentiable positive function on [0,∞) such that
the following conditions hold

C1.
∫ 1
0 λ

p
2
−2g

(
1−λ
λ

)
dλ < ∞,

C2. lim
ν→∞

g(ν)

(1+ν)
p
2−1

= 0.

In the following discussion, we obtain conditions on g and b such that the gen-
eralized Bayes estimators satisfy the conditions of Theorem 2.1, and hence
are minimax. Note that the joint density function f(η, x, s) of η, X, S is

f(η, x, s) ∝
∫ ∞

0

∫

Rp

η
p
2 e−

η‖x−θ‖2
2 ν−

p
2 η

p
2 e−

η‖θ‖2
2ν g (ν) ηbη

n
2 e−

ηs
2ν dθdν

∝
∫ ∞

0

∫

Rp

η
2p+n

2
+be

− η
2

[
‖x−θ‖2+ ‖θ‖2

ν

]
ν−

p
2 g (ν) e−

ηs
2ν dθdν

∝
∫ ∞

0
η

p+n
2

+bg (ν) (1 + ν)−
p
2 e

− η
2

[
s+

‖x‖2
1+ν

]
dν,

where ‖.‖ denotes the Euclidean norm. Therefore, the generalized Bayes
estimator of η = σ−2 with respect to the loss function (1.2) is

δB =
E [η|X,S]

E [η2|X,S]

=

∫∞
0

∫∞
0 η

p+n
2

+b+1g (ν) (1 + ν)−
p
2 e−

ηS
2 (1+

F
1+ν )dηdν

∫∞
0

∫∞
0 η

p+n
2

+b+2g (ν) (1 + ν)−
p
2 e−

ηS
2 (1+

F
1+ν )dηdν

=
S

n+ p+ 2b+ 4

∫∞
0 g (ν) (1 + ν)−

p
2

(
1 + F

1+ν

)−n+p
2

−b−2
dν

∫∞
0 g (ν) (1 + ν)−

p
2

(
1 + F

1+ν

)−n+p
2

−b−3
dν

.
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Using the change of variables λ = 1
1+ν , we have

δB =
S

n+ p+ 2b+ 4

∫ 1
0 λ

p
2
−2g

(
1−λ
λ

)
(1 + λF )−

n+p
2

−b−2 dλ
∫ 1
0 λ

p
2
−2g

(
1−λ
λ

)
(1 + λF )−

n+p
2

−b−3 dλ
. (2.2)

This estimator is of the form (2.1) with

φ (F ) = 1− d (1 + r(F )) ,

where d = n+2
n+p+2b+4 and

r(F ) = F

∫ 1
0 λ

p
2
−1g

(
1−λ
λ

)
(1 + λF )−A dλ

∫ 1
0 λ

p
2
−2g

(
1−λ
λ

)
(1 + λF )−A dλ

, (2.3)

where A = n+p
2 + b+ 3.

To continue discussion, we need the following notations borrowed from
Wells and Zhou (2008). Define the function Iα,A,g(F ) as

Iα,A,g (F ) =

∫ 1

0
λα (1 + λF )−A g

(
1− λ

λ

)
dλ. (2.4)

Using integration by parts, we obtain

FI p
2
−1,A,g (F ) =

∫ 1

0

λ
p
2
−1g

(
1− λ

λ

)
d

[
(1 + λF )1−A

1−A

]

= g(0)
(1 + F )1−A

1−A

+
p
2
− 1

A− 1

∫ 1

0

(1 + λF )−A (1 + λF )λ
p
2
−2g

(
1− λ

λ

)
dλ

− 1

A− 1

∫ 1

0

(1 + λF )−A (1 + λF )
1

λ2
λ

p
2
−1g

(
1− λ

λ

)
dλ. (2.5)

Also, we define the functions Ja
(
g
(
F−u
u

))
and Ja

(
Au
1+ug

(
F−u
u

))
as

Ja

(
g

(
F − u

u

))
=

∫ F

0
ua (1 + u)−A g

(
F − u

u

)
du = F a+1Ia,A,g (F ) (2.6)
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and

Ja

(
Au

1 + u
g

(
F − u

u

))
=

∫ F

0
ua (1 + u)−A Au

1 + u
g

(
F − u

u

)
du

= F a+1

∫ 1

0
λa (1 + λF )−A g

(
1− λ

λ

)
AλF

1 + λF
dλ,

(2.7)

respectively. By integration by parts, we have

Ja

(
Au

1 + u
g

(
F − u

u

))
=

∫ F

0

ua (1 + u)−A Au

1 + u
g

(
F − u

u

)
du

= −
∫ F

0

ua+1g

(
F − u

u

)
d (1 + u)−A

= −Fa+1g(0) (1 + F )−A + (a+ 1)

∫ F

0

(1 + u)−A uag

(
F − u

u

)
du

+

∫ F

0

(1 + u)−A ua+1g′
(
F − u

u

)(
− F

u2

)
du. (2.8)

To show φ(F ) is a decreasing function in F , it is sufficient to show that r(F )
is an increasing function in F . The following lemma gives conditions under
which r̃(F ) = F cr(F ) is an increasing function in F .

Lemma 2.1. If ψ (ν) = − (1 + ν) g′(ν)
g(ν) can be decomposed as l1(ν) + l2(ν),

where l1(ν) is increasing in ν and 0 ≤ l2(ν) ≤ c, a constant, then r̃(F ) =
F cr(F ) is nondecreasing.

Proof. The proof is similar to the proof of Lemma 3.2 in Wells and
Zhou (2008). Differentiating r̃(F ) = F cr(F ) with respect to F , we have

∂r̃(F )

∂F
= F c

(
c
r(F )

F
+ r′(F )

)
= F c

(
(1 + c)R(F ) + FR′(F )

)
,

where R(F ) = r(F )
F . Therefore, ∂r̃(F )

∂F ≥ 0 is equivalent to

(1 + c)
I p

2−1,A,g (F )

I p
2−2,A,g (F )

+ F

{
I ′p

2−1,A,g (F ) I p
2−2,A,g (F )− I ′p

2−2,A,g (F ) I p
2−1,A,g (F )

}

I2p
2−2,A,g

(F )
≥ 0,

which in turn is equivalent to

−FI ′p
2
−1,A,g (F ) I p

2
−2,A,g (F ) ≤ (1 + c)I p

2
−2,A,g (F ) I p

2
−1,A,g (F )

−FI ′p
2
−2,A,g (F ) I p

2
−1,A,g (F ) . (2.9)

Now, we see

−FI ′a,A,g (F ) =

∫ 1

0
λa (1 + λF )−A g

(
1− λ

λ

)
AλF

1 + λF
dλ.
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Using (2.6) and (2.7), (2.9) can be written as

J p
2
−1

(
Au
1+ug

(
F−u
u

))

J p
2
−1

(
g
(
F−u
u

)) ≤ 1 + c+
J p

2
−2

(
Au
1+ug

(
F−u
u

))

J p
2
−2

(
g
(
F−u
u

)) . (2.10)

By applying (2.8), (2.10) is equivalent to

−F
p
2 g(0)(1 + F )−A

J p
2
−1

(
g
(
F−u

u

)) +

(
p

2

)
+

∫ F

0
u

p
2
−1 (1 + u)−A g

(
F−u

u

) [ g′
(
F−u

u

)

g
(
F−u

u

)
(
−F

u

)]
du

∫ F

0
u

p
2
−1 (1 + u)−A g

(
F−u

u

)
du

≤ 1 + c+
−F

p
2
−1g(0)(1 + F )−A

J p
2
−2

(
g
(
F−u

u

)) +
p

2
− 1+

∫ F

0
u

p
2
−2 (1 + u)−A g

(
F−u

u

) [ g′
(
F−u

u

)

g
(
F−u

u

)
(
−F

u

)]
du

∫ F

0
u

p
2
−2 (1+u)−A g

(
F−u

u

)
du

,

which in turn is equivalent to

−g(0)(1 + F )−A

I p
2−1,A,g (F )

+
J p

2−1

(
g
(
F−u
u

)
l1
(
F−u
u

))

J p
2−1

(
g
(
F−u
u

)) +
J p

2−1

(
g
(
F−u
u

)
l2
(
F−u
u

))

J p
2−1

(
g
(
F−u
u

))

≤ c+
−g(0)(1 + F )−A

I p
2−2,A,g (F )

+
J p

2−2

(
g
(
F−u
u

)
l1
(
F−u
u

))

J p
2−2

(
g
(
F−u
u

)) +
J p

2−2

(
g
(
F−u
u

)
l2
(
F−u
u

))

J p
2−2

(
g
(
F−u
u

)) .

(2.11)

Since I p
2
−1,A,g (F ) ≤ I p

2
−2,A,g (F ), we have

−g(0)(1 + F )−A

I p
2
−1,A,g (F )

≤ −g(0)(1 + F )−A

I p
2
−2,A,g (F )

.

Note also that l1(ν) is increasing in ν implies that for all F fixed, l1
(
F−u
u

)

is decreasing in u. When t < u, we have

u
p
2
−2 (1 + u)−A g

(
F−u
u

)
1 (u ≤ F )

t
p
2
−2 (1 + t)−A g

(
F−t
t

)
1 (t ≤ F )

≤
u

p
2
−1 (1 + u)−A g

(
F−u
u

)
1 (u ≤ F )

t
p
2
−1 (1 + t)−A g

(
F−t
t

)
1 (t ≤ F )

.

By a monotone likelihood argument, we have

J p
2
−1

(
g
(
F−u
u

)
l1
(
F−u
u

))

J p
2
−1

(
g
(
F−u
u

)) =

∫ F
0 u

p
2
−1 (1 + u)−A g

(
F−u
u

)
l1
(
F−u
u

)
du

∫ F
0 u

p
2
−1 (1 + u)−A g

(
F−u
u

)
du

≤
∫ F
0 u

p
2
−2 (1 + u)−A g

(
F−u
u

)
l1
(
F−u
u

)
du

∫ F
0 u

p
2
−2 (1 + u)−A g

(
F−u
u

)
du

=
J p

2
−2

(
g
(
F−u
u

)
l1
(
F−u
u

))

J p
2
−2

(
g
(
F−u
u

))

and
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0 ≤
J p

2
−2

(
g
(
F−u
u

)
l2
(
F−u
u

))

J p
2
−2

(
g
(
F−u
u

)) ≤ c, 0 ≤
J p

2
−1

(
g
(
F−u
u

)
l2
(
F−u
u

))

J p
2
−1

(
g
(
F−u
u

)) ≤ c.

Thus, we have established the inequality (2.11) and the proof is complete.

The next lemma gives conditions under which a lower bound of r(F ) can
be determined.

Lemma 2.2. With the regularity conditions C1 and C2, assume that ψ (ν) =

− (1 + ν) g′(ν)
g(ν) ≥ M , where M is a finite real number. For the r(F ) function,

we have

r(F ) ≥
p
2 − 1 +M

A− p
2 −M

.

Proof. The proof is similar to the proof of Lemma 3.1 in Wells and
Zhou (2008). According to (2.3), we have

r(F ) = F

∫ 1
0 λ

p
2
−1g

(
1−λ
λ

)
(1 + λF )−A dλ

∫ 1
0 λ

p
2
−2g

(
1−λ
λ

)
(1 + λF )−A dλ

= F
I p

2
−1,A,g (F )

I p
2
−2,A,g (F )

.

Using (2.4) and (2.5), we obtain

N1 =
1

A− 1

∫ 1

0

(1 + λF )
−A

(p
2
− 1

)
λ

p
2−2g

(
1− λ

λ

)
dλ =

p
2
− 1

A− 1
I p

2−2,A,g (F ) ,

N2 =
1

A− 1

∫ 1

0

(1 + λF )
−A

λ
p
2−2g′

(
1− λ

λ

)(−λ

λ2

)
dλ

=
1

A− 1

∫ 1

0

(1 + λF )
−A

λ
p
2−2g

(
1− λ

λ

)[
g′
(
1−λ
λ

)

g
(
1−λ
λ

)
(
−1− λ

λ
− 1

)]

dλ

=
I p

2−2,A,g (F )

A− 1

∫ 1

0
λ

p
2−2 (1 + λF )

−A
g
(
1−λ
λ

)
ψ
(
1−λ
λ

)
dλ

∫ 1

0
λ

p
2−2 (1 + λF )

−A
g
(
1−λ
λ

)
dλ

≥ M

A− 1
I p

2−2,A,g (F ) ,

N3 =
p
2 − 1

A− 1
FI p

2
−1,A,g (F ) =

(p
2 − 1

)
r(F )

A− 1
I p

2
−2,A,g (F )

and
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N4 =
I p

2
−2,A,g (F )

A− 1

F
∫ 1
0 λ

p
2
−1 (1 + λF )−A g′

(
1−λ
λ

) (−1
λ

)
dλ

I p
2
−2,A,g (F )

=
I p

2
−2,A,g (F )

A− 1

F
∫ 1
0 (1 + λF )−A λ

p
2
−1g

(
1−λ
λ

)
[
g′( 1−λ

λ )
g( 1−λ

λ )

(
−1−λ

λ − 1
)
]
dλ

I p
2
−2,A,g (F )

=
I p

2
−2,A,g (F )

A− 1

F
∫ 1
0 (1 + λF )−A λ

p
2
−1g

(
1−λ
λ

)
ψ
(
1−λ
λ

)
dλ

I p
2
−2,A,g (F )

≥ Mr(F )

A− 1
I p

2
−2,A,g (F ) .

Combining all the terms, we obtain the following inequality

(A− 1)r(F ) ≥
(p
2
− 1

)
+M +

(p
2
− 1

)
r(F ) +Mr(F ),

implying

r(F ) ≥
p
2 − 1 +M

A− p
2 −M

.

Thus, we have the needed bound on the r(F ) function.

Now we use Lemmas 2.1 and 2.2 to show minimaxity of the generalized
Bayes estimator δB in (2.2). In fact, this is our main result.

Theorem 2.2. If ψ (ν) = − (1 + ν) g′(ν)
g(ν) is increasing in ν and ψ (ν) =

− (1 + ν) g′(ν)
g(ν) ≥ M , where M is a finite real number and also 1 ≤ d

(
1 +

( p
2
−1+M

A− p
2
−M

))
, then δB in (2.2) is minimax under the loss function (1.2).

Proof. First, assume l2(ν) = 0 and l1(ν) = ψ (ν). By using Lemma 2.1
for the case c = 0, we see that r(F ) is an increasing function in F , hence
φ(F ) is deceasing in F . By (1.2), we have

ϕBZ (F ) = 1− n+ 2

p+ n+ 2
r1(F ),

where

r1(F ) =

∫ 1
0 λ

p
2
−1 (1 + λF )−

n+p
2

−1 dλ
∫ 1
0 λ

p
2
−1 (1 + λF )−

n+p
2

−2 dλ
.

Using the change of variables u = λF , we have

r1(F ) =

∫ F
0 u

p
2
−1 (1 + u)−

n+p
2

−1 du
∫ F
0 u

p
2
−1 (1 + u)−

n+p
2

−2 du
.
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Since r1(F ) is increasing in F , we have

r1(F ) ≤
∫∞
0 u

p
2
−1 (1 + u)−

n+p
2

−1 du
∫∞
0 u

p
2
−1 (1 + u)−

n+p
2

−2 du
=

p+ n+ 2

n+ 2
.

By Lemma 2.2, we obtain

ϕ (F ) = 1− d (1 + r(F )) ≤ 1− d

[
1 +

( p
2 − 1 +M

A− p
2 −M

)]
.

Also we have

ϕBZ (F ) = 1− n+ 2

p+ n+ 2
r1(F ) ≥ 1− n+ 2

p+ n+ 2

p+ n+ 2

n+ 2
= 0.

Therefore, if 1 − d
[
1 +

( p
2
−1+M

A− p
2
−M

)]
≤ 0 is satisfied, then condition (II) in

Theorem 2.2 is satisfied and hence δB in (2.2) is minimax under the loss
function (1.2).

3 Examples

In this section, we give three examples to which our results can be ap-
plied. We also make some connections to existing literature (Ghosh, 1994).

Example 1. The class of priors studied by Ghosh (1994) (in the setup and
notation of Section 2) corresponds to

h (ν, η) = kηb (1 + ν)−b−2 , ν > 0, η > 0,

where k is a positive constant. If M = b + 2 and −p
2 − 1 < b ≤ −1, then

we can show that the class of priors of Ghosh (1994) satisfies the conditions
and hence our results include the results of Ghosh (1994).

Example 2. Another class of prior distributions is

h (ν, η) = kηbe−ν , ν > 0, η > 0,

where k is a positive constant. If M = 1, p ≥ 2 and −p+n
2 −1 < b ≤ −1 then

Theorem 2.2 is satisfied and the generalized Bayes estimator will be minimax
under the loss function (1.2).

Example 3. Consider the following prior distribution

h (ν, η) = kηb (1 + ν)−a−c−2 νc, ν > 0, η > 0,

where k is a positive constant. If M = a + c, c ≥ 0 and −p+n
2 − 1 <

b ≤ 2 + a + c, then the conditions of Theorem 2.2 are satisfied, so the
corresponding generalized Bayes estimators are minimax.
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4 Simulation study

In this section, we compare the performance of the affine equivariant
estimator δ0 with the generalized Bayes estimator in Theorem 2.2. The
comparison uses the following simulation scheme computing bias and mean
squared error:

a) set values for n, θ and σ2;

b) simulate a random sample of size n from a seven-dimensional normal
distribution with mean vector θ and covariance matrix σ2Ip;

c) compute

S =
n∑

i=1

7∑

j=1

(
Xij −X

)2
,

where

X =

n∑

i=1

7∑

j=1
Xij

7n
;
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Figure 1: The biases of δ0 (solid line) and δB (broken line) versus n =
10, 11, . . . , 100 when θ = (0, 0, 0, 0, 0, 0, 0) and σ2 = 1
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Figure 2: The mean squared errors of δ0 (solid line) and δB (broken line)
versus n = 10, 11, . . . , 100 when θ = (0, 0, 0, 0, 0, 0, 0) and σ2 = 1

0 20 40 60 80 100

−1
00

−8
0

−6
0

−4
0

−2
0

0

θ0

Bi
as

0 20 40 60 80 100

−1
00

−8
0

−6
0

−4
0

−2
0

0

Figure 3: The biases of δ0 (solid line) and δB (broken line) versus θ0 =
−50, 49, . . . , 50 when θ = (θ0, θ0, θ0, θ0, θ0, θ0, θ0), n = 100 and σ2 = 1
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Figure 4: The mean squared errors of δ0 (solid line) and δB (broken line)
versus θ0 = −50, 49, . . . , 50 when θ = (θ0, θ0, θ0, θ0, θ0, θ0, θ0), n = 100 and
σ2 = 1
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Figure 5: The biases of δ0 (solid line) and δB (broken line) versus σ2 =
1, 2, . . . , 100 when θ = (0, 0, 0, 0, 0, 0, 0) and n = 100
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d) compute the equivariant estimator δ0 by δ0 =
S

n+2 ;

e) compute the estimator δB given by Theorem 2.2 with b = −2 and
g(ν) = e−ν ;

f) repeat steps b) to e) one thousand times;

g) compute the biases of the estimators as

bias (δ0) =
1

1000

1000∑

i=1

(
δ0,i − σ2

)

and

bias (δB) =
1

1000

1000∑

i=1

(
δB,i − σ2

)
,

where δ0,i and δB,i denote the estimates of δ0 and δB, respectively, in
the ith iteration;
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Figure 6: The mean squared errors of δ0 (solid line) and δB (broken line)
versus σ2 = 1, 2, . . . , 100 when θ = (0, 0, 0, 0, 0, 0, 0) and n = 100

1679



S. Zinodiny and S. Nadarajah

h) compute the mean squared errors of the estimators as

mse (δ0) =
1

1000

1000∑

i=1

(
δ0,i − σ2

)2

and

mse (δB) =
1

1000

1000∑

i=1

(
δB,i − σ2

)2
.

Plots of the biases and mean squared errors versus n = 10, 11, . . . , 100
when θ = (0, 0, 0, 0, 0, 0, 0) and σ2 = 1 are shown in Figs. 1 and 2. Plots
of the biases and mean squared errors versus θ0 = −50, 49, . . . , 50 when
θ = (θ0, θ0, θ0, θ0, θ0, θ0, θ0), n = 100 and σ2 = 1 are shown in Figs. 3 and 4.
Plots of the biases and mean squared errors versus σ2 = 1, 2, . . . , 100 when
θ = (0, 0, 0, 0, 0, 0, 0) and n = 100 are shown in Figs. 5 and 6.

We can observe the following from Figs. 1 to 6. The biases are generally
negative for both estimators. The biases approach zero in magnitude as
n increases. δB has smaller bias for every n. The mean squared errors
approach zero as n increases. δB has smaller mean squared error for every
n. The biases decrease from being positive to negative as θ0 increases from
−50 to 50. The biases are smallest in magnitude when θ0 = 0. The mean
squared errors take a parabolic shape as θ0 increases from −50 to 50. The
mean squared errors are smallest when θ0 = 0. The biases are negative and
decrease as σ2 increases from 1 to 100. The biases are smallest in magnitude
when σ2 = 1. The mean squared errors increase as σ2 increases from 1 to
100. The mean squared errors are smallest when σ2 = 1.

The computations were performed using the R software (R Development
Core Team, 2023) and the package mvtnorm (Genz et al., 2021). The codes
used are given in the Appendix A.
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Appendix A. : R codes
###############################################################
# computes the bias and mean squared error with respect to n #
###############################################################

nn=seq(10,100)
bias1=nn
bias2=nn
mse1=nn
mse2=nn
nsim=1000
est1=rep(0,nsim)
est2=est1

for (n in seq(10,100))
{for (i in 1:nsim) {x=rmvnorm(n,mean=rep(0,7),sigma=diag(7))
mm=mean(x)
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S=sum((x-mm)**2)
tt=0
for (i in seq(1,n)) tt=tt+sum((x[i,])**2)
F=tt/S

f1=function (x) {x**(3/2)*exp((x-1)/x)*(1+x*F)**(-(n+7)/2)}
f2=function (x) {x**(3/2)*exp((x-1)/x)*(1+x*F)**(-(n+7)/2-1)}

est1[i]=S/(n+2)
est2[i]=S*integrate(f1,lower=0,upper=1)$value/
((n+7)*integrate(f2,lower=0,upper=1)$value)}

bias1[n-9]=mean(est1-9)
bias2[n-9]=mean(est2-9)

mse1[n-9]=mean((est1-9)**2)
mse2[n-9]=mean((est2-9)**2)
}

##################################################################
# computes the bias and mean squared error with respect to sigma #
##################################################################

nn=seq(1,100)
bias1=nn
bias2=nn
mse1=nn
mse2=nn
nsim=1000
est1=rep(0,nsim)
est2=est1

n=100
for (s in seq(1,100))
{for (i in 1:nsim)
{x=rmvnorm(n,mean=rep(0,7),sigma=(s*diag(7)))
mm=mean(x)

S=sum((x-mm)**2)
tt=0 for (i in seq(1,n)) tt=tt+sum((x[i,])**2)
F=tt/S

f1=function (x) {x**(3/2)*exp((x-1)/x)*(1+x*F)**(-(n+7)/2)}
f2=function (x) {x**(3/2)*exp((x-1)/x)*(1+x*F)**(-(n+7)/2-1)}

est1[i]=S/(n+2)
est2[i]=S*integrate(f1,lower=0,upper=1)$value/
((n+7)*integrate(f2,lower=0,upper=1)$value)}

bias1[s]=mean(est1-s)
bias2[s]=mean(est2-s)

mse1[s]=mean((est1-s)**2)
mse2[s]=mean((est2-s)**2)
}
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###################################################################
# computes the bias and mean squared error with respect to theta #
###################################################################

nn=seq(1,101)
bias1=nn
bias2=nn
mse1=nn
mse2=nn
nsim=1000
est1=rep(0,nsim)
est2=est1

n=100
for (mu in seq(-50,50))
{for (i in 1:nsim)
{x=rmvnorm(n,mean=rep(mu,7),sigma=(diag(7)))
mm=mean(x)

S=sum((x-mm)**2)
tt=0
for (i in seq(1,n)) tt=tt+sum((x[i,])**2)
F=tt/S

f1=function (x) {x**(3/2)*exp((x-1)/x)*(1+x*F)**(-(n+7)/2)}
f2=function (x) {x**(3/2)*exp((x-1)/x)*(1+x*F)**(-(n+7)/2-1)}

est1[i]=S/(n+2)
est2[i]=S*integrate(f1,lower=0,upper=1)$value/
((n+7)*integrate(f2,lower=0,upper=1)$value)}

bias1[mu+51]=mean(est1-mu)
bias2[mu+51]=mean(est2-mu)

mse1[mu+51]=mean((est1-mu)**2)
mse2[mu+51]=mean((est2-mu)**2)
}
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