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Université de Technologie de Compiègne, LMAC (Laboratory of Applied

Mathematics of Compiègne), Compiègne Cedex, France
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Abstract

U -statistics represent a fundamental class of statistics from modelling quan-
tities of interest defined by multi-subject responses. U -statistics generalize
the empirical mean of a random variable X to sums over every m-tuple of
distinct observations of Stute (Ann. Probab. 19, 812–825 1991) introduced
a class of so-called conditional U -statistics, which may be viewed as a gener-
alization of the Nadaraya-Watson estimates of a regression function. Stute
proved their strong pointwise consistency to:

r(t) := [ϕ(Y1, . . . , Ym) (X1, . . . , Xm) = t], for t dm.

We apply the methods developed in Dony and Mason (Bernoulli 14(4), 1108–
1133 2008) to establish uniform in t and in bandwidth consistency (i.e., h,
h [an, bn] where 0 < an < bn 0 at some specific rate) to r(t) of the
estimator proposed by Stute when Y , under weaker conditions on the kernel
than previously used in the literature. We extend existing uniform bounds
on the kernel conditional U -statistic estimator and make it adaptive to the
intrinsic dimension of the underlying distribution of X which the so-called
intrinsic dimension will characterize. In addition, uniform consistency is
also established over ϕ F for a suitably restricted class F , in both cases
bounded and unbounded, satisfying some moment conditions. Our theorems
allow data-driven local bandwidths for these statistics. Moreover, in the
same context, we show the uniform bandwidth consistency for the nonpara-
metric inverse probability of censoring weighted (I.P.C.W.) estimators of the
regression function under random censorship, which is of its own interest.
The theoretical uniform consistency results established in this paper are (or
will be) key tools for many further developments in regression analysis.
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empirical processes, conditional U -processes, kernel estimation, functional
estimation, VC-classes.

1 Introduction

Motivated by numerous applications, the theory of -statistics (intro-
duced in the seminal work by Hoeffding (1948)) and -processes have re-
ceived considerable attention in the past decades. -processes are useful
for solving complex statistical problems. Examples are density estimation,
nonparametric regression tests and goodness-of-fit tests. More precisely, -
processes appear in statistics in many instances, e.g., as the components of
higher order terms in von Mises expansions. In particular, -statistics play
a role in the analysis of estimators (including function estimators) with vary-
ing degrees of smoothness. For example, Stute (1993) applies a.s. uniform
bounds for -canonical -processes to the analysis of the product limit esti-
mator for truncated data. Arcones and Wang (2006) present two new tests
for normality based on -processes. Making use of the results of Giné and
Mason (2007a), Giné and Mason (2007b), Schick et al. (2011) introduced
new tests for normality which used as test statistics weighted 1-distances
between the standard normal density and local -statistics based on stan-
dardized observations. Joly and Lugosi (2016) discussed the estimation of
the mean of multivariate functions in case of possibly heavy-tailed distribu-
tions and introduced the median-of-means, which is based on -statistics.
-processes are important tools for a broad range of statistical applications

such as testing for qualitative features of functions in nonparametric statis-
tics (Lee et al., 2009; Ghosal et al., 2000; Abrevaya and Jiang, 2005) and
establishing limiting distributions of -estimators (see, e.g., Arcones and
Giné 1993; Sherman 1993; Sherman 1994; de la Peña and Giné 1999). Hal-
mos (1946), von Mises (1947) and Hoeffding (1948), who provided (amongst
others) the first asymptotic results for the case that the underlying random
variables are independent and identically distributed. Under weak depen-
dency assumptions asymptotic results are for instance shown in Borovkova
et al. (2001), in Denker and Keller (1983) or more recently in Leucht (2012)
and in more general setting in Leucht and Neumann (2013), Bouzebda and
Nemouchi (2019), Bouzebda and Nemouchi (2022). For excellent resource
of references on the -statistics and -processes, the interested reader may
refer to Borovskikh (1996), Koroljuk and Borovskich (1994), Lee (1990), Ar-
cones and Giné (1995), Arcones et al. (1994) and Arcones and Giné (1993).
A profound insight into the theory of -processes is given by de la Peña and
Giné (1999). In this paper, we consider the so-called conditional -statistics
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introduced by Stute (1991). These statistics may be viewed as generaliza-
tions of the Nadaraya-Watson (Nadaraja, 1964; Watson, 1964) estimates of
a regression function.

To be more precise, let us consider a sequence of independent and iden-
tically distributed random vectors (X Y ) with X and
Y , 1. Let X = be an unknown marginal Borel probability
distribution in . Let : be a measurable function. In this paper,
we are primarily concerned with the estimation of the conditional expecta-
tion, or regression function of (Y1 Y ) evaluated at (X1 X ) = t,
given by

( )( t) = ( (Y1 Y ) (X1 X )=t) for t (1.1)

whenever it exists, i.e., ( (Y1 Y ) ) . We now introduce a
kernel function : . Stute (1991) presented a class of estimators
for ( )( t), called the conditional -statistics, which is defined for each
t to be :

( )( t; )=
( 1 m) ( )

( 1 m)K
t1 X 1 K

t X m

( 1 m) ( )

t1 X 1 t X m

(1.2)
where:

( ) = i = ( 1 ) : 1 and = if = (1.3)

is the set of all -tuples of different integers between 1 and and 1

denotes a sequence of positive constants converging to zero and .
For notational simplicity, we let = . In the particular case = 1, the
( )( t) is reduced to (1)( t) = ( (Y) X = t) and Stute’s estimator
becomes the Nadaraya-Watson estimator of (1)( t) given by:

(1)( t ) =
=1

(Y )
X t

=1

X t

The work of Sen (1994) was devoted to estimate the rate of the uniform

convergence in t of
( )

( t; ) to ( )( t). In the paper of Prakasa Rao

and Sen (1995), the limit distributions of
( )

( t; ) are discussed and com-
pared with those obtained by Stute. Harel and Puri (1996) extend the results

1550



Uniform in bandwidth consistency...

of Stute (1991), under appropriate mixing conditions, to weakly dependent
data and have applied their findings to verify the Bayes risk consistency of
the corresponding discrimination rules. Stute (1996) proposed symmetrized
nearest neighbour conditional -statistics as alternatives to the usual kernel-
type estimators. An important contribution is given in the paper Dony and
Mason (2008) where a much stronger form of consistency holds, namely, uni-
form in t and in bandwidth consistency (i.e., [ ] where 0

at some specific rate) of
( )

( t; ). In addition, uniform consistency is
also established over F for a suitably restricted class F . The main tool
in their result is the use of the local conditional -process investigated in
Giné and Mason (2007a). In the last decades, empirical process theory has
provided very useful and powerful tools to analyze the large sample prop-
erties of several nonparametric estimators of functionals of the distribution,
such as the regression function and the density function, refer to, van der
Vaart and Wellner (1996) and Kosorok (2008). Nolan and Pollard (1987)
were the first to introduce the notion of uniform in bandwidth consistency
for kernel density estimators and they applied empirical process methods in
their study. In the series of papers, Deheuvels (2000), Deheuvels and Ma-
son (2004), Einmahl and Mason (2005), Dony and Mason (2008), Maillot
and Viallon (2009), Mason and Swanepoel (2011), Bouzebda and Elhattab
(2009, 2010), Bouzebda (2012), Bouzebda et al. (2018, 2021), Bouzebda and
Nemouchi (2020), Bouzebda and El-hadjali (2020), Bouzebda and Nezzal
(2022) the authors established uniform consistency results for such kernel
estimators, where varies within suitably chosen intervals indexed by .
More precisely, we will consider one of the most commonly used classes of
estimators that is formed by the so-called kernel-type estimators. There are
basically no restrictions on the choice of the kernel function in our setup,
apart from satisfying some mild conditions that we will give after. The se-
lection of the bandwidth, however, is more problematic. It is worth noticing
that the choice of the bandwidth is crucial to obtain a good rate of consis-
tency, for example, it has a big influence on the size of the estimate’s bias.
In general, we are interested in the selection of bandwidth that produces
an estimator which has a good balance between the bias and the variance
of the considered estimators. It is then more appropriate to consider the
bandwidth varying according to the criteria applied and the available data
and location, which cannot be achieved by using classical methods. The
interested reader may refer to Mason (2012) for more details and discussion
on the subject. In the present paper, we develop methods that permit the
study of the kernel-type under nonrestrictive conditions. It is worth notic-
ing that the high-dimensional data sets have several unfortunate properties
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that make them hard to analyze. The phenomenon that the computational
and statistical efficiency of statistical techniques degrade rapidly with the
dimension is often referred to as the “curse of dimensionality”. Density and
regression estimation on manifolds has received much less attention than
the “full-dimensional” counterpart. However, understanding density esti-
mation in situations where the intrinsic dimension can be much lower than
the ambient dimension is becoming ever more important: modern systems
can capture data at an increasing resolution while the number of degrees
of freedom stays relatively constant. One of the limiting aspects of density
(regression)-based approaches is their performance in high dimensions.

We know that the notion of the intrinsic dimension, say , has been
studied in the statistical machine learning literature so as to establish fast
estimation rates in high-dimensional kernel regression settings. There are nu-
merous known techniques for doing so e.g. Kégl (2002), Levina and Bickel
(2004), Hein and Audibert (2005), Farahmand et al. (2007). We first intro-
duce a concept proposed by Kim et al. (2018, 2019), the so-called volume
dimension, to characterize the intrinsic dimension of the underlying distri-
bution. More specifically, the volume dimension vol is the decay rate of the
probability of vanishing Euclidean balls. Let be the Euclidean 2-norm.
For x and 0, we use the notation d(x ) for the open Euclidean
ball centered at x and radius , i.e.,

d(x ) = y : y x

When a probability distribution has a bounded density X( ) supported
on a well-behaved manifold of dimension , it is known that, for any
point x , the measure on the ball d(x ) centered at x and radius
decays as

( d(x )) M

when is small enough. From this, Kim et al. (2018) define the volume
dimension of a probability distribution to be the maximum possible expo-
nent rate that can dominate the probability volume decay on balls, i.e., fix
a subset , then

vol( ) := sup 0 : lim sup
0

sup
x

( d(x ))
(1.4)

The primary purpose of the present work is to extend the work of Kim et al.
(2018) to the more general estimators, including the kernel density estimator
as a particular case (studied in Kim et al. 2018), this generalization is far
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from being trivial and harder to control some complex classes of functions,
which form a basically unsolved open problem in the literature. We aim to
fill this gap in the literature by combining results Kim et al. (2018) with
techniques developed in Einmahl and Mason (2005) and Dony and Mason
(2008). The present extends our previous work in Bouzebda and El-hadjali
(2020) in several directions; the main one is that the present paper consid-
ers the conditional -statistics, including the regression treated in the last
mentioned paper. More precisely, a uniform in bandwidth consistency re-
sults for some general kernel-type estimators are established. However, as
will be seen later, the problem requires much more than “simply” combin-
ing ideas from the existing results. Delicate mathematical derivations will
be required to cope with the empirical processes that we consider in this
extended setting. In addition, we will consider the nonparametric Inverse
Probability of Censoring Weighted (I.P.C.W.) estimators of the multivariate
regression function under random censorship and obtain uniform in band-
width consistency results that are of independent interest.

An outline of the remainder of our paper is as follows. In the forthcom-
ing section, we introduce the mathematical framework and provide our main
results concerning the uniform in bandwidth consistency of conditional -
statistics adaptive to intrinsic dimension extending the setting of the work
of Dony and Mason (2008). In Section 3, we consider the conditional -
statistics in the right censored data framework. Examples of -statistics
kernel are provided in Section 3.1. In Section 4, we present how to select
the bandwidth through the cross-validation procedures. An application to
the nonparametric discrimination problem is discussed in Section 4.1. Some
concluding remarks are given in Section 5. To prevent interrupting the pre-
sentation flow, all proofs are gathered in Section 6. A few relevant technical
results are given in the Appendix for easy reference.

2 Main Results

For a fixed integer , consider a class F of measurable functions
: defined on , such that 2(Y1 Y ) , which sat-

isfies the conditions, (F.i)–(F.iii) given below. First, to avoid measurability
problems, we assume that

F is a pointwise measurable class, (F.i)

that is, there exists a countable subclass F0 of F such that we can find,
for any function F , a sequence of functions F0 for which

( ) ( )
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This condition is discussed in van der Vaart and Wellner (1996). We also
assume that F has a measurable envelope function

(y) sup
Fq

(y) for y (F.ii)

Notice that condition (F.i) implies that the supremum in Eq. F.ii is measur-
able. Finally, we assume that F is of VC-type, with characteristics and
(“VC” for Vapnik and Červonenkis), meaning that for some 3 and

1 1,

(F 2( ) ) 2( )
1

for 0 2
2( ) (F.iii)

where is any probability measure on ( ), where represents the
-field of Borel sets of , such that

2( ) , and where for 0,
(F 2( ) ) is defined as the smallest number of 2( )-open balls of

radius required to cover F . (If Eq. F.iii holds for F , then we say that
the VC-type class F admits the characteristics and 1). In this section,
we follow Kim et al. (2018) for weakening the conditions on the kernel and
making it adaptive to the intrinsic dimension of the underlying distribution
and without assumptions on the distribution. It is worth noticing that for
general distributions such as the one with support is a lower-dimensional
manifold, the usual change of variables argument is no longer directly ap-
plicable. However, we can provide a bound based on the volume dimension
under an integrability condition on the kernel, given below. Let ( ) be a
kernel function defined on , that is a measurable function satisfying

d

(t) t = 1

Assumption 1. (Integrability condition) Let = supx d (x) =:
and fix 0. We have: either vol = 0 or

0

vol 1 sup
t

(t) (K.ii)

Remark 2.1. (Kim et al., 2018) It is important to emphasize that As-
sumption 1 is weak, as it is satisfied by commonly used kernels. For instance,
if the kernel function (x) decays at a polynomial rate strictly faster than

vol (which is at most ) as x , that is, if

lim sup
x

x vol + ( )
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for any 0, the integrability condition Eq. K.ii is satisfied. Also, if the
kernel function (x) is spherically symmetric, that is, if there exists :
[0 ) with (x) = ( x 2), then the integrability condition Eq. K.ii
is satisfied provided . Kernels with bounded support also satisfy
the condition Eq. K.ii. Thus, most of the commonly used kernels including
Uniform, Epanechnikov, and Gaussian kernels satisfy the above integrability
condition.

Now, we consider the class of functions

K := (t )
t

: t

with 2 .

Assumption 2. Assume that K is bounded VC-class with envelope
and dimension 2, i.e., there exists positive number 2 1 and 2 1 such
that, for every probability measure on and for every (0 ),
the covering numbers ( 2( ) ) satisfies

( 2( ) )
2

2

(K.iii)

Furthermore, let

K(t) :=
=1

(t ) t = (t1 t ) (K.iv)

denote the product kernel. Next, if ( ) is a measurable space, define
the general -statistic with kernel : based on S-valued random
variables 1 as

( )( ) :=
( )!

!
( )

( 1 k
) 1 (2.1)

where ( ) is defined as in Eq. 1.3 with = . Note that we do not
require to be symmetric here. For a bandwidth 0 and F ,
consider the -kernel

t(x y) := (y)K (t x) x t and y

where, as usual, ( ) = ( ), , and for the sample (X1 Y1)
(X Y ), define

( t) := ( )( t) =
( )!

!
m
n

t(X Y )
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where, throughout this paper, we shall use the notation

X=(X1 X ) and Xi = (X 1 X
k
) i I

Y=(Y1 Y ) and Yi = (Y 1 Y
k
) i I

Now, introduce the -statistic process

( t) := ( t) ( t) (2.2)

We denote by I and J two fixed subsets of such that

I =
=1

[ ] J =
=1

[ ]

where

for = 1

Introduce the class of functions defined on the compact subset J of ,

= ( )( ) ( ) : F

where ( )( ) is defined in Eq. 1.1 and the function : is defined
as

(t) :=
qm

(t1 y1) (t y ) dy1 dy = X (t1) X (t )

where ( ) denote the joint density of (X Y). We fix a subset on
which we are considering the uniform convergence of the kernel regression
estimator. We first characterize the intrinsic dimension of the distribution
, proposed by Kim et al. (2018), by its rate of the probability volume

growth on balls. If a probability distribution has a positive measure on a
manifold with a positive reach, then the volume dimension is always between
0 and the manifold’s dimension. In particular, the volume dimension of any
probability distribution is between 0 and the ambient dimension .

Lemma 2.2. (Kim et al., 2018)Let be a probability distribution on ,
and vol be its volume dimension. Then for any [0 vol), there exists a
constant depending only on and such that for all x and 0,

( d(x ))
(2.3)
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For the exact optimal rate, we impose conditions on how the probability
volume decay in Eq. 2.3.

Assumption 3. Let be a probability distribution on , and vol be its
volume dimension. For [0 vol), we assume that

lim sup
0

sup
x

( d(x ))
(2.4)

Assumption 4. Let be a probability distribution on , and vol be its
volume dimension. For [0 vol), we assume that

sup
x

lim inf
0

( d(x ))
0 (2.5)

These assumptions are in fact weak and hold for common probability
distributions. In particular, Assumptions 3 and 4 hold when the probabil-
ity distribution has a bounded density with respect to the -dimensional
Lebesgue measure. By combining Assumption 1 and Lemma (2.0.2) of Kim
et al. (2018), we can bound 2 in terms of the volume dimension vol.

Lemma 2.3. Let ( ) be a probability space and let . For any
kernel ( ) satisfying Assumption 1 with 0, the expectation of the k-
moment of the kernel is upper bounded as

t X
vol (2.6)

for any (0 vol), where is a constant depending only on
and . Further, if vol = 0 or under Assumption 1 in Kim et al. (2018),
can be 0 in Eq. 2.6.

We give an example from Kim et al. (2018) of an unbounded density. In
this case, the volume dimension is strictly smaller than the dimension of the
support, which illustrates why the dimension of the support is not enough
to characterize the dimensionality of a distribution.

Example 2.4. (Kim et al., 2018) Let be a distribution on having
a density with respect to the -dimensional Lebesgue measure. Fix ,
and suppose : is defined as
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Then, for each fixed 0,

sup
x d

( d(x )) = ( d(0 )) =

Hence from definition in Eq. 1.4, the volume dimension is

vol( ) =

In our setting, we will use

( )( t; )

=

( 1 m) ( )

( 1 m)
t1 X 1 t X m

( 1 m) ( )

t1 X 1 t X m

if

( 1 m) ( )

t1 X 1 t X m = 0

( )!

!
( 1 m) ( )

( 1 m)

if

( 1 m) ( )

t1 X 1 t X m = 0

It is clear that
( )

( t; ) can be rewritten, for all F , as

( )( t; ) =
i m

n
(Yi) (t Xi)

i m
n

(t Xi)
=

( t; )

(1 t; )

where we denote by (1 t; ) the -statistic ( t; ) with 1. To

prove the uniform consistency of
( )

( t; ) to ( )( t), we shall consider an-

other, more appropriate, centering factor than the expectation
( )

( t; ),
which may not exist or may be difficult to compute. Define the centring

( )( t; ) :=
( t; )

(1 t; )
(2.7)

This centering permits us to derive results on the convergence rates of the
process

( )( t; ) ( )( t; )

to zero and the consistency of
( )

( t; ) uniform in t and in bandwidth.
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Theorem 2.5. Let = (log )1 for 0. If the class of functions
F is bounded, in the sense that for some 0 ,

(y) for y (2.8)

Fix (0 vol). Further, if vol = 0 or under Assumption 3, can be 0.
Suppose

lim sup

log
1

+

+ log
2

vol

Then we can infer, under the above mentioned assumptions on F and As-
sumptions 1, 2 and 4, that for all 0, there exists a constant 0 C1

such that we have with probability at least 1

sup
n

sup
Fq

sup
t dm

(2 vol+ )
( t; ) ( t; )

log log(2 )
C1 (2.9)

Theorem 2.6. Let = ((log )1 2 )1 for 0. If F is un-
bounded, but satisfies, for some 2,

:= sup
x dm

( (Y) X = x) (2.10)

then we can infer, under the above mentioned assumptions on F and and
Assumptions 1, 2 and 4, that for all 0 and 0 0 1, there exists a
constant 0 C2 such that

lim sup sup
n 0

sup
Fq

sup
t dm

(2 vol+ ) ( t; ) ( t; )

log log log
C2

for any (0 vol).

We mention that Kim et al. (2018) do not need continuity of the density
for their results. (Of course, continuity of the density is crucial for controlling
the bias.) Some related results on uniform convergence over compact subsets
have been obtained by Bouzebda and El-hadjali (2020) for a much larger
class of estimators including kernel estimators for regression functions among
others. In this general setting, however, it is often not possible to obtain
the convergence uniformly over . Density estimators are in that sense
somewhat exceptional.
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Theorem 2.7. Besides being bounded, suppose that the marginal density
function X of X is continuous and strictly positive on the interval I. Assume
that the class of functions is uniformly equicontinuous. It then follows
that for all sequences 0 1 with 0,

sup
0 n

sup
Fq

sup
t Im

( )( t; ) ( )( t) = (1)

where I = I I.

Corollary 2.8. Besides being bounded, suppose that the marginal den-
sity function X of X is continuous and strictly positive on the interval I.
It then follows, under the above mentioned assumptions on F and and As-
sumptions 1, 2 and 4, that for all 0 and all sequences 0 1 with

0, there exists a constant 0 C3 such that

lim sup sup
n 0

sup
Fq

sup
t Im

m(2d dvol+ε) ( )
( t; )

( )
( t; )

log log log
C3

where for any (0 vol) and is either or , depending on whether
the class F is bounded or not.

We can now state the main result of this section which follows easily
from Theorems 2.5 and 2.6.

Corollary 2.9. Under the conditions of Theorems 2.5 and 2.6 on
and the class of functions F and Assumptions 1, 2 and 4, it follows that for
all sequences 0 1 satisfying 0 and log ,

sup
n n

sup
Fq

sup
t Im

( )( t; ) ( )( t) 0

Remark 2.10. Under additional, weak regularity conditions on , the
value of can be taken equal to 0 (2.9). Under the assumption that the
distribution has a bounded Lebesgue density, = so our result recovers
existing results in literature in terms of rates of convergence, in particular the
results presented in Dony and Mason (2008). Our results complement those
Dony and Mason (2008) by relaxing the condition on the kernel functions as
it was done by Kim et al. (2018). At this point, we mention that our results
are stated in the multivariate setting and more importantly are adaptative to
the dimension volume. This alleviates the problem of the curse of dimension.
To be more precise, it is well known that the estimation problems of a
regression function are especially hard in the case when the dimension of
the explanatory X is large. It is worth noticing that one consequence of
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this is that the optimal minimax rate of convergence 2 (2 + ) for the
estimation of a times differentiable regression function converges to zero
rather slowly if the dimension d of X is large compared to . To circumvent
the so-called curse of dimensionality, the only way is to impose additional
assumptions on the regression functions. The simplest way is to consider
the linear models but this rather restrictive parametric assumption can be
extended in several ways. An idea is to consider the additive models to
simplify the problem of regression estimation by fitting only functions to
the data which have the same additive structure. In projection pursuit
one generalizes this further by assuming that the regression function is a
sum of univariate functions applied to projections of x in various directions,
we note that this includes the single index models as particular cases, the
interested reader may refer to Györfi et al. (2002, Chapter 22) for more
rigorous developments of such techniques. Other ways to be investigated are
the semi-parametric models, considered intermediary models between linear
and nonparametric ones, aiming to combine the flexibility of nonparametric
approaches with the interpretability of the parametric ones, for details on
these methods for functional data, one can refer to Ling and Vieu (2018,
Section 4.2) and the reference therein.

Remark 2.11. We note that the main problem in using an estimator
such as in Eq. 1.2 is to choose properly the smoothing parameter . The
uniform in bandwidth consistency results given in Corollary 2.9 shows that

any choice of between and ensures the consistency of
( )

( t; ).
Namely, the fluctuation of the bandwidth in a small interval does not affect

the consistency of the nonparametric estimator
( )

( t; ) of ( )( t).

Remark 2.12. For notational convenience, we have chosen the same
bandwidth sequence for each margins. This assumption can be dropped
easily. If one wants to make use of the vector bandwidths (see, in partic-
ular, Chapter 12 of Devroye and Lugosi (2001)). With obvious changes of
notation, our results and their proofs remain true when is replaced by a

vector bandwidth h = (
(1) ( )

), where min
( )

0. In this situation
we set = =1

( ), and for any vector v = ( 1 ) we replace v by
( 1

(1)
1

( )). For ease of presentation, we chose to use real-valued
bandwidths throughout.

Remark 2.13. In the sequel, we will need to symmetrize the functions

t(x y). To do this, we have

¯
t(x y) :=

1

!
Imm

t(x y ) =
1

!
Imm

(y )K (t x )
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where x := ( 1 m) et y := ( 1 m). Obviously, after sym-
metrization we have

( t(x y)) = ( ¯ t(x y)) and ( )( ¯ t( )) = ( t; )

So the U-statistic process in Eq. 2.2 may be redefined using the symmetrized
kernels, hence we consider

( )( t) := ( )( ¯ t)
( )( ¯ t) (2.11)

For more details, consult for instance the book of de la Peña and Giné (1999).

3 Extension to the Censored Case

Consider a triple ( X) of random variables defined in . Here
is the variable of interest, is a censoring variable and X is a concomitant

variable. Throughout, we will use Maillot and Viallon (2009) notation and
we work with a sample ( X )1 of independent and identically
distributed replication of ( X), 1. Actually, in the right censorship
model, the pairs ( ), 1 , are not directly observed and the corre-

sponding information is given by := min and ,
1 . Accordingly, the observed sample is

= ( X ) = 1

Survival data in clinical trials or failure time data in reliability studies, for
example, are often subject to such censoring. To be more specific, many sta-
tistical experiments result in incomplete samples, even under well-controlled
conditions. For example, clinical data for surviving most types of disease
are usually censored by other competing risks to life which result in death.
In the sequel, we impose the following assumptions upon the distribution of
(X ). Denote by a given compact set in with nonempty interior and
set, for any 0,

= x : inf
u

x u

We will assume that, for a given 0, (X ) [resp. X] has a density
function X [resp. X] with respect to the Lebesgue measure on
[resp. ]. For , set

( ) = ( ) ( ) = ( ) and ( ) = ( )

the right-continuous distribution functions of , and respectively. For
any right-continuous distribution function defined on , denote by

= sup : ( ) 1
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the upper point of the corresponding distribution. Now consider a pointwise
measurable class F of real measurable functions defined on , and assume
that F is of VC-type. We recall the regression function of ( ) evaluated
at X = x, for F and x , given by

(1)( x) = ( ( ) X = x)

when is right-censored. To estimate (1)( ), we make use of the In-
verse Probability of Censoring Weighted (I.P.C.W.) estimators have recently
gained popularity in the censored data literature (see Kohler et al. (2002),
Carbonez et al. (1995), Brunel and Comte (2006)). The key idea of I.P.C.W.
estimators is as follows. Introduce the real-valued function Φ ( ) defined
on 2 by

(3.1)

Assuming the function ( ) to be known, first note that Φ ( ) =
( ) (1 ( )) is observed for every 1 . Moreover, under the
Assumption (I ) below,

(I ) and ( X) are independent.

We have

(3.2)

Therefore, any estimate of (1)(Φ ), which can be built on fully observed
data, turns out to be an estimate for (1)( ) too. Thanks to this property,
most statistical procedures known to provide estimates of the regression
function in the uncensored case can be naturally extended to the censored
case. For instance, kernel-type estimates are particularly easy to construct.
Set, for x , , 1 ,

(1)
(x) :=

x X

=1

x X
(3.3)
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We assume that satisfies (H.1). In view of Eqs. 3.1, 3.2, and 3.3, whenever
( ) is known, a kernel estimator of (1)( ) is given by

˘(1)( x; ) =
=1

(1)
(x)

( )

1 ( )
(3.4)

The function ( ) is generally unknown and has to be estimated. We will
denote by ( ) the Kaplan-Meier estimator of the function ( ) (Kaplan
and Meier, 1958). Namely, adopting the conventions

= 1

and 00 = 1 and setting

we have

( ) = 1
: i

( ) 1

( )

(1 i)

for

Given this notation, we will investigate the following estimator of (1)( )

˘(1) ( x; ) =
=1

(1)
(x)

( )

1 ( )
(3.5)

refer to Kohler et al. (2002) and Maillot and Viallon (2009). Adopting the
convention 0 0 = 0, this quantity is well defined, since ( ) = 1 if and only
if = ( ) and ( ) = 0, where ( ) is the th ordered statistic associated
with the sample ( 1 ) for = 1 and ( ) is the corresponding
to = . When the variable of interest is right-censored, functional of the
(conditional) law can generally not be estimated on the complete support
(see Brunel and Comte 2006). To obtain our results, we will work under the
following assumptions.

(A.1) , where and F1 is a
pointwise measurable class of real measurable functions defined on
and of type VC.
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(A.2) The class of functions F has a measurable and uniformly bounded
envelope function Υ with,

Υ( 1 ) sup
F

( 1 )

(A.3) The class of functions is relatively compact concerning the sup-
norm topology on .

In what follows, we will study the uniform convergence of (x) centred
by the following centring factor

˘(1) ( x; ) =

( )
x X

x X

This choice is justified by the fact that, under hypothesis (I ) we have

(3.6)
Let us assume the following conditions.

(H.1) 0 0 1, and ;

(H.2) log as ;

(H.3) log (1 ) log log as ;

We now have all the ingredients to state the result corresponding to
the censored case. Let 1 and 1 be two sequences of positive
constants fulfilling Assumptions (H.1-H.3) with

0 1
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Bouzebda and El-hadjali (2020) showed under assumptions (A.1–3), for
= 1, (I), Assumption 3, for any kernel ( ) satisfying Assumptions 1 and

2, with probability at least 1 ,

sup
n n

sup
x

˘(1) ( x; ) (˘(1) ( x; )) C4
log (1 )+ + log (2 )

2 vol+

(3.7)
for some positive constant C4. A right-censored version of an unconditional
-statistic with a kernel of degree 1 is introduced by the principle of a

mean preserving reweighting scheme in Datta et al. (2010). Stute and Wang
(1993) have proved almost sure convergence of multi-sample -statistics un-
der random censorship and provided application by considering the consis-
tency of a new class of tests designed for testing equality in distribution.
To overcome potential biases arising from right-censoring of the outcomes
and the presence of confounding covariates, Chen and Datta (2019) pro-
posed adjustments to the classical -statistics. Yuan et al. (2017) proposed
a different way in the estimation procedure of the -statistic by using a sub-
stitution estimator of the conditional kernel given the observed data. To our
best knowledge, the problem of the estimation of the conditional -statistics
was opened up to the present, and it gives and main motivation to the study
of this section. A natural extension of the function defined in Eq. 3.1 is
given by

From this, we have an analogous relation to Eq. 3.2 given by

An analogue estimator to Eq. 1.2 in the censored case is given by

˘( )( t; ) =

( 1 m) ( )

1 m ( 1 m)

(1 ( 1) (1 ( m))
( )

i(t) (3.8)
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where, for i = ( 1 ) ( ),

( )
i(t) :=

t1 X 1 t X m

( 1 m) ( )

t1 X 1 t X m

(3.9)

The estimator that we will investigate is given by

˘( ) ( t; ) =

( 1 m) ( )

1 m ( 1 m)

(1 ( 1) (1 ( m))
( )

i(t)

(3.10)

Theorem 3.1. Let = ((log )1 2 )1 for 0. If the class of
functions F is bounded, in the sense (A.2). Fix (0 vol). Further, if

vol = 0 or under Assumption 3, can be 0. Suppose that

lim sup

log
1

+

+ log
2

vol

Then we can infer, under the above mentioned assumptions on K , (A.1-2)
(I ), that for all 0 and 0 0 1, there exists a constant 0 C5

such that

sup
n

sup
F

sup
t m

(2 vol+ )
˘
( )

( t; ) ˘
( )

( t; )

log log(2 )
C5

Proposition 3.2. Under assumptions (A.1-3), (I ) and for any kernel
( ) satisfying Assumptions 1, 2 and 3. Let 1 and 1 be two

sequences of positive constants fulfilling Assumptions (H.1-H.3) with

0 1

With probability at least 1 , there exists a constant 0 C6 such that

sup
n n

sup
x m

sup
F

˘( ) ( t; ) ˘( ) ( t; )

C6
log (1 )+ + log (2 )

(2 vol+ )
(3.11)
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3.1. Examples of U-statistics

Example 3.3. Let 1 2 denote the oriented angle between 1 2 ,
is the circle of radius 1 and center 0 in 2. Let:

Silverman (1978) has used this kernel to propose a -process to test unifor-
mity on the circle.

Example 3.4. Hoeffding (1948) introduced the parameter

= 2( 1 2) ( 1 2)

where ( 1 2) = ( 1 2) ( 1 ) ( 2) and ( ) is the distribution
function of 1 and 2. The parameter has the property that = 0 if
and only if 1 and 2 are independent. From Lee (1990), an alternative
expression for can be developed by introducing the functions

( 1 2 3) =
1 if 2 1 3

0 if 1 2 3 or 1 2 3

1 if 3 1 2

and

( 1 1 1 2 5 1 5 2) =
1

4
( 1 1 1 2 1 3) ( 1 1 1 4 1 5)

( 1 2 2 2 3 2) ( 1 2 4 2 5 2)

We have

= ( 1 1 1 2 5 1 5 2) ( 1 1 1 2) ( 1 5 2 5)

We have

(5) ( 1 2 3 4 5)

= ( (( 1 1 1 2) ( 5 1 5 2)) 1 = 2 = 3 = 4 = 5 = )

The corresponding -statistics may be used to test the conditional indepen-
dence.

Example 3.5. For = 3, let ,
the corresponding -Statistic corresponds to the Hollander-Proschan test-
statistic (Hollander and Proschan, 1972).
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Example 3.6. For:

( 1 2) =
1

2
( 1 2)

2

we obtain the variance of .

Example 3.7. For:

( 1 2) =
1

2
( 1 2)

2

we obtain:

(2)( ( 1 2) 1 2) = Var( 1 1 = 1)

Example 3.8. Let Y = ( 1 2) such that 2 is a smooth curve, 2

2([0 1]) and 1 has a continuous distribution. For

which can be used to treat the problem of testing for conditional association
between a functional variable belonging to Hilbert space and a scalar vari-
able. More precisely, this gives the conditional Kendall’s Tau type statistics.

4 The Bandwidth Selection Criterion

Many methods have been established and developed to construct, in
asymptotically optimal ways, bandwidth selection rules for nonparametric
kernel estimators especially for Nadaraya-Watson regression estimator we
quote among them Hall (1984), Härdle and Marron (1985). This param-
eter has to be selected suitably, either in the standard finite-dimensional
case, or in the infinite dimensional framework for ensuring good practi-
cal performances. Following Dony and Mason (2008), the leave-one-out
cross-validation procedure allows to define, for any fixed i = ( 1 )
( ):

( )
i ( t; )

=
( 1 m) ( )(i)

( 1 m)
t1 X 1 t X m

( 1 m) ( )

x1 X 1 x X m

(4.1)

where
( )(i) := j ( ) and j = i = ( ) i
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In order to minimize the quadratic loss function, we introduce the following
criterion, we have for some (known) non-negative weight function ( ) :

( ) :=
( )!

!
i ( )

(Yi)
( )
i ( Xi; )

2
(Xi) (4.2)

where

(t) :=
=1

( )

A natural way for choosing the bandwidth is to minimize the precedent
criterion, so let’s choose [ ] minimizing among [ ] :

sup
F

( )

we can conclude, by Corollary 2.9, that :

sup
F
sup
t I

( )( t; ) ( )( t) 0 p.s.

The main interest of our results is the possibility to derive the asymptotic
properties of our estimate even if the bandwidth parameter is a random
variable, like in the last equation. One can replace (4.2) by

( ) :=
( )!

!
i ( )

(Yi)
( )
i ( Xi; )

2
(Xi t) (4.3)

where

(s t) :=
=1

( )

In practice, one takes for i ( ), the uniform global weights (Xi) = 1,
and the local weights

(Xi t) =
1 if Xi t
0 otherwise

For sake of brevity, we have just considered the most popular method, that
is, the cross-validated selected bandwidth. This may be extended to any
other bandwidth selector such as the bandwidth based on Bayesian ideas
(Shang, 2014).

1570



Uniform in bandwidth consistency...

4.1. Discrimination Now, we apply the results to the problem of dis-
crimination described in Section 3 of Stute (1994b), refer to also to Stute
(1994a). We will use a similar notation and setting. Let ( ) be any function
taking at most finitely many values, say 1 . The sets

= ( 1 ) : ( 1 ) = 1

then yield a partition of the feature space. Predicting the value of ( 1

) is tantamount to predicting the set in the partition to which ( 1 )
belongs. For any discrimination rule , we have

( (X) = (Y))
=1 x: (x)=

max (x) (x)

where
(x) = ( (Y) = X = x) x

The above inequality becomes equality if

0(x) = arg max
1

(x)

0( ) is called the Bayes rule, and the pertaining probability of error

L = 1 ( 0(X) = (Y)) = 1 max
1

(x)

is called the Bayes risk. Each of the above unknown function ’s can be
consistently estimated by one of the methods discussed in the preceding
sections. Let, for 1 ,

(4.4)
Set

0 (x) = arg max
1

(x)

Let us introduce
L = ( 0 (X) = (Y))

Then, one can show that the discrimination rule 0 ( ) is asymptotically
Bayes’ risk consistent

L L
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5 Concluding Remarks and Future Works

In the present work, we have used general methods based upon empirical
process techniques to prove uniform in bandwidth consistency for kernel-type
estimators of the conditional -statistics. We have considered an extended
setting when the dimension can be lower than the ambient dimension. In
addition, our work complements the paper Kim et al. (2018) by considering
other examples of kernel estimates. Our proof relies on the work of Dony and
Mason (2008). Our results extend and complement the last cited reference
by establishing the convergence rate adaptive to the volume dimension. Our
results are especially useful to establish uniform consistency of data-driven
bandwidth kernel-type function estimators. The interest in doing so would
be to extend our work to -nearest neighbours estimators. Presently it
is beyond reasonable hope to achieve this program without new technical
arguments. We will not treat the uniform consistency of such estimators in
the present paper, and leave this for future investigation.

6 Mathematical Developments

This section is devoted to the proof of our results. The previously defined
notation continues to be used in what follows.

Our main tool to analyze
( )

( t) will be the Hoeffding decomposi-
tion, which we recall here for the reader’s convenience.

6.1. Hoeffding Decomposition The Hoeffding decomposition, Hoeffding
(1948), states the following, which is easy to check,

( )( t) =
=1

( )( t( )) (6.1)

where the th Hoeffding projection for a (symmetric) function :
with respect to is defined for x = ( 1 ) and

y = ( 1 ) as

(x y ) := ( ( 1 1) ) ( ( k k) ) ( )

where is any probability measure on ( ) and for measures on we
have

1 = ( 1 ) 1( 1) ( )

Considering ( ) 1, i.i.d.- and assuming 2( ), this is an
orthogonal decomposition and

[ (X Y ) ( 2 2)) ( )] = 0 1
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where we denote X and Y for ( 1 ) and ( 1 ), respectively.
Thus the kernels are canonical for . Also, 1, are nested pro-
jections, that is, = if , and

[( )2(X Y )] [( )2(X Y)] 2(X Y) (6.2)

For more details, consult de la Peña and Giné (1999). The proofs of our
results are largely inspired from Dony and Mason (2008), Kim et al. (2018)
and Bouzebda and El-hadjali (2020).

6.2. Proof of Theorem 2.5: the Bounded Case
6.3. Linear Term To establish the relation (2.9), we need to study the

linear term (the first term) of Eq. 6.1, given by

(1)( 1
¯

t( )) =
=1

1
¯

t( )

Keeping in mind the fact that the class F is a VC-type class of func-
tions with an envelope function and the class K is a VC-type with en-
velope , which implies that the class of functions on given by

t( ) : F t is of VC-type (via Lemma A.1 in Einmahl
and Mason (2000)), as well as the class

= t( ) : F t (6.3)

for which we denote the VC-type characteristics by and , and the envelope
function by

(y) (x y) =
m
m

(y ) y (6.4)

By considering the following class of functions on , for = 1 ,

( ) = t( ) : F t (6.5)

and following Giné and Mason (2007a) one can show that each class ( ) is
of VC-type with characteristics and and envelope function

F 2 F (6.6)

Recall that the sample ( ) 1 is i.i.d. and from the definition of
the Hoeffding projections, for all ( ) , we get

1 t( ) = t(( 2 ) ( 2 ))
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t(X Y)

= t(X Y) ( 1 1) = ( ) t(X Y)

Introduce the following function on :

t :

( ) t(X Y) ( 1 1) = ( )

Making use of this notation, we can write

1 t( ) = t( ) ( t( 1 1))

For all F , and t , the linear term of the decomposition in
Eq. 6.1 times is given by

(1)( 1 t) =
1

=1

t( ) ( t( ))

=: ( t)

where we recall that the last expression is the empirical process ( ) based
on the sample ( 1 1) ( ) and we set for t I , F and

the class of normalised functions on ,

= t( ) : F t I (6.7)

Now, we have to bound t. From Eq. 2.8, we get

t( )

In order to bound the VC dimension of , we remark that = (1) is
VC-type with characteristics and as defined in Eq. 6.5 for = 1. For
reader convenience, we give more details. Let us give the bound for the VC
dimension of . Fix t and a probability measure on

. Suppose

2 t

1

is covered by balls of the form

+1

3 t
+

+1

3 t
1 1
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and ( 2( )) is covered by

2( ) 3 2( ) ( ) 1 2 1 3

where

3

For 1 1 1 2 and 1 3 we let

=
1

= (Y)
t X

( 1 1) = ( )

Also, choose 0 2 g,h,t

1

t0 I 0 F and let

0 =
1

0
0 0 t0

We will show that

2( ) ( ) : 1 1 1 2 and

1 3 2( ) ( 0 ) covers (6.8)

For the first case when
2 g,h,t

1

, find , and with

+1

3 t
+

+1

3 t

2( ) ( )

2( ) 3

Then the distance between 1
dm t and 1

dm
i

is upper bounded as

follows

1
t

1

2( )

=
1

( t(X Y) ( 1 1) = ( ))
1

( 1 1)
2( )
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(Y)
t X

( 1 1) = ( )

(Y)
t X

( 1 1) = ( )
2( )

+ (Y)
t X

( 1 1) = ( )
1

2( )

1
t

1
t

2( )

+
1

t (Y)
t X

( 1 1)=( )
2( )

+ (Y)
t X

( 1 1) = ( )

(Y)
t X

( 1 1) = ( )
2( )

(6.9)

Now the first term of Eq. 6.9 is upper bounded as

1
t

1
t

2( )

=
1 1 t

2( )

=
1

=0

1 t
2( )

1 1
t

3
(6.10)

Also, the second term of Eq. 6.9 is upper bounded as

1
t (Y)

t X
( 1 1) = ( )

2( )

= (Y)
t X

( 1 1) = ( )

(Y)
t X

( 1 1) = ( )
2( )

t X
( 1 1) = ( )
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t X
( 1 1) = ( )

2( )

3
(6.11)

The last term of Eq. 6.9 is upper bounded as

(Y)
t X

( 1 1) = ( )

(Y)
t X

( 1 1) = ( )
2( )

2( )

3
(6.12)

By combining the Eqs. 6.10, 6.11 and 6.12 to 6.9, we readily obtain the
following bound

1
t

1

2( )

For the second case when
2 g,h,t

1

, we have

1
t

2( )

1
t

2

holds, and hence

1
t 0

2( )

1
t

2( )

+ 0 2( )

Therefore Eq. 6.8 is shown. Hence by combining Eqs. F.ii, F.iii and 2.8 with
Lemma 9.9, p.160 of Kosorok (2008), gives that every probability measure

on and for every 0 t , the covering number
( ) is upper bounded as

sup ( 2( ) )

2 t

1 +1

3 t
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sup ( F 2( ) )

sup K 2( )
3

) + 1

3 t

+1

2 t
1

3 1
2 1 1

3 2
2

+ 1

3 t
2 1+ 2 1 3 2 2 1 2

t

+1

2 t
1

+
3 t

2 1 2+1

3 t
2 1+ 2 1

(6.13)

for some finite constant 0 . For 2, note that assumption (2.8)
implies that

sup
x I

( (Y) X = x)

From Lemma 2.3 and using Jensen’s inequality, we observe that, for

[ t( )]
k
2

t(X Y)

k
2

t X
(Y) X = x

where

( (Y)) X = x) sup
x J

( (Y) X = x)

Then, we have

[ t( )]2 2

=1

2 t X

By Hölder inequality and using once more Lemma 2.3 we obtain

=1

2 t X

=1

2 j
t X 1 j
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where

=1

1
= 1 0 = 1

Hence, from Lemma 2.3, we have

=1

2 t X ( vol ) (6.14)

where
= max

1
2 j

Then, we readily obtain

[ t( )]2 2 ( vol ) (6.15)

Now from Eq. 6.15, applying Theorem 7.1 to the class defined in Eq. 6.7
gives that

sup
g,h,t n

1

=1

t( ) ( t( 1 1))

is upper bounded with probability at least 1 as

sup
g,h,t n

1

=1

t( ) ( t( 1 1)) F vol ,K,ε

log
1

+ +

( vol ) log
1

+

+

( vol ) log
2

+
log 2

Using the condition

lim sup

log
1

+

+ log
2

vol
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we conclude that

sup
n

sup
Fq

sup
t I

(2 vol+ ) (1)
( 1 t))

log log(2 )
1

6.4. The Other Terms of Eq. 6.1 We will follow the steps of the proof of
Dony and Mason (2008). Now we consider the other terms of the Hoeffding
decomposition (6.1) and show that is almost surely upper bounded, that is,
for each = 2

sup
n

sup
Fq

sup
t dm

(2 vol+ ) ( )
( t))

log log(2 )
2 (6.16)

By the fact that = log , this will be established if we can obtain
that for each = 2 ,

sup
n

sup
Fq

sup
t dm

(2 vol+ ) ( )
( t))

( log log(2 ))
=

1
1

(6.17)
To establish the uniform in bandwidth convergence rates, we have to use a
blocking argument and a decomposition of the interval [ 0], for 0 large
enough, into smaller intervals. For this, set = 2 0 and consider the
intervals := [ 1 ] where the boundaries are given by := 2 .
By setting

( ) = max : 2 0

remark that

[ 0]

( )

=1

and ( ) log
0

log
log 2 (6.18)

implying, in particular, that ( ) 2 log . This fact will be used tacitly to
conclude some crucial steps of the proofs. Next, for 1 ( ), consider
the class of functions on ,

:= ¯
t( ) : t

as well the class on ,

( )
:=

¯
t( )

: t
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where = 2 . Clearly, each class is of VC-type with the same
characteristics as (and thus as ) with envelope function 1 , where

is the envelope function of . Notice that from Eqs. 2.8 and 6.6,

sup
x y k

¯
t(x y) : 0 1 t

and hence each function in
( )

is bounded by 1. Define now for 1

= 1 2

( ) =
2

sup
(k)

i k
n

(Xi Yi) (6.19)

From Theorem 4 of Giné and Mason (2007b) as in Dony and Mason (2008),
we get for = 1 2 = 2 and all 0 that for any 1

max
1

( )
2

( ) 2 1 2 [ 2 ( )]1 2

(6.20)
We shall apply an exponential inequality and a moment bound for -statistics,
due to, respectively, de la Peña and Giné (1999) and Giné and Mason
(2007b), on the class ( ) to bound (6.20). To use these results, we must
first derive some bounds. First, it is readily checked that

( ) =
2

sup
(k)

i k
n

(Xi Yi)

=
2

1

sup
(k)

i k
n

(Xi Yi)

=
2 ( )( ) (k)

2 ( )( ) (k) (6.21)

for all 1 . Second, notice that in Assumption 2, the kernel ( ) is
assumed to be bounded by and, for notational convenience in the proofs, to
have support in [ 1 2 1 2], so that by assumption (2.8) and = 2 ,

for
( )

, we have by Eqs. 6.2 and 6.14,

2(X Y) 2 2 ¯2
t(X Y)
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= 2 2(Y) ˜ 2 t X

4 2 ( vol )

For = 4 2 , this gives us that

sup
(k)

2(X Y)
( vol )

=: 2 (6.22)

Since = for all 1, we can now apply Corollary 1 of Giné and

Mason (2007b) to the class
( )

with 2 as in Eq. 6.22 and easily obtain that
for some constant ,

2 ( ) ( )( ) 2
(k) 2

( vol )
log( )

2
( vol )

log( ) (6.23)

To control the probability term in Eq. 6.20, we shall apply an exponential

inequality to the same class
( )

recall that each
( )

is bounded by 1.
Setting

= 1 ( log log log(2 )) 2 =: 1 (6.24)

where 1 , Theorem 5.3.14 of de la Peña and Giné (1999) gives us
constants 2 3 and 4 such that for = 1 ( ) and for any 1,

( ) 2
2 exp 3

2

exp 4 log log(2 ) (6.25)

plugging the bounds Eqs. 6.23 and 6.25 into Eq. 6.20, we then get for some

5 0, and 2 and large enough,

max
1

( ) 2 2

(log 2 ) 4,k 2 2
( vol )

log( )

1 ( log log(2 ))

( vol )
log(2 ) 5,k (6.26)

Finally, note also that

2 ( )( ) ( ) =
1

2
sup

(k)
i k

n

(Xi Yi)
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=
1

( )

!
1

=0

( )

( ) (6.27)

for some 0. Therefore, by Eq. 6.18, for each = 2 and large
enough,

max
1

:= max
1

sup
n 0

sup
Fq

sup
t I

(2 vol+ ) ( )
( t))

( log log(2 ))

max
1

max
1 ( )

sup sup
Fq

sup
t I

(2 vol+ ) ( )
( t))

( log log(2 ))

1
max
1

max
1 ( )

( )

1
max
1

max
1 ( )

( )

where was defined as in Eq. 6.24. Now, recall that ( ) 2 log( ).
Then Eq. 6.26 applied with (2+ ) 5 , 0 and in combination with
the above inequality and the obvious bound

1 1

valid for all 1 , implies for 6 2 2
1 and for the

choice = 2 +1that for = 2

max
1

1
6

( )

=1

( vol )
log(2 ) 5,k

( ) log(2 ) 5,k

2( log 2) (1+ ) (6.28)

This proves, via Borel-Cantelli, that Eq. 6.17 holds, which obviously implies
Eq. 6.16 and hence complete the proof of Theorem 2.5.
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6.5. Proof of Theorem 2.6: the Unbounded Case To prove this theorem,
we will need to truncate the conditional -statistic ( t). If condition
(2.8) is not satisfied, we consider bandwidths lying in the smaller interval

= [ 0], that may be divided into subintervals as follows

:= [ 1 ] (6.29)

where the boundaries are given by := 2 . Note that it is straight-
forward to show that Eq. 6.18 remains valid if we replace by . In
particular, we still have ( ) 2 log , where ( ) is now defined as

( ) := max : 2 0

Recall that = 2 0, and set for, 1,

= log (6.30)

For an arbitrary 0, we truncate each function , either the envelope
function as follows

where ˜ is the symmetric envelope function of the class as defined in
Eq. 6.4. ( t) can then also be decomposed for any 1

since, from Eq. 2.11,

( t) = ( )( ¯
( )

t)
( )( ¯

( )
t) + ( )( ˜

( )
t)

( )( ˜
( )

t)

=: ( )( t) + ˜( )( t)

The term
( )
( t) will be called the truncated part and ˜

( )
( t) the

remainder part. To prove Theorem (2.6), we shall apply the Hoeffding de-
composition to the truncated part and analyze each of the terms separately,
while the remaining part can be treated directly using simple arguments
based on standard inequalities. Note, for further use, that

=
2 1

1 (6.31)
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6.5.1. Truncated Part. First, note that by Hoeffding decomposition
(6.1), we need to consider the terms of

=1

( )(
( )

t)

We shall start with the linear term in this decomposition. Following the

same reasoning as in the previous section, we can show that 1
( )

t is a
centered conditional expectation and that the first term of Eq. 6.1 can be
written as an empirical process based on the sample ( 1 1) ( )
and indexed by the class of functions

:=
( )

t( ) : F t I

where was defined at the beginning of this section and where

( )
t( ) =

( )
t(X Y) ( 1 1) = ( )

To show that is a VC-class, introduce the class of functions of (x y)
,

Since both as defined below

= t( ) : F 0 1 t (6.32)

and the class of functions of y given by
are of VC-type (and note that has a bounded envelope function), we
can apply Lemma A.1 in Einmahl and Mason (2000) to conclude that
is also of VC-type. Therefore, so is the class of functions (1) on + ,
where (1) consists of the 1 -projections of the functions in the class .
Thus, we see that (1) and hence is of VC -type with the same
characteristics as (1). Now, to find an envelope function for , set t :=
( 1 1 +1 ) ( 1) and Z ( ) :=( 1 1 +1

) for and Z . We can then rewrite the function
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( )
t( ) as

where X = ( 2 ) ( 1) and where (with a little abuse of
notation here) the product kernel in (K.iii) is now defined for ( 1) -
dimensional vectors, that is, (u) = 1

=1 ( ), u ( 1). Hence, we

can bound
( )

t( ) simply as

( )
t( )

1
( 2 ) ˜ t1 X

+
2

( 2 3 )
t2 X

+ + ( 2 )
t X

=: ( )

We shall now apply the moment bound in Theorem 7.3 to the subclasses

:=
( )

t( ) : t 1 ( )

where was defined in Eq. 6.29. Since for = 1 ( ),
all of these subclasses are of VC-type, with the same envelope function and
characteristics as the class (1) (which is independent of ), verifying (ii)
in Theorem 7.3. For (i), recall that although all of the terms of the envelope
function ( ) are different, their expectations are the same. Therefore,
writing Y for ( 2 ) and applying Minkowski’s inequality followed by
Jensen’s inequality, we obtain from assumption (2.10) the following upper
bound for the second moment of the envelope function:

2 ( ) = 2
Y [ ( 2 )]
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+ Y [ ( 2 3 )] + + Y [ ( 2 )] 2

2 2 2 ( 1 )
2 2 2

Note, further, that by the symmetry of ,

so that Jensen’s inequality, the change of variable u = (t x) and the as-
sumption in Eq. 2.10 give the following upper bound for the second moment
of any function in :

(6.33)

Therefore, with
1 1 2

2 , our previous calculations give

us that

2 ( ) 2 and sup 2( ) 2 ( vol )
=: 2

verifying condition (iii) as well. Finally, recall from Eq. 6.4 that since has
envelope function (y), it holds for all + that

so that by taking 0 small enough, Theorem 7.3 is now applicable. Thus,
for an absolute constant 1 , we have

=1

( ) 1
( vol )

log

1
( vol )

log log log
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=: 1 ( ) (6.34)

where 1 are independent Rademacher variables, independent of
( ) 1 . Consequently, applying the exponential inequality
of Talagrand (1994) to the class (see Theorem 7.5 in the Appendix)

with =
1 2

l,i
= 2 ( vol )

and the moment bound in Eq. 6.34,

we get, for an absolute constant 2 and all 0, that

max
1

1 1 ( ) +

2 exp
2

2

2 ( vol )
+ exp

2

1
(6.35)

Regarding the application of this inequality with = ( ) 1, note that
it clearly follows from Eq. 6.31 and the definitions of as in Eq. 6.29,
as in Eq. 6.31 and ( ) as in Eq. 6.34 that for all 0,

2( )
( vol )

= log log log log log

2( )
2

= 2
( vol )

log log log log (log log )2

Consequently, Eq. 6.35, when applied with = ( ) and any 1 with
large enough, yields, for suitable constants 2 2 and 3, the inequality

max
1

1 ( 1 + ) ( )

2 exp 2
2 log log + exp 2 log log

4 (log ) 3 (6.36)

Keeping in mind that
(1)

1
¯( )

t is the empirical process

( )
t indexed by the class and recalling Eq. 6.18, since vol ,

we obtain, for 1, that

max
1

:= max
1

sup
n 0

sup sup
t dm

(2 vol+ ) (1)
1
¯( )

t

log log log
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max
1

max
( )

sup sup sup
t dm

2 2
dvol ε

d
( )

t

( vol )
log log log

max
1

max
( )

sup
3 ( )

( )

Consequently, recalling once again that ( ) 2 log , we can infer from
Eq. 6.36 that for some constant 5( ) 3 1 ( 1 + ),

max
1

5( )

( )

=1

max
1

1 ( 1 + ) ( )

8 (log )1 3

The Borel-Cantelli lemma, when combined with this inequality for (2 +
) 3 0 and with the choice = 2 , establishes, for some and
with probability 1, that

lim sup max
1

sup
n 0

sup sup
t dm

(2 vol+ ) (1)
1
¯( )

t

log log log
(6.37)

this achieves the control of the first term in Eq. 6.1. We now treat the
nonlinear terms. The purpose is to prove that, for = 2 and with
probability 1, all of the other terms of Eq. 6.1 are asymptotically bounded
or go to zero at the proper rate, that is

max
1

sup
n 0

sup sup
t dm

(2 vol+ ) ( ) ¯( )
t

log log log
=

1 2

(6.38)
By following the same reasoning as in the bounded case, we define some
classes of functions on and ,

:= ¯( )
t( ) : t
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( )
:= ¯( )

t ( ) 2
1

: t

It is then easily verified that these classes are of VC-type with characteristics

that are independent of and with envelope functions and 2
1 1

,

respectively. The function is defined as in Eq. 6.4 and is determined
just as in the proof of Theorem 1 of Giné and Mason (2007a). Note that
just as in Eqs. 6.19 and 6.21, by setting

( ) := sup
(k)

1
2
i k

n

(Xi Yi) 1

we see that for all = 2 and 1 ,

( )
2 ( ) ( )

(k)
ε,j

Consequently, applying Theorem 7.2 with = 1 2 and = 2 gives us
precisely (6.20) with ( ) and ( ) replaced by ( ) and

( ), respectively. Therefore, the same methodology as in the bounded

case will be applied. Note also that, as held for all the functions in
( )

, the

functions in
( )

are bounded by 1 and have second moments that can be

bounded by ( vol ) for a suitable (by arguing as in Eqs. 6.33
and 6.22). Hence, the expression in Eq. 6.22 is also satisfied for functions in

( )
, that is,

sup
(k)

2(X Y)
( vol )

=: 2

Thus, all the conditions for Theorems 7.4 and 7.6 are satisfied so that, after
some obvious identifications and modifications, the second part of the proof
of Theorem 2.5 (and Eq. 6.26 in particular) gives us, for some 7 0, all
= 1 ( ) and any 2,

max
1

( ) 2 2 ( vol )
(log ) 7,k (6.39)

with = 1 ( ) for some 1 0 and where ( ) is defined as in
Eq. 6.24 with replaced by , that is,

( ) = log log log
2
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Now, to finish the proof of Eq. 6.38, note that, similarly to Eq. 6.27, for
some 0, for 1

2 ( ) ( ) 2
1

( )

This gives that for some 0,

max
1

:= max
1

sup
n 0

sup sup
t dm

(2 vol+ ) ( ) ¯( )
t

( log log log )

2
1

1
max
1

max
( )

( )

( )

2
1

1
max
1

max
( )

( )

( )

From Eq. 6.31, we now see that

2 1 = 2 log

By the fact that log 2 is monotone increasing in 2 whenever 2,
so that for some constant 8 0, we infer that

max
1

log
2 8

max
1

max
1 ( )

( )

( )
8

2
1

2 1

log

( )

=1

max
1

( )
8

2

2
( )

Therefore, by choosing 8 2 +1 2
1 ((2 + ) 7 ) 2 and not-

ing that by definition ( ) 2 log and 2 for all = 1 ( ), we
can infer from Eq. 6.39 with

= (2 + ) 7
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that

max
1

log
2 8

( )

=1

max
1

( ) 2
2 +

7

2

1 ( )

=

( )

=1

max
1

( ) 2
2 +

7

2

( ) (log ) 7,k

2 2 (log ) (1+ )

This immediately implies, via Borel-Cantelli, that for all = 2 and
1,

max
1

sup
n 0

sup sup
t dm

(2 vol+ ) ( ) ¯( )
t

( log log log )

=
2

log

a.s., which obviously implies Eq. 6.38. Finally, recalling the Hoeffding de-
composition (6.1), this implies, together with Eq. 6.37, that for some 0
with probability 1,

lim sup max
1

sup
n 0

sup sup
t dm

(2 vol+ ) ( ) ¯( )
t

( ) ¯( )
t

log log log
(6.40)

6.6. Remainder Part Consider now the remainder process
( )
( t)

based on the unbounded (symmetric) -kernel given by
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where we defined as in Eq. 6.30. We shall show that this -process is
asymptotically negligible at the rate given in Theorem 2.6. More precisely,
we shall prove that as ,

max
1 0

sup sup
t dm

(2 vol+ ) ( ) ( )
t

( ) ( )
t

log log log

= (1) (6.41)

Recall that for all [ 0] and t x (y) ¯
t(x y) ,

so from the symmetry of , it holds that

where is a -statistic based on the positive and

symmetric kernel . Recalling that =
(log )1 2 , we obtain easily that for all [ 0] t and
some 0

Arguing in the same way, since a -statistic is an unbiased estimator of its
kernel, we get that, uniformly in [ 0] and t ,

(6.42)

From Eq. 6.42, we see that as ,

max
1

sup
n 0

sup sup
t dm

(2 vol+ ) ( ) ( )
t

log log log
= (1) (6.43)
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Thus, to finish the proof of Eq. 6.41, it suffices to show that

(6.44)

First, note that from Chebyshev’s inequality and a well-known inequality for
the variance of a -statistic (see Theorem 5.2 of Hoeffding (1948)), we get,
for any 0,

(6.45)

Next, in order to establish the finite convergence of the series of the above

probabilities, we split the indicator function into two dis-

tinct parts determined by whether (Y)
1

or
1

(Y)
1

,
and consider the corresponding second moments in Eq. 6.45 separately. In
the first case, note that, from Eqs. 2.10 and 6.4, (Y) ( !) and
observe that since 2 and = 2 ,

To handle the second case, we shall need the following fact from Einmahl
and Mason (2000).

Fact 6.1. Let ( ) 1 be a sequence of positive constants such that 1

for some 0 and let be a random variable satisfying

=1

We then have, for any ,
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Notice that for any 2 ,

Now, set = (Y) = 1 and = in Fact 6.1 and note that 1

for any such that = . Since = , we can conclude from
Fact 6.1 that this last bound is finite. Finally, note that the bound leading
to Eq. 6.45 implies that

Consequently, the above results, together with Eq. 6.45, imply via Borel-
Cantelli and the arbitrary choice of 0 that Eq. 6.44 holds, which, when
combined with Eqs. 6.43 and 6.45, completes the proof of Eq. 6.41. This
also completes the proof of Theorem 2.6 since we have already established
the result in Eq. 6.40.

6.7. Proof of Theorem 2.7 Theorem 2.7 is essentially a consequence of
Theorem 7.7, details are similar to the proof of Dony and Mason (2008) and
therefore omitted.

6.8. Proof of Corollary 2.8 We now turn to the proof of Corollary 2.8.
We observe the following standard inequalities

( )( t; ) ( )( t; ) =
( t)

(1 t)

( t)

(1 t)

( t) ( t)

(1 t)

+
( t) (1 t) (1 t)

(1 t) (1 t)

=: (I) + ( )

We can infer from Theorem 7.7 that

sup
n n

sup
t Im

(1 t) (t) 0 (6.46)
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Then, from Theorem 2.5, Eq. 6.46 and X( ) bounded away from zero on J,
we get, for some x 1 x 2 0 and large enough in = (log )1 ,

lim inf sup
n n

sup
t Im

(1 t) = x 1 0 a.s.,

and, for large enough,

sup
n n

sup
t Im

(1 t) = x 2 0

Further, for equalling either or , we readily obtain from the assump-
tions (2.8) or (2.10) on the envelope function that

sup
n n

sup
Fq

sup
t Im

( t) = (1).

Hence, we can now use Theorem 2.5 to handle ( ), while for (I), depending
on whether the class F satisfies Eq. 2.8 or 2.10, we apply Theorem 2.5 or
Theorem 2.6, respectively. Taking everything together, we conclude that for
large enough and some C3 0, with probability 1,

lim sup sup
n n

sup
Fq

sup
t Im

(2 vol+ ) ( )
( t; )

( )
( t; )

log (log(2 ) log log )

lim sup sup
n n

sup
Fq

sup
t Im

(2 vol+ )(I)

log log log

+ lim sup sup
n n

sup
Fq

sup
t Im

(2 vol+ )
( )

log log(2 )

C3

We readily obtain the assertion of the theorem by choosing appropriately .
�

6.9. Proof of Proposition 3.2 Recalling the Definition 3.1 of

it is obvious that Φ is uniformly bounded, in ( 1 1 ) 2

and F , since F is uniformly bounded, ( ) = 0 for all and
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( ) 1. This property, when combined with the VC property of F ,
ensures that the class of function

FΦ := Φ : F

verifies Eqs. F.ii, F.iii. Similarly, it can be shown that FΦ is a pointwise
measurable class of functions (F.i). Moreover, by (A.3) and Eq. 3.2, the
class

Φ := Φψ X : F

is almost surely relatively compact concerning the sup- norm topology on
. So we can apply Theorem 2.8 with Y = ( ) and Ψ = Φ . The result

of Proposition 3.2 is straightforward. �

Lemma 6.2. Under assumptions of Theorem 3.1, we have with probability
one,

sup
n

sup
t m

sup
F

˘( ) ( t; ) ˘( )( t; ) =
log(1 )

as

(6.47)

6.10. Proof of Lemma 6.2 Recall the following useful lemma.

Lemma 6.3. Let , = 1 , = 1 be real number

=1 =1

=
=1

( )

1

=1 =1+

An application of the preceding lemma gives

sup
n

sup
t m

sup
F

˘( ) ( t; ) ˘( )( t; )

= sup
n

sup
t m

sup
F

( 1 m) ( )

1 m ( 1 m)
( )

i(t)

1

(1 ( 1) (1 ( m))

1

(1 ( 1) (1 ( m))

sup
n

sup
t m

=1

( )
i(t) sup

t [0 )m
sup

Fq

(t)

=1

1

1 ( η)

1

1 ( η)

1

=1

1

1 ( j )
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= +1

1

1 (
k
)

sup
n

sup
t m

=1

( )
i(t) sup

t [0 )m
sup

Fq

(t)

=1

sup ( ) ( )

[1 ( )][1 ( )]

1

=1

1

1 ( j ) = +1

1

1 (
k
)

sup
n

sup
t m

=1

( )
i(t) sup

t [0 )m
sup

F
(t)

sup ( ) ( )

[1 ( )][1 ( )]

(6.48)

Since
sup

F
(t)

the kernel ( ) is uniformly bounded and

=

the law of iterated logarithm for ( ) established in Földes and Rejtő (1981)
ensures that

sup ( ) =
log log

almost surely as

By combining the results of Proposition 3.2 and Lemma 6.2, the result of
the Theorem 3.1 is immediate by noting that, under the conditions (H.1-3),
we have, for sufficiently large,

sup ( ) =
log(1 )

almost surely as

Hence the proof is complete.
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kohler, m., máthé, k. and pintér, m. (2002). Prediction from randomly right censored
data. J. Multivar. Anal. 80, 73–100.

koroljuk, v.s. and borovskich, y.v. (1994). Theory of U-statistics, volume 273 of Math-
ematics and Its Applications. Kluwer Academic Publishers Group, Dordrecht. Trans-
lated from the 1989 Russian original by P. V. Malyshev and D. V. Malyshev and
revised by the authors.

kosorok, m. r. (2008). Introduction to empirical processes and semiparametric inference.
Springer Series in Statistics. Springer, New York.

lee, a. j. (1990). U-statistics, volume 110 of Statistics: Textbooks and Monographs. Marcel
Dekker, Inc., New York. Theory and practice.

lee, s., linton, o. and whang, y. -j. (2009). Testing for stochastic monotonicity. Econo-
metrica 77, 585–602.

leucht, a. (2012). Degenerate U - and V -statistics under weak dependence: asymptotic
theory and bootstrap consistency. Bernoulli 18, 552–585.

leucht, a. and neumann, m. h. (2013). Degenerate U - and V -statistics under ergodicity:
asymptotics, bootstrap and applications in statistics. Ann. Inst. Stat. Math. 65, 349–
386.

levina, e. and bickel, p. j. (2004). Maximum likelihood estimation of intrinsic dimension.
In Proceedings of the 17th International Conference on Neural Information Processing
Systems, NIPS’04, pp. 777–784. MIT Press, Cambridge.

ling, n. and vieu, p. (2018). Nonparametric modelling for functional data: selected survey
and tracks for future. Statistics 52, 934–949.

maillot, b. and viallon, v. (2009). Uniform limit laws of the logarithm for nonparametric
estimators of the regression function in presence of censored data. Math. Methods
Stat. 18, 159–184.

mason, d. m. (2012). Proving consistency of non-standard kernel estimators. Stat. Infer-
ence Stoch. Process. 15, 151–176.

mason, d. m. and swanepoel, j. w. h. (2011). A general result on the uniform in band-
width consistency of kernel-type function estimators. TEST 20, 72–94.

nadaraja, e. a. (1964). On a regression estimate. Teor. Verojatnost. i Primenen. 9, 157–
159.

1601



S. Bouzebda et al.

nolan, d. and pollard, d. (1987). U -processes: rates of convergence. Ann. Stat. 15,
780–799.

prakasa rao, b. l. s. and sen, a. (1995). Limit distributions of conditional U -statistics.
J. Theor. Probab. 8, 261–301.

schick, a., wang, y. and wefelmeyer, w. (2011). Tests for normality based on density
estimators of convolutions. Stat. Probab. Lett. 81, 337–343.

sen, a. (1994). Uniform strong consistency rates for conditional U -statistics. Sankhyā Ser.
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Appendix

Theorem 7.1. (Kim et al., 2018) Let ( ) be a probability space and
let X1 X be i.i.d. from . Let be a class of functions from to

that is uniformly bounded VC-class with dimension , i.e., there exists
positive numbers , such that, for all , , and for every
probability measure on and for every (0 ), the covering number
( 2( ) ) satisfies

( 2( ) )

Let 0 with 2 2 for all . Then there exists a universal
constant not depending on any parameters such that

sup
1

=1

(X ) [ (X)]

is upper bounded with probability at least 1 ,

sup
1

=1

(X ) [ (X)]

log
2

+
2

log
2

+
2 log 1

+
log 1

Theorem 7.2 (Theorem 4 of Giné and Mason (2007a)). Let 1 2

be i.i.d. -valued with probability law . Let be a -separable collection
of measurable functions : and assume that is -canonical (which
means that every in is -canonical). Further, assume that

( 1 )

for some 1 and let be the conjugate of . Then, with Uniform in
bandwidth consistency of conditional -statistics 1131 defined as

= sup

i k
n

( 1 k
)

we have, for all 0 and 0 1,

max
1 ( )1

(1 )
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Theorem 7.3 (Proposition 1 of Einmahl and Mason (2005)). Let be
a pointwise measurable class of bounded functions with envelope function

such that for some constants 1 and 0 , the following
conditions hold:

(i) 2( ) 2;

(ii) ( ) 0 1;

(iii) 2
0 := sup 2( ) 2

(iv) sup 1
4

2 log ( 1 ), where 1 =
1 .

We then have, for some absolute constant ,

=1

( ) vn 2 log ( 1 )

where 1 are i.i.d. Rademacher variables, independent of 1 .

Theorem 7.4 (Corollary 1 of Giné and Mason (2007a)). Let be a
collection of measurable functions : , symmetric in their entries,
with absolute values bounded by 0, and let be any probability measure
on ( ) ( with i.i.d.- ). Assume that is of -type with envelope
function and with characteristics and . Then, for every

1, there exist constants 1 := 1( ) and 2 =

2( ) such that for = 1

( ) ( )
2

2
12

2 log

assuming
2

2 log( )

where 2 is any number satisfying

2 2 2

Theorem 7.5. (Talagrand, 1994) Let be a pointwise measurable class
of functions satisfying
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We then have, for all 0,

max
1

1

=1

( ) +

2 exp
2

2

2 + exp
2

where

2 = supVar( ( ))

and 1 2 are universal constants.

We now state the exponential inequality that will permit us to control
the probability term in (4.6) and which is stated as Theorem 5.3.14 in de la
Peña and Giné (1999).

Theorem 7.6 (Theorem 5.3.14 of de la Peña and Giné (1999))). Let
be a -subgraph class of uniformly bounded measurable real-valued kernels

on ( ), symmetric in their entries. Then, for each 1 ,
there exist constants ] 0 [ such that, for all and 0 ,

2 ( ) ( ) exp 2

Theorem 7.7. (Dony and Mason, 2008) Let = [ ] be a compact
interval. Suppose that is a uniformly equicontinuous family of real-valued
functions on = [ + ] for some 1 and 0. Further assume
that is an 1-kernel with support in [ ] , with 0 satisfying

d (u)du = 1. Then, uniformly in and for any sequence of positive
constants 0,

sup
0 nz d

sup (z) (z) 0 as

where (z) = (z ) and

(z) :=
d

(x)
z x

dx
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