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Abstract

A new three-parameter lifetime distribution based on compounding Pareto
and Poisson distributions is introduced and discussed. Various statistical
and reliability properties of the proposed distribution including: quantiles,
ordinary moments, median, mode, quartiles, mean deviations, cumulants,
generating functions, entropies, mean residual life, order statistics and stress-
strength reliability are obtained. In presence of data collected under Type-I1
censoring, from frequentist and Bayesian points of view, the model param-
eters are estimated. Using independent gamma priors, Bayes estimators
against the squared-error, linear-exponential and general-entropy loss func-
tions are developed. Based on asymptotic properties of the classical es-
timators, asymptotic confidence intervals of the unknown parameters are
constructed using observed Fisher’s information. Since the Bayes estimators
cannot be obtained in closed-form, Markov chain Monte Carlo techniques are
considered to approximate the Bayes estimates and to construct the highest
posterior density intervals. A Monte Carlo simulation study is conducted to
examine the performance of the proposed methods using various choices of
effective sample size. To highlight the perspectives of the utility and flexibil-
ity of the new distribution, two numerical applications using real engineering
data sets are investigated and showed that the proposed model fits well com-
pared to other eleven lifetime models.

AMS (2000) subject classification. Primary 62E10, 62F10, 62F15; Secondary
62N01, 62N02.

Keywords and phrases. Pareto-Poisson distribution, classical and Bayesian
estimators, Gelman and Rubin’s diagnostic, hazard rate function, type-II
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1 Introduction

Modeling of lifetime data is an important issue for statisticians in a wide
range of scientific and technological fields such as medicine, engineering,
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biology, actuarial science, industrial reliability, etc. The basic idea behind
compounding is that the lifetime of a system with N (a discrete random vari-
able) components and the lifetime of i component (say X;), independent of
N, follow several lifetime distributions. Then the maximum (or minimum)
time of failures of components of the system depending on the condition
whether they are parallel (or in series), see Adamidis and Loukas (1998).
By compounding some continuous distributions (such as the exponential,
gamma or Weibull distribution) with some discrete distributions (such as
binomial, geometric or zero-truncated Poisson), several new distributions
were introduced in the literature, for example see Maurya and Nadarajah
(2021).

Pareto’s distribution was first proposed for modeling the income data,
and then used to analyze the size of city’s population and the firms size. It
has also been an appropriate fit to numerous data in many scientific fields
such as physics, technology, biology etc., whenever the Pareto’s law is found,
for details see Nadarajah (2005). To generate a distribution that has the
ability to model lifetimes data with a heavy tail, based on the composition
of the Pareto distribution with the class of discrete distributions power se-
ries, De Morais (2009) introduced a class of continuous distributions called
Pareto power series (PPS). He also discussed various of its statistical prop-
erties along with its reliability features. Three special cases of the PPS,
called; Pareto-Poisson, Pareto-geometric and Pareto-logarithmic distribu-
tions have also been investigated. Moreover, several lifetime distributions
have been introduced as an extension of the Pareto distribution, for example,
Asgharzadeh et al. (2013) introduced the Pareto Poisson-Lindley distribu-
tion and studied several of its properties. Nassar and Nada (2013) presented
the beta Pareto-geometric distribution. Elbatal et al. (2017) proposed the
exponential Pareto power series distributions.

To the best of our knowledge, we have not encountered any work related
to discussing any statistical properties of the Pareto-Poisson (PP) distri-
bution and/or estimating its parameters under complete (or incomplete)
sampling. So, by demonstrating that the PP distribution may be used as
a survival model utilizing complete and Type-II censored samples, the pur-
pose of this study is to close this gap. The objectives of the present study
are three-fold. First, we shall exclusively focus on discussing some several
characteristics of the PP distribution such as: quantile function, median,
mode, quartiles, mean deviations, moments, generating functions, entropies,
mean residual life, order statistics and stress-strength reliability. Second
objective aimed to derive both point and interval estimators of the PP pa-
rameters, when the scale Pareto parameter is known, using likelihood and
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Bayesian estimation methods. Two-sided approximate confidence intervals
for the unknown parameters, using asymptotic normal approximation of the
frequentist estimators, are constructed. Using independent gamma priors,
the Bayes estimators of the PP parameters are developed against symmetric
and asymmetric loss functions. Since Bayes estimators cannot be obtained
analytically, Markov chain Monte Carlo (MCMC) techniques are considered
to compute the Bayes estimates and to construct associated highest pos-
terior density intervals are computed. To check the convergence of MCMC
chains, Gelman and Rubin’s convergence diagnostic statistic is used. A com-
parison between the proposed methodologies is made through a simulation
study in terms of their root mean squared-error (RMSE), relative absolute
bias (RAB), average confidence lengths (ACLs) and coverage probabilities
(CPs). Lastly, two real data sets of different features; the first includes the
failure times of some mechanical components and the other represents the
active repair times for airborne communication transceiver, are discussed
to show how the proposed methods can be applied in real practice. Some
specific recommendations are also drawn from the numerical findings.

The rest of the paper is organized as follows: In Section 2, we define the
PP distribution and its statistical properties. Frequentist and Bayes estima-
tors for parameter estimation are developed in Sections 3 and 4, respectively.
The simulation results are reported in Section 5. Section 6 presents two real
applications of the proposed distribution. Some conclusions are addressed
in Section 7.

2 The Pareto—Poisson Distribution

In this section, we introduce the PP distribution, which is a member of
the Pareto power series family of distributions, and investigate some of its
useful mathematical and statistical properties such as: moments, entropies,
generation function, reliability function, failure rate function, mean residual-
life function stress-strength reliability and order statistics.

First suppose that Y7, Ya, ..., Yy are independent random variables (rv)s
following the Pareto distribution whose probability density function (PDF),
g(y;a, ) = a)\ay_(o‘+1), y = A, with shape parameter a > 0 and scale
parameter A > 0. Following De Morais (2009), suppose that the index N
is a rv follows a distribution in the power series class whose the following
probability mass function

an "
c(B)’
where a,, > 0 (depends only on n) and C(8) = >.>2 ; a,8", B> 0 is finite.

n=1

P(N=n)= n=12...,
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If one set X(;) = min[Y7,Ys,...,Yy], then the conditional distribution
of X1y given N = n follows the Pareto density with shape parameter na
and scale parameter A. Then, the cumulative distribution function (CDF)
of X(1)|N =n (say G(-)) can be defined as

)\ an
GX(1>|N:n(a;):1— () , T = A, (2.1)

T

and the joint PDF of X(;y and N (say g(-)) is given by

ana, " (A"

Setting n = 1 in Egs. 2.2 and 2.1, the PDF and CDF of the PPS distri-
bution are given by

f(z;a,\, 8) = O"Bifigg%x )a), a,B>0, x>\ (2.3)
and ) N

F(:z:;a,)\,ﬂ)zl—C’(%(?ﬁ/;U)), a,B>0, x>\ (2.4)
respectively.

As a result, by setting C(3) = ¢® —1 and C'(B) = ¢” in Egs. 2.3 and 2.4,
the PDF and CDF of three-parameter PP distribution are given respectively
by

afBA\® eﬁ(%)a
. — - >
f (x50, N, B) 2T (P 1) a,B,A>0, x> A, (2.5)
and .
o ()
F(x;a,)\,ﬁ)zw, a,B,A>0, 2=\ (2.6)

where « is the shape parameter and (3, \) are the scale parameters. More-
over, when 3 — 07, the Pareto distribution can be obtained as a special
case from the PP distribution.

Using some specified values of «a, A and 3, some shapes of the PP den-
sity function (2.5) are displayed in Fig. 1. It shows that the PP density
has a heavy tail. Also, from Egs. 2.3 and 2.4, one can be easily seen that
limg oo F(t+2)/(1 — F(z)) = 1, which means that the PP distribution has
also a long right tail.
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Figure 1: Several shapes of the PP density using some specific parameter
values

2.1. Quantile, Median and Mode To generate random samples from the
PP distribution, suppose that U is a rv of standard uniform distribution.
From Eq. 2.6, it can be shown that the following transformation of U has
a PP distribution. Thus, the quantile function z = Q(p) = F~!(p), for
0 < p < 1, of the PP distribution is given by

N 8 8 e
:Up—)\[ﬁlog[e —p(e —1>H , 0<p<1. (2.7)

In particular, the first, second (median) and third quartiles of the PP
distribution (say Q1(-), @2(+) and Q3(-)) can be obtained by putting p = 0.25,
0.50 and = 0.75 in Eq. 2.7, respectively.

The mode of the PP distribution, xg, is obtained by finding the first
derivative of its logarithm PDF, log f (z) with respect to x and equating it
to zero. Hence, the mode of the PP distribution is defined by

T = /\[—1(@ + 1)] _W,

is always exists and unique.

2.2. Moments Moments used to describe the characteristics of a distri-
bution, so they are necessary and important in any statistical analysis. So,
in this section, the » — th moment about zero of PP distribution is derived.
However, the r — th moment (u).) of a rv X has density function (2.5) is
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given by

pe=B() = [ X f(@)de, 2 e BT,
X

— (aeﬂﬁ_)\f) //\OO xr—a—l eXp(ﬁ()\/l' )a) dl‘, (28)

using the following Taylor’s series expansion

exp (B )y = 3 A (2.9
—= T (J + 1)

then, from Eqgs. 2.8 and 2.9, the » — th moment of PP distribution for r =
1,2,3,... can be expressed as

a\” & BJ—H

fr = (66—1);(au+1)—7~)ru+1)

, a >, (2.10)

Setting r = 1, the mean of X, where X ~ PP(a, A, ), is

al i BJ—&-I

(eﬁ—l)g(a(J+1)—1)F(J+l)’

i = E(X) = a>1 (2.11)

Similarly, setting 7 = 1 and r = 2, the variance of X is given by V(X) =
2
py — (p'1)” where

, 5 Oé>\2 & ,8J+1
o = B (X7) = (eﬂ—l)go(auﬂ)—z)ruﬂ)’ a=z

Using the cumulants, denoted by C,., the coefficient of skewness and
kurtosis can be calculated from the ordinary moments of X. As X ~
PP(a, A, ), the first four cumulants of a rv X are given by

r—1
r—1
Co=pi -y ( T )cz-u;i. (2.12)
=0
Putting r = 1,2, 3,4 into (2.12), then one gets the four cumulants C,, r =
1,2,3,4 as
Cl = M/17
2
Cx = py— (1)
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3
C3 = py—3upuy + (1'y)",
and
4

Ci = il — At — 3(i'y)” + 1205 (i) — 6(u1) "

Once the cumulants Co, C3 and C3 of the PP distribution obtained, the
corresponding coefficients of skewness (denoted by x1), and kurtosis (denoted
by k2), of PP distribution can easily be evaluated, respectively, as k1 =
C3/Co? and kg = Cy/C2.

2.3.  Moment Generating Function The moment generating (MG) func-
tion of X provides the basis of an alternative route to analytic results com-
pared with working directly with the CDF (or PDF) of X. However, the
MG function denoted by Mx(t), is given by

My () = B(eX) = [% e (a (213)

Applying the Maclaurin series expansion for e*, we get ' =Y 2 (tf!)T.

If X is a non-negative rv follows the PP distribution, then (2.13) can be

rewritten as
e = > 5 [

- Z s (2.14)

r=0

However, substituting (2.10) in (2.14), the MG function of the PP dis-
tribution can be expressed as

ii a\"t" ﬁJ—f—l
== a(J+1)—r)(ef —1)JIr"

Practically, it is easier to work with the logarithm of the MG function
which is called the cumulant generating function. Using the MG function
for |t| < 1, the cumulant generating function, Cx (t), of a rv X follows the
PP distribution is given by

Cx (t) = log [Mx (t)] = log [Z Zﬂ’r] - (2.15)

r=0
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From Eqgs. 2.10 and 2.15, the cumulant generating function of PP distri-
bution is given by

a\"t" ,3J+1
= log [ZZ (J+1)—1)(eP — 1)J!r!] '

TOJO

2.4. Mean Deviation The mean deviation about the mean and the me-
dian are useful measures of variation for a population. Let y and M be the
mean and median of the PP distribution respectively. The mean deviations
about the mean p (say D1(X)) and about the median M (say D3(X)) can
be calculated respectively as

DO =B —u) = [ IX-plf(@)ds
= 2uF (u) — 20 (n), (2.16)

and

Dy (X)= E(X - M) = /W\X—le(:v)dx

—0Q0

= pu—2p(M). (2.17)
For short, set n = (p or M), using (2.5), one gets

v (1) —K@f

=a BN (f —1) f)\ x @ exp( (A/z)?) dz. (2.18)

Using the Taylor’s series expansion (2.9), based on some algebraic ma-
nipulations, Eq. 2.18 can be rewritten as

o0 gJ+1a(J+1) [7]1—

(I-—a(J+1)I(J+1)

o alJ+1) _ )\l—a(J—I-l)]

90(77) = (66 —1)

(2.19)
J=0

Substituting (2.19) into (2.16) and (2.17), the mean deviations about the
mean g and about the median M of PP distribution are given, respectively,

by B
e —eZZI;(f(l/\)/ﬂ)) — 20 (n),

Dy (X) = 25 {
and
Dy (X) =p—2p (M),

where p(u) and p(M) can be easily obtained from Eq. 2.19 by replacing n
by p or M, respectively.
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2.5. Hazard and Reversed Hazard Functions The hazard h(-) and re-
verse hazard r(-) functions of the PP distribution are given respectively by

h(z;a\,8) = égiﬁﬁg
= ifi? [1—exp (—B(M\/2)M)] ™", o, B,A>0,2 > A, (2.20)
and
(@) B) = éﬁiﬁﬁ%
— %[exp(—ﬁ [(A2)*—1) = 17" a,BA>0, 2> A,

where F'(-), f(-) and R(-) are obtained in Egs. 2.1, 2.2 and 2.23, respectively.

To show that A(-) is monotonically decreasing function depending on the
PP parameters, the Glaser’s theorem is used, see Glaser (1980). First, define
the following function

"z a, A
$(x) = —W (2.21)
where f’(x) is the first derivative of f(x) with respect to .
From Eq. 2.5, Eq. 2.21 is equivalent straightforward to
p(z) =z [aBAz™* +a+1],
then its first derivative will be
¢'(z) = —27? [ala+1)BA\"2 "+ a+1]. (2.22)

From Eq. 2.22, it can be easily seen that the hazard function of PP
distribution, for 0 < o < 1, is decreasing function for all given x > 0 values.
Plots of hazard function (2.20) for various values of the model parameters
«, f and A are displayed in Fig. 2. It shows that the hazard rate plots of
the PP distribution have decreasing shape in x for all given values of «, 3
and A.

2.6. Reliability and Mean Residual Life The reliability (or survival)
R(-) function of PP distribution is given by

R(z;a,\,B) = 1—F(z;a,\p)

exp (B(A/z)) — 1
(e = 1)

L, BA>0, z =\ (2.23)
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Figure 2: Hazard rate of the PP distribution using some specific parameter
values

In the context of reliability studies, the mean-residual-life mp(-) function
is known as the average remaining life span, which is a component survived
up to distinct time t is defined as

malt) — Rl(t) (/tooxf(:c)dx—t>
1

- 5 (,/1 —t—/otxf(m)d:r;), t>0, (2.24)

where R(t) and p) are defined in Eqs. 2.23 and 2.11, respectively.
However, let X be a PP lifetime rv, then the mean-residual-life of X is
given by

5J+1 A(J+1)l—a(J+1)

1 , >
melt) = 75 ('ul_t_aJZ:%(65—1)(1—a(J+1))F(J+1))’ >0

2.7. Entropies Entropy is an important metric used to measure the
amount of uncertainty associated with a rv X. It has been used in many
fields such as survival analysis, information theory, computer science and
econometrics. So, this section deals with two well-known entropies namely
Rényi and J-entropies. Recently, the considered entropies have also been
discussed by Amigé et al. (2018) and Elshahhat et al. (2021).

The Rényi entropy of ¢** order, say p¢, is defined as

pele) = —— log ( I, <x>><dx) (>0, C#£L

—00

1
1—¢



1068 A. Elshahhat et al.

If X ~ PP(a, 8, ), using the Taylor’s series expansion (2.9), we get

[era = [ [ esgenny
= a<ﬂ<>\4“(e5_1)—< /Oox—C(aH)eXp((ﬁ()\/x)a)dx
A

_al(F ) S B A A
- (e _1) JZ:O T(J+1) ((a+1l)+a—1]" (2.25)

where J* =1—-((a+1) — al.
Hence, from Eq. 2.25, the Rényi entropy of X becomes

<: ﬁ(+]>\a(J+§)+J*

1 oo
pf(x)_1—<1°g< (e ’1) ; (a+D)+aJ—1)T (J+1)>’ ¢>0, ¢AL
(2.26)

Thus, the §-entropy, denoted by I5 (X), of a lifetime rv X follows PP(«, 3,
A) is given by

L;(X)zéillog<1/Ooo(f(x))adaz), 550,541,

and then it follows the Rényi entropy given by Eq. 2.26.

2.8.  Order Statistics In this subsection, closed-form expressions for the
PDF and CDF of the rt" order statistic of the PP distribution are obtained.
In particular, the distribution of the smallest X(;) and largest X, order
statistics are also obtained. Suppose X (1) < X(9) < -+ < X(;,) represent the
order statistics of a random sample of size n obtained from Eqs. 2.5 and 2.6.

Thus, the PDF and CDF of Xy, r =1,2,...,n, denoted by fq(z) and
Fiyy(z) are given respectively by

foy (@) = G (2) (F (2)) " '[L = F ()" "
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and

F(T) (Z’) =Pr (X(T) S QL‘)

\
(]

where C, = B (r,n —r +1).
Substituting (2.5) and (2.6) into (2.27) and (2.28), the PDF of the rt*
order statistic from PP distribution is given by

fer) (w):C*lg(_l)q < n—r )aﬂ)\a exp (B(\/z)%) [eﬁ_eﬁ(/\/x)“}”q—l?

" a:a“(eﬁ—l)rﬂ

(2.29)
and

mﬂ@=qlgiﬂﬁ(:><2_r>

B _ Ba)* ]t
H] (2.30)
r=0 ¢=0

(1)

In particular, by setting » = 1 and » = n in Eqgs. 2.29 and 2.30, the PDF's
of smallest X () and largest X, order statistics are given, respectively, by

n—1 a BOz)* [ B8 _ BOz)* ]
—_ -1 e n 1| eBA " € —°
f(1) (z) =C] ;( 1) ( q > zotl (ef —1) (ef —1) ’

and

f(n) (.%') =Ln patl (eﬁ _ 1) (@B — 1)

2.9. Stress-Strength Reliability Stress-strength model describes the life
of a component which has a random strength (say Xp) that is subjected to
a random stress (say X2). The component fails when the stress applied to
it exceeds the strength and it continues to operate satisfactorily whenever
X1 > Xo.

Suppose X; and X3 have independent PP rvs such as X7 ~ PP (aq, A, 81)
and Xo ~ PP (ag, A, B2). Then the stress-strength parameter, say R, where
R =Pr(X; > X»), is defined as

aBAe PO [eﬁ _ (BN a )a] et

R = /0 T (@) B () da (2.31)
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However, using Egs. 2.5 and 2.6, the PDF and CDF of X; and X5 can
be expressed, respectively, as

_aiBiX exp (Bi(Nz)™)

f1 (x) = ol (6/81 — 1) , a1,B1 >0, x = A, (2.32)
and 5
e’ —exp (B2(A/2)**)
F = > A, 2.
2 (LU) (€ﬁ2 — 1) 7042762 > 07 z A ( 33)
where a7 and «o are the shape parameters and (1,32 and A are the scale
parameters.

Substituting (2.32) and (2.33) into (2.31), the stress-strength parameter
‘R becomes

R o= oo ), e PO/ ()
—exp (B2(A/z )*)] de. (2.34)

For the integral term in Eq. 2.34 (say G), using the Taylor’s series ex-
pansion (2.9), after some algebraic manipulations, we get

G — o B Ao ez /oox—al(J+1)_1d$
A

24T +1)

_ Z Z /BJBS)\C”J)\OQS /OO x_al(J-i-l)—azs—ldx
po P(J"‘ ) (S + 1) A

J=0
00 Bi]}\alJeﬁQ Afal(JJrl)
N Z L(J+1) |ai(J+1)

A~ (J4+1)—azs

. 2.35
ar(J + 1) + ags (2:35)

/BJB )\alJ)\aQS
ZZF ] I(s+1)

Thus, using (2.35), the stress-strength parameter R of PP distribution
is given by

NS x
R = (6’81 iéllﬁ)l(eﬁQ _ 1) [Z wJ (A7 a17/817 52)
J=0

=D tus ()\7041,042,51,/32)] ; (2.36)

J=0 s=0
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J)\fa B
where ¢J ()‘7011751752) - m and d}J,S ()\,CM]_,CMQ,,Bl,ﬂQ) —
BiBsA—
(a1 (J+1)+as) L (J+1)T(s+1) "
The likelihood estimation method is the most widely-used in statistical

inference and the associated estimators included various desirable properties
such as efficiency, consistency, invariance property and convergence proper-
ties as well as its intuitive appeal. When the prior information of test items
exists, the Bayesian procedure provide some advantages compared with the
traditional likelihood technique. One of the most common censoring plans
in reliability experiments is termed as Type-II censoring. This censoring has
several advantages, for example; (i) reducing the test cost, (ii) reaching a
test decision in shorter time and/or with fewer observations, and (iii) the
remaining units removed early can be used for other tests. Therefore, in
the next two sections, we shall be considering the maximum likelihood and
Bayesian estimation methods to derive both point and interval estimators
of the unknown PP parameters in presence of data collected under Type-II
censoring. Following De Morais (2009), we assume that the PP distribution
involves only two unknown parameters o and (3, while the scale A parameter
is assumed known.

3 Maximum Likelihood Estimators

Under Type-II (or failure) censoring, the life-test terminated after a spec-
ified number of failures (say k) is reached. Suppose that x = (X(1), X(2), -,
X(x) is Type-II censored sample of size k obtained from a life-test of n in-
dependent units (put on a test at time) taken from a continuous population.
Hence, following Lawless (2003), the likelihood function of Type-II censored
sample, X(;), i =1,2,...,k, is defined as

n! k —k

I [f(z@);0)] [1— Fzg:0)]"

Lixl6) = (n—k)li=1

(3.1)

If one setting £ = n in Eq. 3.1, the Type-II censoring returned to the
complete sampling. However, suppose that x lifetimes being identically dis-
tributed having PDF and CDF of PP distribution as defined in Eqgs. 2.5 and

2.6, respectively, then the likelihood function (3.1) can be written (up to
proportional) as

L (x|e, B) o (( W) exp (52 (Azy) a) [eXp (5(/\93(}1))Q) —1]"_ki1i[1x(if‘. (3.2)
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The corresponding log-likelihood function, ¢(-) o log L(-), of Eq. 3.2
becomes

0(x|a, ) o klog(aBA®) — nlog( - 1) - ozz log (z
+3 Z (n—F)log [exp (B(/\x(_kl)) )—1} .(3.3)

Upon differentiating (3.3) partially with respect to « and 3, we have two
likelihood equations as

ot »

5 = THRlog(N) = T log(a) + By () log(Aa )

_ _ —1
+B(n — k) Az )" log(Ar ) e P07 [e O i) —1} . (34)

and
or k ne’ k RN
a8 B (P-1) + Zi:l ()\x(i))
_ -1
+(n = k) a)) P [P 1) T @)

It can be seen that, from Eqgs. 3.4 and 3.5, the MLEs & and B have been
derived in a system of two nonlinear equations, respectively. Thus, a very
simple iterative method like Newton-Raphson (N-R) procedure may be used
to maximize Eqs. 3.4 and 3.5 to obtain the desired MLEs of o and 8. Un-
fortunately, due to the MLEs of & and B cannot be obtained in closed form,
then the corresponding exact distribution (or exact confidence intervals) of
«a and [ is also not available. Numerically, we suggest to apply the 'maxLik’
package for any given data set z(;), i = 1,2,...,k, proposed by Henningsen
and Toomet (2011). This package utilizes the N-R iterative method via
‘maxNR()’ function to implement the maximum likelihood calculations of &
and B . On the other hand, the EM algorithm can also be easily incorporated
to estimate the target parameters.

To construct the 100(1 — )% two-sided asymptotic confidence intervals
(ACIs) of av and 3, the Fisher’s information matrix, I;;(-), 4,5 = 1,2, of their
MLEs must be obtained as

I;(©)=E [JW(X!@)} oy

_ _ T
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Clearly, the exact solutions of the expectation in Eq. 3.6 is tedious to
obtain. Hence, by drgpping FE in Eq. 3.6, the approximated variances and
covariances of & and 3 are given by

—~1 ~9 &
~ L L 04
Ifl(@) — [ aq af ] _ Aoz Aa,B (37)
_[’Ba _'Cﬁﬁ ( ’B) 934 05

Taking the second-partial derivative of Eq. 3.3 with respect to a and S,

the Fisher’s elements of Eq. 3.7, locally at their MLEs & and 3, are given by

Loo ==+ B, Qg g (agh) + 5n — K) ) log? ()
Ao HY T s — M )” -
xPO%my) [ POza) _ Bz )" = 1} {eﬂ( ) 1} , (38)

k neP _1\ 20 B()\az HT B H -2
Lop ==+ W_(n_ k)Azgy) e w [e . _1] » (3:9)

and
Loy = X ) lomhagy) + (n k)(Aw(;))"“ log )

To evaluate the MLEs & and 3 for any given data set (X1), X(2)s s X())s
the ‘maxLik’ package that utilizes the N-R iterative method in computations,
proposed by Henningsen and Toomet (2011), is recommended. In N-R it-
erative, from the parameter space limits, the initial value of each unknown
parameter is taken.

Under some regularity conditions, the asymptotic normality of MLEs 6
is approximately bivariate normal as © ~ N(©,I71(0)). Hence, using the
large sample theory, the 100(1 — v)% two-sided ACIs for « and [ can be
obtained, respectively, by

(d F ny/z\/;g) and (B F 27/2\/&73,) )

where z, /5 is an upper (7/2)% of the standard normal distribution.

4 Bayes Estimators

Bayes’ procedure has been grown to become the most popular approach
in many fields; including but not limited to engineering, clinical, biology,
etc. In this section, we consider the Bayesian estimation method to obtian
the point and interval estimates of o and 8 when the data sampled from
Type-1II censoring.
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4.1.  Prior Information and Loss Functions The selection of prior distri-
bution of an unknown parameter is an significant issue in Bayesian inference.
A conjugate prior distribution is established when a member of a family of
distributions is selected such that the posterior distribution also belongs to
the same family. Gamma distribution, depending on its parameter values,
can provide variety of shapes. Thus, it also can be considered as suitable
prior of model parameter than other complex prior distributions, see Kundu
(2008). Therefore, the gamma density priors are considered to adapt sup-
port of the PP parameters. Under the assumption of a and § are assumed
to be stochastically independent gamma distributed as a ~ Gamma(ay, by)
and B ~ Gammal(ag, bz), the joint prior PDF of o and S is given by

7 (o, B) o< 712 L exp (= (aby 4 Bb2)), o, B >0, ay,as,by,by >0,
(4.1)
where a; and b; for i = 1,2 are the shape and scale hyperparameters,
respectively. They have been chosen to represent prior knowledge about «
and . Improper gamma prior of @ and 8 can be obtained from Eq. 4.1 by
setting a; = b; =0, 1 =1,2.

The choice of the loss function is an important aspect of the Bayes
paradigm. Here, we consider three different type of loss functions, called
squared-error loss (SEL), linear-exponential loss (LL) and general-entropy
loss (GEL) functions. The most commonly symmetric loss function is the
SEL function (which is denoted by lg(-)) is defined as

15(©,0) = (6 —0)% (4.2)

Under SEL function (4.2), the Bayes estimate ©g (say) of ©, is the
posterior mean and is given by

Og = E[O(a, B)x].

The LL function (which is denoted by I1(-)) and GEL function (which
is denoted by lz(+)) are the most commonly asymmetric loss functions and
are given, respectively, by

1,(0,0) =exp(v(© —0)) — (O —0) -1, v#0, (4.3)

16(0,0) (g) —vlog (g) -1, v#0. (4.4)

The direction and degree of symmetry using LL function are determined
based on the sign and size of the shape parameter v such as if v > 0 means

and
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that overestimation is more serious than underestimation and v < 0 means
the opposite. When v — 0, the Bayes LL estimate will close to the Bayes
SEL estimate. Under (4.3), the Bayes estimate ©p, of © is given by

61 =~ log[Fe (exp(~1O)x)],

provided the above exception exists, and is finite. Under (4.4), the minimum

error occurs when © = ©. For v > 0, a positive error has a more serious

effect than a negative error and opposite for v < 0. Putting v = —1 in

Eq. 4.4, the Bayes GEL estimate coincides with the Bayes SEL estimate.
Under (4.4), the Bayes estimate O of © is given by

6 = [Bo (07x)] V",

provided the above exception exists, and it is finite. For more discussion on
Bayesian loss functions, the readers may refer to the recent excellent book
presented by Berger (2013). Although we are interested to drive the Bayes
estimates using the SEL and GEL functions, yet other loss functions can be
easily considered.

4.2.  Posterior Analysis According to the continuous Bayes’ theorem,
the joint posterior density (say ®(-)) of a and f is given by

® (o, fx) =C ' (a, B) L (x|, B) , (4.5)

where C' = [° [7° 7 (o, 8) L (x| @, 8) dov B is the normalizing constant.
Combining (3.2) and (4.1), the joint posterior density (4.5) of a and
is given by

_n o n—k
O(a,f]x) = Clabter—lghtea—lykag—abi(f _ 1) [exp(ﬁ()\x(kl)) ) — 1}

X exp [fﬂ(bz S (Ax(_i)l)a)} ﬁ;l g (4.6)

Conspicuously, because of the nonlinear form of the likelihood function
(3.2), the marginal posterior distributions corresponding to o and 8 cannot
be obtained explicitly. Thus, we propose to use MCMC techniques to gen-
erate samples from Eq. 4.6 and use them to compute the Bayes estimators
of @ and 3 and to construct their highest posterior density (HPD) intervals.
To implement MCMC methodology, from Eq. 4.6, the full conditionals @} (-)
and CIJg() of a and 8 are given, respectively, by

@;(a]8, %) ox AU exp(— (ab + B3 (a))) [exp(BOG) ) ~ 1]
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and

D5 (B, x) o prtaz—1(ef _ 1) ") exp(ﬁ(/\a:(_kl))a) - 1}71 k, (4.8)
where b} = (b + Zle log(x(;))) and b3(a) = (ba — Zle ()\%6)1)&)

From Egs. 4.7 and 4.8, the conditional posterior distributions of o and S,
respectively, cannot be reduced to any familiar distributions. Via R version
4.0.4, the diagram plot of the posterior distributions 7 (-) and ®3(-) of o and
B (when (a, A, B) = (2,1, 2)), respectively, Fig. 3 shows that the distributions
(4.7) and (4.8) behave similarly to the normal distribution. Therefore, the
Metropolis-Hasting (M-H) algorithm with normal proposal distribution is
proposed to simulate MCMC samples, see for example Gelman et al. (2004).

To compute the Bayes MCMC estimates (or constructing associated HPD
intervals) of o and 3, do the below steps of M-H algorithm for sample gen-
eration process:

Step 1: Start with an initial guess ?) = & and g = B.
Step 2: Set j = 1.

Step 3: Generate o and * from normal proposal distributions N (&, 66%)
and N (0, &é), respectively.

qf,;(a*m(j_l)’é)
q);(a(j—l) ‘/3(1‘—1>,5)

éz(ﬁ*\a('j),i)
o5 (G- ‘amé) :

Step 4: Calculate 71 and 75 as 7 = and 7=

Step 5: Generate u; and ug from uniform U/(0, 1) distribution.

3.0e+10
]
8e-07

2.0e+10
Il
6e-07

<I:-;(a|9,x)
1.0e+10
@, Bla,x)
4e-07

2e-07

0.0e+00
|
0e+00
|

Figure 3: Diagram plot of the conditional PDF's of o and
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Step 6: If u; < min{1, 7}, set a9 = a* else set a9 = U=, Similarly if
uy < min{l, 7}, set fU) = B* else set B9 = gU-1),

Step 7: Put j =5+ 1.
Step 8: Redo Steps 2-7 B times to get B draws of a and S.

To ignore the effect of choosing the initial guess value, the first simulated
varieties with size By are removed. Then, the remaining samples, a) and
BUY) for j = By+1,...,B, of the unknown parameters o and f3, respectively,
can be further utilized to develop the Bayesian inference. Thus, the approxi-
mate Bayes estimates of a or 3 (say ) based on SEL, LL and GEL functions
are given, respectively, by

B i B —p9() B vl T
= Zj:zeﬁlﬂo,) 9 ! 2 j=By+1¢ " 5 j:BoJrl(ﬁ(J))
L g|—————— |, and Vg = | ———F——F—— )
B — By B — By

where By is burn-in. Bayes point estimates of o and 8 based on various loss
functions can be easily obtained via useful 'coda’ package which proposed
by Plummer et al. (2006).

According to the procedure proposed by Chen and Shao (1999), the HPD
intervals of & and 8 under Type-II censored data are constructed. First, one
must be ordered the simulated MCMC samples of 9U) for j = 1,..., B, after
burn-in as 95,41, - - -, ¥(5). Thus, the 100(1 — )% two-sided HPD interval
of ¥ is given by

(04, Ve +(1-)B-Bo)) »
where j* = By + 1, ..., B is chosen such that

Ve rfa-m@-so) ~ Vg0 = min (Do e-s) ~ 00) -

5 Simulation Study

To evaluate the performance of the proposed estimation methods, an
intensive Monte Carlo simulation study is conducted. For fixed A = 0.1,
by considering two different sets of parametric values, namely (a, ) =
(0.25,0.75) and (0.5,0.9), a large 1,000 Type-II censored samples for differ-
ent combinations of n(complete sample size) and k(Type-1I censored sample
size ) are generated from the PP model such as n = 60, 100 and 200 where
the failure percentage k is taken as (k/n)% = 50, 75 and 100% for each
n. When (k/n)% = 100%, it means that the simulated Type-II censored
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sampling has been extended to the complete sampling. However, based on
1,000 replications, the MLEs and their ACIs of o and 3 are calculated.

To see the impacts of the priors on the PP parameters, two informative
sets of hyperparameters of o and  are used, namely Prior 1: (a1,a2) =
(1,3), b = 4 and Prior 2: (ai,a2) = (2.5,7.5), b; = 10 when («, ) =
(0.25,0.75) as well as Prior 1: (a1,a2) = (2.5,4.5), b; = 5 and Prior 2:
(a1,a2) = (5,9), b; = 10 when («, 5) = (0.5,0.9). In this numerical study,
the hyperparameters (a;, b;), i = 1,2 are chosen in such a way that the prior
average fits the expected value of the associated target parameter, see Kundu
(2008). Practically, it is preferable to use MLEs rather than the Bayesian
estimates, whenever the improper gamma prior information is available, due
to the latter is more computationally costly.

Using the M-H algorithm proposed in Section 4, 12,000 MCMC samples
(with discarded the first 2,000 samples as burn-in) are generated. Then,
based on 10,000 MCMC samples, the average of Bayes MCMC estimates
and 95% HPD interval estimates are calculated. In this study, the shape
parameter values of LL and GEL functions are taken as v = v = (—5,5).
To monitor whether MCMC simulated sample is sufficiently close to the
target posterior, we purpose to consider the Gelman and Rubin’s conver-
gence diagnostic statistic. Similar to a classical analysis of variance, this
diagnostic measures whether there is a significant difference between the
variance-within chains and the variance-between chains. When MCMC out-
puts are far from 1, this indicates a lack of convergence, for more details see
Gelman and Rubin (1992). Figure 4, by running two chains corresponding
to both given sets of («, ) when (n, k) = (100,50), shows that the MCMC
iterations reach 1 after about the first 2,000 iterations and thus the proposed
simulations converged well. It also presents that the burn-in sample size is
a good size to ignore the effect of initial guesses.

For each test setup, the average estimates of the unknown PP parameters
a and 8 (say ¢) with their RMSEs and RABs are calculated using the
following formulae, respectively, as:

v = 7ZJ_ , RMSE(? \/M J ( (6) —9)2,  and

RAB(J) = MZ ’

where M is the amount of generated sequence data and 9U) is the calculated
maximum likelihood (or Bayes) estimate at the j** sample of a or 3.
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Figure 4: Gelman and Rubin’s statistic for MCMC iterations of « and 3

Further, the corresponding ACLs and CPs related to the ACIs (or HPD
intervals) of a and 3 are obtained, respectively, as

ACLy (1—7)% = % Zj”il (U@ - L),

and
1 M

CPy(1-7)%=+; ijl L@oyu@ay) (0)

where 1(-) is the indicator function, L(-) and U(-) denote the lower and
upper bounds, respectively, of (1 —~)% asymptotic (or HPD) interval of .
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Performance of the point estimates is judged based on their RMSE and RAB
values. Also, the performance of the intervals estimates is judged using their
ACLs and CPs. The average point estimates of o and 3, RMSEs, and RABs
are reported in Tables 1 and 2, respectively. In addition, the ACLs of 95%
asymptotic and HPD interval estimates of o and f are listed in Table 3.
All numerical computations were performed using R software version 4.0.4
with two recommended packages namely ‘maxLik’ and ‘coda’ packages. All
R-environment scripts that support the findings of this study are available
from the corresponding author upon reasonable request.

From Tables 1 and 2, we observe that the proposed estimates of the pa-
rameters o and S have very good performance in terms of minimum RMSEs
and RABs. Also, as n is large, various estimates of o and S are quite close
to the corresponding true parameter values. As n (or k) increases, the per-
formance of both classical and Bayes estimates becomes better. Due to the
simulated random normal variates using M-H algorithm, it is observed that
the Bayes estimates of o and 8 become even better compared to the other
method. Moreover, using gamma conjugate priors, the Bayesian estimates
performed better than the frequentist estimates. Since the variance of prior
2 is lower than prior 1, the Bayesian estimates based on prior 2 have per-
formed superior than those obtained from the other in terms of the smallest
RMSEs, RABs and ACLs and highest CPs.

Furthermore, from Table 3, the ACLs of both of 95% ACI/HPD intervals
for @ and S8 narrowed down while the corresponding CPs increase when
(k/n)% increases. Also, in respect of shortest ACLs and highest CPs, the
HPD intervals of a and g performed better than the asymptotic intervals
due to the gamma prior information.

One of the main issues in Bayesian analysis is assessing the convergence
of a MCMC chain. Therefore, the trace and autocorrelation plots of the sim-
ulated MCMC draws of the unknown PP parameters o and S are displayed
(when (n, k) = (100, 75)) in Fig. 5. The trace plots of MCMC outputs look
like random noise and also when the autocorrelation values close to zero,
the lag value increases. It also indicates that the MCMC draws are mixed
adequately and thus the estimation results are reasonable.

To sum up, simulation results pointed out that the proposed estimation
methodologies work well in terms of their RMSEs and RABs (for point
estimates) and in terms of their ACLs and CPs (for interval estimates).
Finally, Bayesian estimation method utilizing the M-H algorithm sampler to
estimate the PP distribution parameters is recommended.
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Figure 5: Trace (left-pandel) and Autocorrelation (right-panel) for MCMC
outputs of a and S

6 Engineering Applications

In real practice, based on complete sampling, we aim to demonstrate
the usefulness of the proposed model compared to other common lifetime
models in the literature. For this purpose, we shall analyze two real data
sets obtained from an engineering field. First data (Data-I) consists of the
failure times of twenty mechanical components, see Murthy et al. (2004).
Other data (say Data-II) consists of 40 records of the active repair times (in
hours) for airborne communication transceiver, see Jorgensen (2012). For
computational convenience we multiply each original data unit in Data-I and
-II by one hundred. The new transformed datasets are presented in Table 4.

Practically, to identify the failure rate shapes based on both observed
data sets I and II, the scaled Total Time on Test (TTT) plot is used. Ac-
cording to Aarset (1987), the scaled TTT transform is defined as

K=~ 0<u<l, (6.1)

where G~1(u) = fOFil(u) R(t)dt. The corresponding empirical version of
Eq. 6.1 is given by

S a + (n = k)agy
D1 T

where x(;) represents the ith order statistic of the observed data. Graphically,
the scaled TTT transform is displayed by plotting (k/n, K, (k/n)).

Using both data sets I and II in Table 4, plots of the empirical and
estimated scaled TTT transforms of the PP distribution are provided in
Fig. 6. It shows that the scaled T'TT transform is concave and convex. It also
indicates that an increasing failure rate function for the fitting PP lifetime

K, (k/n) =

,r=1,2,...,n,
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Figure 6: Empirical and estimated scaled TTT-Transform plot of the PP
distribution

model is suitable for Data-I, whereas a decreasing failure rate function is
suitable for Data-II. Also, plots in Fig. 6 support our same findings as shown
in Fig. 2.

Using data sets I and II, we examine goodness-of-fit of the PP distribu-
tion and compare the fit results with common flexible distributions that exhibit
various failure rates, namely: Weibull (W), gamma (G), exponentiated-
exponential (EE), exponentiated Pareto (EPr), alpha power exponential
(APE), exponential Poisson (EP), Weibull-Poisson (WP), exponentiated-
exponential Poisson (EEP), generalized exponential Poisson (GEP), geometric
exponential Poisson (GoEP) and quasi xgamma-Poisson (QXgP) distributions.
The corresponding PDFs of these distributions (for > 0 and «, 5,\ > 0)
are reported in Table 5.

Several criteria of model selection such as: negative log-likelihood (NL),
Akaike information (AI), Bayesian information (BI), consistent Akaike in-
formation (CAI), Hannan-Quinn information (HQI), Kolmogorov-Smirnov
(KS) with its P-value, Anderson-Darling (AD) and Cramér von Mises (CvM)
statistics are used. Using ‘AdequacyModel’ package, the maximum likeli-
hood estimates with their standard errors (SEs) of unknown model param-
eters along with their goodness measures are calculated and provided in
Table 6, for details see Marinho et al. (2019). It is evident that the PP
distribution has the smallest values of all fitted selection criteria with the
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highest P-value than the comparative distributions. It also implies that the
PP distribution fits both given data sets well satisfactorily and gives the best
fit with respect to all given criteria. If one needs to compare two (or more)
statistical models based on the Bayes approach, it is preferable to consider
the Watanabe-Akaike information criterion.

For more exploration, to assess the goodness-of-fit of the proposed model
compared to other models, the probability—probability plots of all compet-
itive distributions are displayed in Fig. 7. It shows that all fitted points of
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the PP distribution from data sets I and II are almost close to the straight
line, thus the PP distribution gives a better fit than other distributions.

Moreover, the relative histograms of both data sets and the fitted den-
sities as well as the plot of fitted and empirical reliability functions are
displayed in Fig. 8. It is clear that the PP life distribution appears to cap-
ture the general pattern of the histograms best. Likewise, the fitted survival
function of the PP model fits the empirical function for both given data sets
quite well.

7 Conclusions

By compounding the Pareto and Poisson distributions, we have pre-
sented the three-parameter Pareto-Poisson distribution. Various properties
of the proposed distribution such as: moments, percentile function, stress-
strength measure, entropies and order statistics have been obtained. Under
Type-1II censored data, when A known, the model parameters have been es-
timated using the maximum likelihood and Bayesian estimation methods.
To assess the convergence of MCMC chains, the Gelman and Rubin’s di-
agnostic has been used. Simulation results showed that the performance of
the proposed estimators is satisfactory. Two engineering applications from
mechanical and communication fields have been analyzed to provide the
usefulness of the proposed distribution, showing that it provides a better
fits than eleven competitive lifetime distributions namely: Weibull, gamma,
exponentiated-exponential, exponentiated Pareto, alpha power exponential,
exponential Poisson, Weibull-Poisson, exponentiated-exponential Poisson,
generalized exponential Poisson, geometric exponential Poisson and quasi
xgamma-Poisson distributions. We can also say that the Pareto-Poisson dis-
tribution is high flexible and is the most suitable model for the both real
data sets among others. Finally, we recommend to utilize the proposed dis-
tribution as a survival model to utility of its ability to model lifetimes data
with a heavy tail shaped. As a future research, it is useful to compare the
proposed model with some other literature lifetime models in presence of
data collected under Type-II censored sampling.
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