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Abstract

The conditionality principle C plays a key role in attempts to characterize
the concept of statistical evidence. The standard version of C considers a
model and a derived conditional model, formed by conditioning on an an-
cillary statistic for the model, together with the data, to be equivalent with
respect to their statistical evidence content. This equivalence is considered
to hold for any ancillary statistic for the model but creates two problems.
First, there can be more than one maximal ancillary in a given context and
this leads to C not being an equivalence relation and, as such, calls into
question whether C is a proper characterization of statistical evidence. Sec-
ond, a statistic A can change from ancillary to informative (in its marginal
distribution) when another ancillary B changes, from having one known dis-
tribution PB , to having another known distribution QB . This means that the
stability of ancillarity differs across ancillary statistics and raises the issue
of when a statistic can be said to be truly ancillary. It is therefore natu-
ral, and practically important, to limit conditioning to the set of ancillaries
whose distribution is irrelevant to the ancillary status of any other ancillary
statistic. This results in a family of ancillaries for which there is a unique
maximal member. This also gives a new principle for inference, the stable
conditionality principle, that satisfies the criteria required for any principle
whose aim is to characterize statistical evidence.
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1 Introduction

The conditionality principle C has played a puzzling role in attempts
to develop a frequentist theory of statistical inference. On the one hand it
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seems intuitively obvious, and even a necessary component of such a theory.
But it also produces a significant ambiguity due to nonequivalent applica-
tions for which there seems to be no easy solution in terms of determining
which is correct or even if any are correct. Attempts to ignore this prob-
lem, typically by considering certain applications as equivalent, produces
the somewhat strange phenomenon that C, a frequentist principle, can lead
to the likelihood principle L which precludes any frequentist inferences, see
Evans et al. (1986) and Evans (2013) for discussion of this.

The fact that C is not an equivalence relation, which any valid charac-
terization of statistical evidence must be, calls into question the justifica-
tion for C. This can be considered as a logical inconsistency in the defini-
tion of C. Moreover, as will be shown, the ancillary status of a statistic
can change to being informative when the distribution of another ancillary
statistic changes. This raises the issue of whether the distribution of such
a statistic is truly irrelevant for inference, which can be considered as a
statistical inconsistency in the definition of C.

The purpose of this paper is to propose a resolution to these problems. It
is argued that a correct characterization of the ancillary concept requires the
restriction of the set of possible ancillaries for use to a subset and this is based
upon very natural statistical criteria. Once the restriction is made, there is a
unique maximal member of this subset and this becomes the ancillary to use as
it makes the maximal reduction in the set of possible data values to compare
the observed data to in the conditional model. We show that natural statis-
tical criteria lead to the set being the minimal ancillaries, whose maximum
is the laminal ancillary as labelled by the taxonomy of Basu (1959).

One could argue that this isn’t much of an advance, particularly because
the laminal ancillary is often trivial, but we would counterargue that it is
significant because it shows that the other ancillaries, besides the laminal, are
ineligible to be used in the conditioning step. This establishes the validity of
some form of C for inference and this has broad implications. In particular,
the idea that C together with the sufficiency principle S can lead to L,
as discussed, for example, in Birnbaum (1962), Evans et al. (1986), Evans
(2013) and many others, is completely avoided and this applies similarly to
the argument that C alone can produce L. Additionally, it leads to a new
and uncontroversial principle that combines S and a modified C that still
permits frequentist considerations for inferences.

In Section 2 the conditionality principle is discussed. In Section 3 we
introduce the statistical criterion that assesses whether an ancillary statistic
is unstable (can become informative) if one merely changes the distribution
of another ancillary statistic. We show how this connects to the minimal
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and laminal ancillaries. In Section 4 a principle is introduced which satis-
fies both S and the new conditionality principle. This principle forms an
equivalence relation in the class of all inference bases and so is indeed a
valid partial characterization of statistical evidence, which was Birnbaum’s
intention. The proofs of all propositions are placed in the Appendix.

The conditionality principle has attracted many authors some of whom have
attempted resolutions. The papers Basu (1959, 1964), Cox (1958, 1971),
Kalbfleisch (1975), Buehler (1982), Stigler (2001) and Ghosh et al. (2010)
all represent interesting contributions and there are many more which can
be found in the references of these papers. To the best of our knowledge
nobody has presented a forceful argument for the laminal ancillary as being
the natural resolution and that is the outcome of the discussion in Section 3.

2 Principles and Ancillaries

All of the principles S,C and L, are applied to inference bases. An
inference base I = (M,x) is comprised of a statistical model

M = (X ,B, {Pθ,X : θ ∈ Θ}),

where X is a sample space containing all possible values for the observed
data x of random object X,B is a σ-field on X and {Pθ,X : θ ∈ Θ} is a
collection of probability measures defined on B indexed by model parameter
θ ∈ Θ. For inference, the assumption is made that there is a true value of
θ, say θtrue, such that, before it is observed, x ∼ Pθtrue,X . The goal, once
x is observed, is to make inference about which of the possible values of
θ ∈ Θ corresponds to θtrue and these inferences are based somehow on the
ingredients I = (M,x). More generally, our interest is in some marginal
parameter ψ = Ψ(θ) that has a real-world interpretation and it is desired
to know the value ψtrue = Ψ(θtrue) and this requires dealing with so-called
nuisance parameters. This more general problem is ignored here except
to say that the concept of conditioning on an ancillary for the model is still
relevant for that context. Birnbaum (1962) considered the set of all inference
bases and for inference bases I1 and I2 with essentially the same model
parameter (or bijective relabellings thereof), indicated that these inference
bases contain the same statistical evidence about the true value of the model
parameter by writing Ev(I1) = Ev(I2).

It is worth noting that there is an implicit assumption in the develop-
ments here, namely, it is assumed that all relevant aspects of the statistical
investigation are captured by saying that the true distribution of the re-
sponse is a member of a set of distributions, on a given sample space, and
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indexed by θ ∈ Θ. This restriction is commonly made in discussions of in-
ference but it is still an assumption, namely, that there are no other aspects
of the problem that need to be included. This assumption is stated as the
Distribution Principle in Dawid (1977). So all results derived here require
this assumption as does our interpretation of the results of Birnbaum (1962).

An ancillary statistic for the model M is a map A : (X ,B) →(A, C) such
that the marginal probability measure induced by A satisfies Pθ,A = PA for
every θ ∈ Θ. In other words A is ancillary when its marginal distribution is
independent of the model parameter and it is then claimed that the observed
value of A(x) contains no information about θtrue. More than this, simple
examples, like the two measuring instruments example in Cox (1958), suggest
that for frequentist inferences the initial model M in I = (M,x) be replaced
by M|A(x) = {Pθ,X(· |A(x)) : θ ∈ Θ}, where Pθ,X(· |A(x)) is the conditional
probability measure for X given the value A(x). A statement of the principle
C is then,

C: If A : (X ,B)→(A, C) is ancillary for M, then Ev(M,x)=Ev(M|A(x), x).

An ancillary A is a maximal ancillary if, whenever A′ is another ancillary
and there exists a function h such that A = h(A′), then h is effectively a
1-1 function. So, the set of possible data values {z : A(z) = A(x)} that is
conditioned on via C, when the value A(x) of a maximal ancillary is observed,
cannot be made smaller without losing ancillarity.

It is natural to make the greatest possible reduction in the set of pos-
sible sample values we use for inference and so a possible full statement of
C would be to condition on a maximal ancillary. When there is a unique
maximal ancillary this is uncontroversial. As Example 1 shows, however,
there can be several maximal ancillaries. In such a case there is an ambigu-
ity concerning which maximal ancillary to use when applying C as, for two
maximal ancillaries A1 and A2, inference bases (M|A1(x), x) and (M|A2(x), x)
can lead to quite different inferences, see Example 2. It is shown in Evans
(2013) that the lack of a unique maximal ancillary implies that C is not
an equivalence relation on the set of all inference bases and therefore, as
currently stated, it is not a correct characterization of statistical evidence.
Also, it is shown there that, if C̄ is the smallest equivalence relation contain-
ing C, then C̄ = L. Similarly the smallest equivalence relation containing
S∪C, which is also not an equivalence relation, satisfies S ∪ C = L and this
is what the proof of Birnbaum’s theorem proves. So the lack of a unique
maximal ancillary leaves open the question of whether or not C, or some
modification, is indeed a valid statistical principle that should be employed
in statistical work.
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Table 1: Distributions in Example 1 together with likelihood ratios
x 1 2 3 4 5 6 7

θ = θ1
1
8 + ε 1

8 − ε 1
8 + 2ε 1

8 − 2ε 1
14

2
14

4
14

θ = θ2
1
16 − ε 3

16 + ε 3
16 + 4ε 1

16 − 4ε 2
14

1
14

4
14

LR 1/8+ε
1/16−ε

1/8−ε
3/16+ε

1/8+2ε
3/16+4ε

1/8−2ε
1/16−4ε

1
2 2 1

Basu (1959) defined a minimal ancillary as any ancillary which is a func-
tion of every maximal ancillary and showed that there is a unique ancillary
in the class of minimal ancillaries, called the laminal ancillary, which is
maximal in this class. The following example illustrates these concepts.

Example 1. Suppose M consists of two distributions, as provided in the
Table 1 together with the likelihood ratio (LR). Actually it is a range of
examples as ε is any value satisfying 0 < ε < 1/64. For each such case
the minimal sufficient statistic (mss) is the identity which is not the case if
ε = 0. This implies that all the ancillaries are functions of the mss and this
will prove important for our later discussion.

Since any 1-1 function of an ancillary is ancillary, it is equivalent to
present all the preimage partitions induced by such statistics when consider-
ing the ancillary structure of this model and some of these are provided in
Table 2. It is clear from this table that the maximal ancillaries are given by
A1 and A2, as these give the finest ancillary partitions, and so the laminal
ancillary must be L as it is the finest partition containing both maximal an-
cillaries. The minimal ancillaries are given by {T,B1, B2, B3, L}, where T
is the trivial ancillary, as these are all coarsenings of both A1 and A2 and
are presented in Table 2.

Table 2: The minimal ancillaries in Example 1
Ancillary Partition of X
T {1, 2, 3, 4, 5, 6, 7}
B1 {1, 2, 3, 4, 5, 6}, {7}
B2 {1, 2, 3, 4, 7}, {5, 6}
B3 {1, 2, 3, 4}, {5, 6, 7}
L {1, 2, 3, 4}, {5, 6}, {7}
A1 {1, 2}, {3, 4}, {5, 6}, {7}
A2 {1, 3}, {2, 4}, {5, 6}, {7}
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Table 3: Distributions in Example 2
x 1 2 3 4

θ = θ1 1/6 1/6 2/6 2/6
θ = θ2 1/12 3/12 5/12 3/12

There are ancillaries that are coarsenings of single maximal ancillaries
such as

C1 : {1, 3}, {2, 4}, {5, 6, 7}
C2 : {1, 3, 5, 6}, {2, 4}, {7}

which are coarsenings of A2 but not of A1 and there are many others.
If the sample space were shrunk to {1, 2, 3, 4}, with the 1/2 probability for

{5, 6, 7} redistributed equally among the 4 sample points, then the laminal
ancillary becomes the trivial ancillary and this is not uncommon, as noted
in Basu (1959) where conditions for this to occur are discussed.

The following example demonstrates the ambiguity that a nonunique max-
imal ancillary can produce and is adapted from Evans (2015).

Example 2. Consider the model given by Table 3 and suppose x = 1 is
observed. The MLE of θ is θ̂(1) = θ1.

There are two maximal ancillaries as given by their partitions, namely
A1 = {{1, 2}, {3, 4}} and A2 = {{1, 3}, {2, 4}}. The sampling distributions of
the MLE obtained by conditioning on the maximal ancillaries are as displayed
in Table 4.

As can be seen, these sampling distributions are quite different and it is
not clear which to use as part of quantifying the uncertainty in the estimate.

3 Stable and Strong Ancillaries

Despite the rich structure of the ancillary statistics, standard evidence
theory assumes (through the standard conditionality principle C) that con-
ditioning on different ancillary statistics is equally valid. We challenge this
assumption through two main perspectives, which give rise to a resolution.

Table 4: Conditional distributions of the MLE in Example 2
θ = θ1 θ = θ2

Pθ1(θ̂(X) = θ |A1 = {1, 2}) 1/2 1/2

Pθ2(θ̂(X) = θ |A1 = {1, 2}) 1/4 3/4

Pθ1(θ̂(X) = θ |A2 = {1, 3}) 1/3 2/3

Pθ2(θ̂(X) = θ |A2 = {1, 3}) 1/6 5/6
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Reproducing the Structure with a Single Maximal Ancillary As
noted in Evans (2013), the fact that more than one maximal ancillary can ex-
ist results in C not forming an equivalence relation on the set of all inference
bases. If we want to claim that a given principle does properly characterize
when two inference bases contain the same amount of statistical evidence
concerning an unknown θ, then it seems clear that the principle must induce
an equivalence relation. Therefore, C needs to be modified if it is desirable
for conditioning on ancillaries to play a role in inference.

Basu (1959) introduced the concept that two ancillary subsets A,B ∈ B
for model M conform when A ∩ B is also ancillary. The set of all ancillary
subsets that conform to every other ancillary subset is denoted by Γ0 and
it is proved that Γ0 is a σ-field and moreover this is the laminal ancillary
σ-field in the sense that it is the largest σ-field contained in all the σ-fields
induced by the individual maximal ancillaries. This is effectively saying that
(allowing for 1-1 equivalences) the laminal ancillary statistic is a function of
every maximal ancillary. A further implication of this is that the laminal
ancillary σ-field is the largest minimal ancillary σ-field and so the laminal
ancillary statistic is the maximal minimal ancillary statistic. Also, if there is
a unique maximal ancillary then this is also the laminal ancillary. This points
to a special role for the laminal ancillary especially since the laminal ancillary
always exists and a conditionality principle that prescribed conditioning on
the laminal forms an equivalence relation on the set of inference bases, see
Section 4.

Although logical, this role has not been explored. Perhaps this is be-
cause the laminal doesn’t often produce a meaningful reduction. But also
Basu’s development, while logical, doesn’t provide a good statistical reason
to adopt the laminal as the logical ancillary to condition on. It is argued
here, however, that there is a key element that can be added to the story
and with this addition the laminal is not only a logical resolution, but is a
statistical necessity.

Addressing the Transition of Ancillaries to Informative Statistics
The key idea in this development is the supposed irrelevance of the distri-
bution of an ancillary that is to be conditioned on. For after all, as far as
inference goes, this distribution plays absolutely no role whatsoever. The
statistical intuition behind this is that the distribution of the ancillary is
free of the parameter and so an observation from it contains no information
about θtrue. As such, it must be the case that, no matter what distribution
is assumed for an ancillary this cannot change the basic information struc-
ture of the problem. Note that this is a more severe requirement for what
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it means for a statistic to be ancillary. Two definitions that capture this
idea are now provided and their equivalence proved. It is then proved that
the set of ancillaries which satisfy this criterion has a maximal member and
it is the laminal ancillary. To avoid a measure-theoretic presentation via
σ-fields, as in Basu (1959), it will be assumed here that all ancillaries are
discretely distributed on N and that there are at most a countable number
of ancillaries, as this is sufficient for conveying the key ideas.

For ancillary U for model M, the following notation is adopted

M =
∑

i

PU ({i})M|U=i.

This expresses the idea that the model M is a mixture of the component
models obtained by conditioning on U = i where the mixture probabilities
are given by the marginal distribution of U. The following definitions capture
the idea that the distribution of U should be irrelevant for the inference
problem.

Definition. An ancillary U for model M is called a stable ancillary for
M if, whenever V is ancillary for M, then U is ancillary for the mixture∑

i piM|V =i
for every probability distribution (p1, p2, . . .) on the set of possible

values for V. An ancillary U for model M is called a strong ancillary for M
if any ancillary V for M is also ancillary for the mixture

∑
i piM|U=i

for
every probability distribution (p1, p2, . . .) on the set of possible values for U.

So U is a stable ancillary when changing the distribution of any other
ancillary has no effect on the ancillarity of U and U is a strong ancillary
if changing the distribution of U has no effect on the ancillarity of any
other ancillary. For any ancillary U that is not stable, then conditioning on
the value of some other ancillary renders the value U(x) informative which
contradicts the underlying motivation that the value of an ancillary statistic
contains no evidence concerning θtrue. Similarly, if U is not strong, then
conditioning on the value U(x) renders the value of some other ancillary
informative. Accordingly, it is difficult to accept the claim that the value of
an ancillary that is not stable/strong is noninformative with respect to θtrue.

In actuality, a stable ancillary is strong and a strong ancillary is stable
as the following result shows.

Proposition 1. U is a strong ancillary for M iff it is a stable ancillary
for M.

Given that stable and strong ancillaries are just different expressions of
the same concept, these will be referred to hereafter as stable ancillaries.

1110



On Resolving Problems with Conditionality...

In part (i) of the following result it is now shown that a stable ancillary
is a minimal ancillary and a minimal ancillary is a stable ancillary. Since
Basu (1959) proved that the laminal ancillary is the maximal minimal ancil-
lary this establishes that the laminal ancillary is the maximal stable ancillary
and, for the sake of completeness, this is proved in part (ii).

Proposition 2. (i) A stable/strong ancillary is a minimal ancillary and
conversely. (ii) There exists a maximal minimal ancillary (the laminal an-
cillary).

Since the word minimal doesn’t really convey the positive aspects of such
ancillaries these will be referenced as stable ancillaries hereafter.

It is worth noting that the structure given by the minimal and laminal
ancillaries is really the largest ancillary structure within the model that
replicates the situation where there is a single maximal ancillary and, as
such, there is no ambiguity about which ancillary to condition on. This
coherence points to the laminal ancillary as playing a special role and this
is reinforced by the notion of stability of an ancillary.

The following example demonstrate numerically the extent to which,
having an incorrect distribution of an unstable ancillary (i) can transform
another unstable ancillary to informative; yet (ii) preserves the ancillary
state of a stable ancillary.

Example 3. Consider again Example 1 with ε = 0.01, but now consider
what happens to the ancillary state of the unstable ancillary C2 and the sta-
ble ancillary L, when the distribution of the unstable ancillary A1 is changed
from PA1 , as given by (1/4, 1/4, 3/14, 4/14), to a true distribution that is un-
known to the researcher, P unknown

A1
, as given by (7/100, 13/100, 27/100, 53/100),

see Fig. 1. It is then observed that L stays ancillary, as theory assures,
namely, for both θ = θ1 and θ = θ2, the distribution of L is (1/2, 3/14, 4/14)
under the first scenario and (20/100, 27/100, 53/100) under the second. How-
ever, the likelihood ratios of C2, Pθ1(C2 = a given value)/Pθ2(C2 = a given
value), are largely away from 1; C2 has lost its ancillary state and is now
informative.

One may consider reasonable that such sensitivity of the ancillary state
for a statistic suggests that its ancillarity is not a structural feature of the
design, but is rather an erroneous coincidence. This possibility, while not
testable within the model, suggests that one should focus any conditioning
only on stable ancillaries.

To see additionally why C needs to be modified we examine the moti-
vation for conditioning as part of the inference process. This arises from
considering mixture experiments. Suppose there are a set of models say
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Figure 1: The result of changing the distribution of a nonstable ancillary in
Example 3

{Ma : a ∈ A}, with Ma = (X , {Pθ,a : θ ∈ Θ}), where the data x will arise
from one of these models. The model that produces the data is obtained via
a randomization procedure where a value a is produced with probabilities
given by PA({a}) = P (A = a), on A. This mixing produces the overall model
M =

∑
a∈A PA({a})Ma and A is ancillary for M. If the value of A = a0 is

observed, then C says that the inference base (Ma0 , x) is the one that is
relevant for inference about θ. This seems uncontroversial and therein lies
the appeal of C.

The controversy surrounding C arises when, rather than being presented
with a physical randomization device as part of a two-stage procedure, as
just described, we are presented with the inference base (M,x) with A being
ancillary for M. Since M can be at least be formally considered as a mixture
model via A, it then seems reasonable to replace (M,x) by (Ma0 , x), where
A(x) = a0, for inference about θ.

But now consider two studies conducted by statisticians 1 and 2 con-
cerning the true value of the quantity θ but suppose different randomization
schemes are used in each. So, in the i-th study the collection of models is
given by {Mia : a ∈ Ai} and the relevant ancillary is Ai. Suppose that the
results of the mixing produces the same overall model M and furthermore
the same data x is obtained. This may seem unrealistic, but recall that in
the end this is the situation that confronts us when considering a model with
multiple ancillaries and we wish to justify conditioning on one of them.
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It would seem then that both studies would conclude that the evidence
about the true value of θ in the inference base (M,x) is the same but the
expression of this will be different, and result in different conditional in-
ference bases, unless effectively the same maximal ancillary is being used
for the mixing. In Example 1, suppose the two randomization schemes are
specified by the maximal ancillaries A1 and A2 as this will be a case where
the conditional inference bases will be different. Recall, however, that the
specific distributions for the Ai are supposedly irrelevant for inference about
θ and indeed these play no role in the actual inferences. But now suppose,
for whatever reason, statistician 1 decides to modify their randomization
scheme by changing the distribution of A1 say from PA1 to P ′

A1
. This does

not change the submodels M1a and so this change in the ancillary distribu-
tion seems innocuous to statistician 1 as their inferences will not change due
to the irrelevance of the distribution of the ancillary. The overall model M,
however, has changed to M ′ and this may produce a conflict with statisti-
cian 2 because it may be that A2 is no longer ancillary in M ′ and is now
informative. Statistician 2 can now rightly claim that the distribution of A1

is definitely relevant to the inference process and so there is a contradiction
between the two statisticians.

This demonstrates that there is a clear contradiction that resides within
the reasoning that justifies C, at least as long as it is silent about which
ancillaries are appropriate for the conditioning step. The content of this pa-
per has demonstrated how to resolve this contradiction by making sure that
any ancillaries that are used do not produce the phenomenon just described.
The relevant ancillaries to use are the stable ancillaries and indeed their
marginal distributions are irrelevant for inference. The irrelevance of the
marginal distribution of a stable ancillary is similar to the irrelevance of the
conditional distribution of the data given a mss and both can be discarded
for inference. This recovers conditioning on an ancillary as a valid part of
the inference process. Of course, we want to make the maximal reduction
via conditioning, to eliminate as much of the variation as possible that has
nothing to do with θ, and this leads to conditioning on the laminal.

4 Stable Conditionality and Evidence

In discussing statistical evidence Birnbaum (1962) introduced the Ev
function defined on the set of all inference bases. When two inference bases
I1, I2 were considered to be equivalent with respect to their content of sta-
tistical evidence, this was denoted by Ev(I1) = Ev(I2). Birnbaum did not,
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however, specify the value of Ev(I). While this is understandable, this ap-
proach is modified here as evidence functions are fully defined (up to 1-1
equivalence due to relabellings) for the principles discussed. The basic reason
for this is that a principle of inference should not only state an equivalence,
but also prevent the usage of aspects of an inference base that are identified
as irrelevant for the inference process. As pointed out in Durbin (1970), en-
suring that this didn’t happen was one way of preventing Birnbaum’s proof
of his well-known theorem. We still do not give a full definition of Ev but it
is argued that this takes us some steps closer and that such restrictions are
a necessity.

In what follows, we examine the consequences that arise for statistical ev-
idence as described in Birnbaum, if one focuses on the set of stable ancillaries
that are functions of a mss for a model M , namely,

AM = {A : A is a stable ancillary and a function of a mss for model M}.
(4.1)

It was pointed out in Durbin (1970) that restricting to ancillaries that are
functions of a mss voided the proof of Birnbaum’s theorem. Evans et al.
(1986) argued that this was a natural restriction because otherwise the in-
formation being conditioned on via the ancillary was precisely the information
being discarded as irrelevant via sufficiency in Birnbaum’s proof. As such, there
existed a contradiction between the principles S and C in that context. The
restriction to ancillaries that are functions of a mss also seems implicit in Fisher’s
development of the ancillarity concept, as documented in Stigler (2001).

Based on the developments in Section 3, the restriction is made to those
ancillaries that are stable because these are in a sense the ancillaries that
truly introduce no information into the analysis concerning the true distri-
bution. It is to be noted that there still is a place in a statistical analysis
for ancillaries that are not functions of a mss as, for example, in regression
analysis with normal error where the standardized residuals are ancillaries
that are not functions of the mss but play a key role in model checking. Our
concern here, however, is with the inference step and the restriction to (4.1)
seems essential in that context.

For simplicity, we suppose that the parameter space Θ = {θ1, θ2, ..., θm}
and the sample space X = {x1, , ..., xn} are both finite as this doesn’t change
the essential meaning of the principles. Also we take B = 2X , the power set
of X , and suppress this in the notation hereafter. It is assumed that Θ is the
same in any two inference bases that we consider related via Ev although it
is possible to allow one parameter space to be a 1-1 relabelling of the other
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but this is ignored here. Also, it will always be assumed that, for each xi ∈ X
then there is at least one θ ∈ Θ such that Pθ({xi}) > 0 so the sample space
X cannot be made smaller.

A sufficient statistic T is any function defined on X such that, if T (x) =
T (y), then x and y are in the same equivalence class associated with the
sufficiency equivalence relation on X given by x ≡S y whenever there is a
constant c such that Pθ,X({x}) = cPθ,X({y}) for every θ ∈ Θ. A mss is a
sufficient statistic T such that when x ≡S y, then T (x) = T (y) and so it
is any function on X that indexes the equivalence classes. The value of the
mss represents the maximal reduction in the observed data that results in
no information loss concerning θtrue. A canonical representative of the mss
is, as discussed in Evans (2015), Lemma 3.3.2, given by T (x) = [x] where
[x] ⊂ X is the equivalence class induced by ≡S on X . Any function on X that
is constant on each set [x] and different on [x] and [y] when [x] 	= [y], can also
serve as a mss. For example, when there is θi ∈ Θ such that Pθi,X({x}) > 0
for all x ∈ X , then the mss can be taken to be

T (x) = (Pθ1,X({x})/Pθi,X({x}), . . . , Pθn,X({x})/Pθi,X({x})).

Let T : X onto→ T denote the mss, however it is chosen, with model MT =
(T , {Pθ,T : θ ∈ Θ}).

The following statement of the sufficiency principle is equivalent to the
statement in Birnbaum (1962) but it is easier to use this version to prove that
S is indeed an equivalence relation on the set of all inference bases, see Evans
(2015), Lemma 3.3.3. Here we allow for any version of the mss as h(T ) where
h is a 1-1 function (a relabelling) defined on T . This allows for relating two
inference bases (M1, x1) and (M2, x2) that may have very different models
but their minimal sufficient statistics are essentially equivalent under such
a relabelling and so the principle is defined as a relation on the set of all
inference bases.

Sufficiency Principle (S) The inference bases (M1, x1) and (M2, x2),
with minimal sufficient statistics T1 and T2 respectively, are equivalent under
S whenever there is a 1-1 onto, function h : T2→ T 1 such that T1 = h ◦ T2

and

(M1,T1 , T1(x1)) = (M2,h(T2), h(T2(x2))).

So when (M1, x1) and (M2, x2) are related via S, the sampling distributions
of T1 and T2 are essentially the same as are the observed values of these
statistics. For example, as a particular application, if model (X , {PX|θ : θ ∈
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Θ}) has mss T, then observations x, y ∈ X satisfying T (x) = T (y), together
with the model, contain the same evidence about θtrue, i.e.,

Ev(X , {Pθ,X : θ ∈ Θ}, x) = Ev(X , {Pθ,X : θ ∈ Θ}, y)

where the function h is just the identity in this case.
While no image space is defined for Ev it is necessary to do this for a

specific principle so that it is clear that the goal of the principle is to also
exclude ingredients that are really extraneous to the intent of the principle.
It is immediate from S that

Ev(X , {Pθ,X : θ ∈ Θ}, x) = Ev(T , {Pθ,T : θ ∈ Θ}, T (x))

and this is undoubtedly the most important application of the principle,
namely, all inferences about the true value of θ are based on the model for
a mss and its observed value. This leads to the definition of the minimal
sufficiency evidence function EvMS given by

EvMS(X , {Pθ,X : θ ∈ Θ}, x) = (T , {Pθ,T : θ ∈ Θ}, T (x)) = (MT , T (x)),

for say the canonical mss T, although any other equivalent version of the
mss could be used. In other words, we are restricting what we consider an
appropriate presentation of the evidence based on S. The ultimate evidence
function, whatever it may be, will be composed with EvMS .

For ancillary statistic A for model M = (X , {Pθ,X : θ ∈ Θ}) we write
M|A(x) = (X , {Pθ,X|A(x) : θ ∈ Θ}) for the family of derived conditional
distributions on X obtained by conditioning on the event specified by A(x).
The discussion in Section 3 about ancillarity then leads to the following
modified conditionality principle where again we state a general version of
the principle that can be applied to relate (or not) any inference bases.

Stable Conditionality Principle (SC) The inference bases (M1, x1)
and (M2, x2), with minimal sufficient statistics Ti and laminal ancillaries
Li ∈ AMi respectively, are equivalent under SC, whenever there is a a 1-1
onto, function h : T2→ T 1 such that T1 = h ◦ T2 and

(M1,T1|L1(T1(x1)), T1(x1)) = (M2,h(T2)|L2(T2(x2)), h(T2(x2))). (4.2)

For example, if model (X , {PX|θ : θ ∈ Θ}) has mss T and laminal ancillary
L ∈ AM , then observations x, y ∈ X satisfying T (x) = T (y), together with
the conditional model, contain the same evidence about θtrue, i.e.,

Ev(X , {Pθ,X|L(T (x)) : θ ∈ Θ}, x) = Ev(X , {Pθ,X|L(T (y)) : θ ∈ Θ}, y)
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where the function h is just the identity in this case.
It follows from SC that

Ev(X , {Pθ,X : θ ∈ Θ}, x) = Ev(T , {Pθ,T |L(T (x)) : θ ∈ Θ}, T (x))

and this is undoubtedly the most important application of the principle.
This leads to the definition of the stable conditionality evidence function
EvMS given by

EvSC(X , {Pθ,X : θ ∈ Θ}, x) = (T , {Pθ,T |L(T (x)) : θ ∈ Θ}, T (x)) (4.3)

for say the canonical mss T although any other equivalent version of the mss
could be used.

It is necessary to prove that SC is an equivalence relation on the set of all
inference bases as part of establishing that EvSC is a valid characterization
of statistical evidence.

Proposition 3. SC is an equivalence relation on the set of inference
bases.

It is obvious that, as relations on the set of all inference bases, SC ⊂ C.
The fact that SC is an equivalence relation establishes that this contain-
ment is proper because it has been established that C is not an equivalence
relation, see Evans (2013) or Evans (2015), Lemma 3.3.4. It has also been
shown in these references that the smallest equivalence relation containing
C is L. So an interesting consequence of Proposition 3 is that L cannot be
obtained from SC in this way.

Similarly, the same references establish that the relation given by S∪C is
not an equivalence relation and the proof of Birnbaum’s Theorem establishes
that the smallest equivalence relation containing S ∪C is L. In this case the
following establishes that S ⊂ SC so Birnabum’s Theorem does not follow
from S and SC.

Proposition 4. As relations on the set of all inference bases S ⊂ SC.

Note that SC only requires that the conditional models Mi,Ti|Li(Ti(xi))

be effectively the same for given xi and this does not imply that the uncon-
ditional models Mi,Ti are effectively the same so we cannot conclude that
SC ⊂ S. We do have, however, that the conditional inference bases are
equivalent under S.

Proposition 5. If (M1, x1) and (M2, x2) are equivalent under SC, then
the conditional inference bases (M1,T1|L1(T1(x1)), T1(x1)) and(M2,h(T2)|L2(T2(x2)),
h(T2(x2))) are equivalent under S.
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The following result demonstrates that the evidence function EvSC is the
ultimate presentation of the evidence based upon S and SC. The symbol ◦
refers to the composition of relations.

Proposition 6. For data x and model M = (X , {Pθ,X : θ ∈ Θ}), since
MS ⊂ SC, the evidence function defined by (4.3) satisfies EvSC = EvMS ◦
EvSC = EvSC ◦ EvMS .

So, the evidence function that results from the two principles, can be
unambiguously defined as the inference base containing both the observed
value of the mss and the collection of conditional distributions given the
laminal ancillary function of the mss as indexed by the model parameter.

The consequence of this development is that the application of the two
principles can be thought of unambiguously as a function on the set of all
inference bases. It is not clear that there shouldn’t be further reductions in
(T , {Pθ,T |L(T (x)) : θ ∈ Θ}, T (x)) to remove ingredients that are still extrane-
ous to the expression of the evidence concerning θtrue, but at this point it is
not obvious what form those would take.

Also, statistical evidence is ultimately expressed as part of answering
statistical questions. For example, what is the appropriate estimate of
ψtrue = Ψ(θtrue) and how accurate is it or is there evidence for or against
a hypothesis H0 : Ψ(θtrue) = ψ0 and how strong is this evidence? Simply
stating an inference base does not answer such questions but at least it does
tell us what to focus on when devising the answer.

An application of these principles can be given to perhaps an archetypal
example that has supplied much of the intuition underlying the necessity of
conditioning on an ancillary statistic.

Example 4. Two distinct sampling regimes as determined by an ancil-
lary.

Consider the two measuring instruments example discussed in Cox (1958).
A sample x = (x1, . . . , xn) is obtained from either the model {N(μ, σ2

1) :
μ ∈ R

1} or the model {N(μ, σ2
2) : μ ∈ R

1} where the variances are known
and reflect the inherent accuracy of two possible measuring instruments.
The instrument used is determined by a coin toss, before the data x is ob-
served, where i = 1 occurs with known probability p1 and i = 2 occurs
with probability p2 = 1 − p1. The full observed data is (i, x) and clearly
A(i, x) = i is ancillary. Given that it is known which measuring instrument
is used, it seems necessary to condition on this as the accuracy of the in-
ferences will be quite different when the variances are quite different. For
example, if σ2

1 << σ2
2, then the variance of x̄, based on the mixture model
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p1Nn(μ1n, σ
2
1In) + p2Nn(μ1n, σ

2
2In), is (p1σ

2
1 + p2σ

2
2)/n and if i = 1 is ob-

served this will be relatively much greater than σ2
1/n at least when p1 is not

too small. The principle C suggests that conditioning on A(i, x) is the correct
analysis and this example plays a key role in justifying C more generally.

The model for the data (i, x) has likelihood

L(μ | i, x) = c exp{−n(x̄− μ)2/2σ2
i }.

Therefore, (i, x̄) is sufficient. Since x̄ maximizes logL(μ | i, x), with second
derivative at μ = x̄ given by −n/σ2

i then, assuming σ2
1 	= σ2

2, the value of (i, x̄)
can be recovered from the likelihood and so is minimal sufficient. Note that
the situation where σ2

1 = σ2
2 is not relevant here as then the two measuring

instruments have the same characteristics and conditioning plays no role.
Clearly, the unique maximal ancillary based on the mss (i, x̄) is i and so
this is also the laminal ancillary. Conditioning on this statistic gives x̄ ∼
N(μ, σ2

i /n) for the mss and so the intuitively correct basis for inference about
μ is obtained.

As another example consider a situation where x1, x2 . . . are i.i.d. Bernoulli
(θ) with θ ∈ (0, 1) unknown. Suppose that there are two possible sampling
regimes and the actual one used is determined by a coin toss as before, where
model 1 corresponds to n fixed and model 2 corresponds to negative bino-
mial sampling with k (the number of 1’s observed before stopping) fixed. Let
N(i) denote the observed sample size. Note that, before observing the data,
N(1) = n is known but N(1)x̄ is not known while N(2)x̄ = k is known but
N(2) is unknown. The likelihood is given by

L(θ | i, x) = cθN(i)x̄(1− θ)N(i)(1−x̄).

Since the likelihood is determined by (N(i), N(i)x̄) it is sufficient. Also,
logL(θ | i, x) is maximized at x̄ with second derivative at the maximum given
by −N(i)/x̄(1 − x̄) so N(i) can also be recovered from the likelihood. This
shows that (N(i), N(i)x̄) is minimal sufficient. In this case, however, (i, x̄)
is not generally minimal sufficient and that is because, if (N(i), N(i)x̄) =
(n, k), then i cannot be recovered. This situation corresponds to the well-
known example that shows that the likelihood principle leads to ignoring the
sampling rule for inference. This can only occur, however, when k ≤ n. If it
is required that k > n, then i is always recoverable from (N(i), N(i)x̄) and so
(i, x̄) is minimal sufficient with i the unique maximal ancillary and is thus
the laminal ancillary as well.

The problem arises here because the mss discards the information as to
which sampling regime has been used, whenever (N(i), N(i)x̄) = (n, k). This
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is similar to the situation encountered in the proof in Birnbaum (1962) that
the likelihood principle follows from sufficiency and conditionality. In that
context, the sufficient statistic used in the proof discards precisely the in-
formation that the conditionality principle invokes for conditioning. Durbin
(1970) proposed always reducing first to the mss before invoking condition-
ality and this does void Birnbaum’s proof.

This example demonstrates that Durbin’s restriction does not avoid con-
flicts between S and C for frequentist inferences, as for confidence intervals
for θ it is necessary to take into account the actual sampling regime used.
One possibility for a resolution of this issue is to consider the situation where
the two sampling regimes have different θ parameters, say θ and θ ∗ (1− δ)
where δ > 0 is known and small. In that case the mss never takes the
same value for the two sampling regimes and i is always recoverable from
the mss. One could then argue that inference should be continuous in δ and
so conditioning on i is always appropriate. This would require a significant
modification of a conditionality principle, however, and this is not pursued
further here.

For Bayesian inferences about θ the issues around ancillarity pose no
difficulties as these do not depend on the sampling rule. If we consider model
checking as part of good practice for any approach to statistical analysis,
then this can be based on the conditional distribution given the mss which
does involve the sampling plan used and so this information is not simply
discarded. For example, when (N(i), N(i)x̄) 	= (n, k), then the conditional
distribution of (i, x) is uniform on the set of possible sequences arising from
binomial sampling when i = 1 and is uniform on the set of possible sequences
arising from negative binomial sampling when i = 2. If (N(i), N(i)x̄) =
(n, k), then the conditional distribution of (i, x) assigns the probabilities

p1/

{
p1

(
n

k

)
+ (1−p1)

(
n− 1

k − 1

)}
and (1−p1)/

{
p1

(
n

k

)
+(1− p1)

(
n− 1

k − 1

)}

to each of the possible sequences arising from binomial sampling and negative
binomial sampling, respectively. If the observed sequence x = (x1, . . . , xn) is
such that xn 	= 1, then this check categorically eliminates negative binomial
sampling as there are no such sequences. When xn = 1 then this check
assigns probability p1/(1+ p1(n− k)/k) to binomial sampling which is small
when p1 is small or n is large relative to k. For a Bayesian analysis the goal
in model checking is not to distinguish between the two sampling regimes,
but rather to assess whether or not the observed data is reasonable given the
stated model. A runs test based on these probabilities would then be in order.
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A feature of the problems discussed in Example 4, is that sometimes there
is only one maximal ancillary function of the mss, which is perhaps what
may be misleading one to accept the standard conditionality as a principle.
In the more general problems, such as Example 3, however, the experiment
may be rich enough so that the joint likelihood has more maximal ancillary
functions of the mss, e.g., as with A1 and A2 of Example 3. In these more
general problems, the reasoning behind the stable conditionality principles
leads to the (stable) evidence of Proposition 6 being, not just the observed
value of the mss, but also the conditional distribution of the mss statistic
given the laminal ancillary function of the mss.

A further aspect of the two measuring instruments example discussed
in Example 4 is that, as Cox (1958) points out, there is a conflict between
conditioning and decision-theoretic criteria for determining correct statistical
procedures. In particular, the optimal unconditional test for the hypothesis
H0 : μ = 0 is not the same as the optimal conditional test. The role of
conditioning in decision-theoretic approaches to statistics would appear to
be an unresolved issue at this time.

5 Conclusions

Various ambiguities have raised doubts about the possibility of a suc-
cessful theory for frequentist inference. For example, Birnbaum’s theorem
concerning S and C seemingly implying L or for that matter C alone imply-
ing L are but two examples. While the validity of these conclusions has been
challenged, consideration of these results still raises concerns as to what the
correct applications of the principles are. For S this is undoubtedly discard-
ing all aspects of the inference base that are extraneous to expressing the
evidence about θtrue and this leads to the principle as expressed by Durbin
(1970) together with the evidence function EvMS which we add to the de-
velopment. For C our thesis is that the fundamental idea underlying the
principle is better expressed by SC and the evidence function EvSC as this
removes the ambiguity about which ancillary to condition on and avoids any
contradictions in the justification for the irrelevance of the distribution of
the ancillary. While the laminal ancillary may often be trivial, namely, a
function constant on the sample space, it seems clear that we have to accept
the verdict that conditioning on any ancillary other than the laminal is not
appropriate. The results developed here have shown that the principles S
and SC are mutually compatible and satisfy the basic requirement of any
statistical principle by inducing equivalence relations on the set of all infer-
ence bases. As such the logical and statistical inconsistences in the definition
of C have been avoided.
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It is true that the stable conditionality principle proposed here, is - in
part - mathematically supported by the taxonomy results in Basu (1959).
The present paper shows, however, that conditioning on stable ancillaries
removes the logical inconsistencies of the standard conditionality principle
and provides a coherent framework for the assessment of statistical evidence.

Certainly this is not the end of the story concerning the concept of sta-
tistical evidence and how it should be measured and expressed, but our hope
is that clarifying the roles of two key principles contributes to a more solid
foundation for statistics.
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Appendix

Proof of Proposition 1.

Suppose U is a strong ancillary for M and let (p1, p2, . . .) be an alterna-
tive probability distribution on N for the marginal distribution of V. Then,
summing over those i for which PV ({i}) > 0 (otherwise Pθ,U (· |V = i) is not
defined),

∑

i:PV ({i})>0

piPθ,U (B |V = i)=
∑

i:PV ({i})>0

pi
PV ({i})

Pθ,X(U−1B ∩ V −1{i})

=
∑

i:PV ({i})>0

pi
PV ({i})

∑

j∈B
Pθ,X(V −1{i} |U = j)PU ({j})

=
∑

i:PV ({i})>0

pi
PV ({i})

∑

j∈B
PV ({i} |U = j)PU ({j})

where the last equality follows because U is strong which implies that V
is ancillary when the mixture distribution for U puts all its mass at j so
Pθ,X(V −1{i} |U = j) is independent of θ as is the sum. Therefore, U is
stable.

Now suppose U is a stable ancillary and V is ancillary and let (p1, p2, . . .)
be an alternative probability distribution on N for the marginal distribution
of U. Then, summing over those i for which PU ({i}) > 0,

∑

i:PU ({i})>0

piPθ,V (B |U= i) =
∑

i:PU ({i})>0

pi
PU ({i})

Pθ,X(V −1B ∩ U−1{i})
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=
∑

i:PU ({i})>0

pi
PU ({i})

∑

j∈B
Pθ(U

−1{i} |V = j)PV ({j})

=
∑

i

pi
PV ({i})

∑

j∈B
PU ({i} |V = j)PV ({j})

where the last equality follows because U is stable. Therefore, U is strong.

Proof of Proposition 2.

(i) Suppose U is an ancillary and it is not a function of a maximal ancillary
V. Then it cannot be that (U, V ) is ancillary because, if it were, then
V is a function of (U, V ) and thus is not maximal. Since Pθ,X(U ∈
A, V ∈ B) = Pθ,X(V ∈ B |U ∈ A)PU (A), it cannot be the case that
Pθ,X(V ∈ B |U ∈ A) is independent of θ for every A and B and so
U is not strong. Therefore, any strong ancillary is a function of every
maximal ancillary.

Conversely, suppose U is a minimal ancillary and V is another ancillary.
Then V can be expressed as function of some maximal ancillary W, say
V = h(W ), and since U is minimal, it can also be expressed as k(W ) for
some function k, Then Pθ,X(U ∈ A, V ∈ B) = Pθ,X(W ∈ k−1A∩h−1B)
which is independent of θ because W is ancillary. Therefore,

∑

i:PV ({i})>0

piPθ,U (A |V = i) =
∑

i:PV ({i})>0

pi
PV ({i})

Pθ,X(k−1A ∩ h−1{i})

which is independent of θ for every probability distribution (p1, p2, . . .)
N. Therefore, U is a stable ancillary.

(ii) Let A1, A2, . . . be a list of the minimal ancillaries for model M and
put A = (A1, A2, . . .) : X → A1×A2× . . . . Now let Ci ∈ Ci and
then A−1(C1 × C2 × . . .) = A−1C1 ∩ A−1C2 ∩ · · · ∈ B so we can write
A : (X ,B) → (A1×A2× . . . , C1×C2× . . .) and A is a valid statistic. Fur-
ther, for a maximal ancillary W there exist functions h1, h2, . . . such
that Ai = hi(W ) and this implies that A is ancillary. For any other an-
cillary U, there exist a maximal ancillary W and function h such that
U = h(W ) and also there are functions h1, h2, . . . such that Ai = hi(W )
and this implies that (A,U) is ancillary. As such this proves that A is
a minimal ancillary and moreover it is maximal in this class because
every other minimal ancillary is a function of A.
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Proof of Proposition 3.

We need to show that the relation given by SC is (i) reflexive, (ii) sym-
metric and (iii) transitive.

(i) Suppose model M has mss T and laminal L ∈ AM . Then taking Mi =
M,Ti = T, Li = L for i = 1, 2 and h equal to the identity in (4.2)
establishes reflexivity.

(ii) Symmetry also follows because (4.2) implies

(M2,T2|L2(T2(x2)), T2(x2)) = (M1,h−1(T1)|L1(T1(x1)), h
−1(T1(x1))).

(iii) Finally suppose that (M1, x1) and (M2, x2) are related under SC as
well as (M2, x2) and (M3, x3). Let Ti, Li ∈∈ AMi denote the mss and
laminal ancillaries for Mi and h12 : T2→ T 1, h23 : T3→ T 2 be the 1-1,
onto mappings that are used in (4.2) to establish these relations. Then

(M1,T1|L1(T1(x1)), T1(x1)) = (M2,h12(T2)|L2(T2(x2)), h12(T2(x2))),

(M1,T2|L2(T2(x2)), T2(x2)) = (M3,h23(T3)|L3(T3(x3)), h23(T3(x3)))

both hold. Now define h13 = h12 ◦ h23. Then if follows that

(M3,h12◦h23(T3)|L3(T3(x3)), h12 ◦ h23(T3(x3)))

= (M2,h12(T2)|L2(T2(x2)), h12(T2(x2)))

= (M1,T1|L1(T1(x1)), T1(x1))

and this establishes that (M1, x1) and (M3, x3) are related under SC
so the relation is transitive.

Proof of Proposition 4.

Suppose that (M1, x1) and (M2, x2) are equivalent under S so

(M1,T1 , T1(x1)) = (M2,h(T2), h(T2(x2))).

Since the models M1,T1 and M2,T2 are relabellings of each other via h, this
implies that the ancillarity structure of the two models is effectively (via
the relabelling) the same and, in particular, the laminals L1 ∈ AM1 and
L2 ∈ AM2 are related via L1 = h(L2). This implies

(M1,T1|L1(T1(x1)), T1(x1)) = (M2,h(T2)|L2(T2(x2)), h(T2(x2)))

and so (M1, x1) and (M2, x2) are equivalent under SC.
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Proof of Proposition 5.

Since the two conditional models are simply relabellings it must be the
case that they have effectively the same minimal sufficient statistics and this
implies the result.

Proof of Proposition 6.

Since EvSC(M,x) only depends on the model and data through the
model for a mss T and the observed value of T (x), and we have restricted to
ancillaries that are functions of the mss, it is clear that EvSC◦EvMS(M,x) =
EvSC(M,x).

Now consider the reverse order where EvSC outputs (T , {Pθ,|L(T (x))) :
θ ∈ Θ}, T (x)) based on laminal ancillary L ∈ AM . We can write L as
L = g(T (x)) for some function g. The sample space for T in this condi-
tional model is {t ∈ T : g(t) = g(T (x))} and which is a union of preimage
contours of T. For a t satisfying g(t) = g(T (x)) then Pθ,T |L(T (x))({t}) =
Pθ,T ({t})/PL({L(T (x))}). Therefore, if t1, t2 are distinct elements of {t :
g(t) = g(T (x))}, then we cannot have

Pθ,T |L(T (x))({t1}) = cPθ,T |L(T (x))({t2})

for every θ for some constant c > 0, otherwise we would have Pθ,T ({t1}) =
cPθ,T ({t2}) for every θ and then T would not be a mss for the original model.
This also implies that the identity function is a mss for the conditional model
which implies

EvMS(T , {Pθ,T |L(T (x)) : θ ∈ Θ}, T (x)) = (T , {Pθ,T |L(T (x)) : θ ∈ Θ}, T (x)),

namely, there is no reduction. This proves the result.
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