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Abstract
The main idea of this paper is to present families of bivariate distributions that
depend in their formation on adding a shape parameter to the powers of the
hazard and reversed hazard functions in different manners, which would provide
additional flexibility in applications. Different baseline distributions were used
namely, exponential, inverse exponential, uniform, inverse uniform, inverse Ray-
leigh, Gompertz and Pareto. Many of the mathematical properties of these
families are discussed in detail. Moreover, it is observed that the new bivariate
distributions also can make appropriate modeling of three real data sets.

Keywords. Exponential distribution, Inverse exponential distribution, Uniform
distribution, inverse uniform distribution, Inverse Rayleigh distribution,
Gompertz Distribution and Pareto distribution

1 Introduction

The hazard and reversed hazard rates play important roles in the statistical
literatures because of their applicability in many fields. The concept of hazard
rate is very well known in the literature and lifetime distributions are usually
characterized using the concept of failure rate h(t), defined as

h tð Þ ¼ lim
Δt→0

P t < T < t þΔt=T > tð Þ=Δt:

which can be equivalently written as

h tð Þ ¼ f tð Þ
1−F tð Þ :

where f(t)and F(t) are the pdf and cdf of life time T.
The failure rate h(t) measures the instantaneous rate of failure or death at

time t, given that an individual survives up to time t. The failure rate is also
known as conditional failure rate in reliability, the hazard rate in survival
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analysis, the force of mortality in demography, the age-specific failure rate in
epidemiology. In extreme-value theory, it is known as the intensity rate and its
reciprocal is termed as Mill's ratio in economics.

It can be shown that h(x) uniquely determines the distribution. When X is
non-negative and has a distribution function absolutely continuous with respect
to the Lebesgue measure h(t) can provides

F xð Þ ¼ e−∫
x
0h tð Þdt ¼ e−H xð Þ

Where H(x) is the cumulative hazard rate.
In many practical situations reversed hazard (RH) rate is more appropriate

to analyze the survival data. Reversed hazard rate was proposed as a dual to
the hazard rate respectively, as

r tð Þ ¼ lim
Δt→0

P t−Δt < T < t=T≤tð Þ=Δt:

r tð Þ ¼ f tð Þ
F tð Þ :

The reversed hazard rate specifies the instantaneous rate of death or failure at
time t, given that it failed before time t. Thus in a small interval, r(t)Δt is the
approximate probability of failure in the interval (t − Δt, t], given failure
before the end of the interval.

It can be shown that r(t) determines the cdf through the following relation

F xð Þ ¼ e∫
x
0r tð Þdt ¼ eR xð Þ

Where R(x) = logF(x) denotes the cumulative reversed hazard rate.
There are many methods for adding a shape parameter to a family of distri-

butions based on the survival and failure functions that produced the so-called,
proportional hazard family and proportional reversed hazard family, along the
same line the hazard and reversed hazard functions can also be used to adding a
power parameter (shape parameter) that are producing two important families of
distributions namely, hazard power parameter and reversed hazard power param-
eter. The aim of this paper is to introduce the bivariate extensions of these families
based on an idea similar to that of Theorem 3.2 proposed by Marshall and Olkin
(1967). These authors introduced a multivariate exponential distribution whose
marginals have exponential distributions and proposed a bivariate Weibull distri-
bution. The proposed bivariate distributions are constructed from three indepen-
dent distributions using both minimization and maximization process. These new
distributions are singular distributions, and they can be used quit conveniently if
there are ties in the data.
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Our new models can be extended to different data sets for example, survival
times of failure of paired organs like kidneys, lungs, eyes, ears, dental implants
etc. In industrial applications, the breakdown times of dual generators in a
power plant or failure times of two engines in a two-engine airplanes. In the
infectious diseases, time to infection of two or more family members who might
visit an infected person and all of them become infected. Some examples are the
human lifetimes for which natural disasters or accidents lead to the death of
several persons at the same time. They are also widely used in life insurance and
the design of multiple life insurance products. Furthermore, they are used in
statistics and reliability in shock model, competing risks model, stress model,
maintenance model and longevity model, as well as warranty polices based on
failure time and warranty servicing time.

The paper is organized as follows: In Section 2, some baseline distributions
are introduced. The bivariate reversed hazard power parameter (BRPP) family
of distributions is introduced in Section 3. The bivariate hazard power param-
eter (BHPP) family of distributions is introduced in Section 4. The bivariate
power parameter (BPP) family of distributions is introduced Section 5. The
bivariate proportional hazard (BPHP) family of distributions is discussed in
Section 6. The bivariate proportional reversed hazard (BPRP) family of distri-
butions is discussed in Section 7. A numerical study is discussed in Section 8.
Finally, conclude the paper in Section 9.

2 Baseline Distributions

Some baseline distributions with the interesting properties will presented
below.

i) Exponential Distribution

If a continuous random variableX follows the exponential distribution then the
pdf, survival function, hazard function, and cumulative hazard function are
respectively:

f B xð Þ ¼ λe−λx ð2:1Þ

SB xð Þ ¼ e−λx ð2:2Þ
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hB xð Þ ¼ λ ð2:3Þ

HB xð Þ ¼ λx: ð2:4Þ

ii) Inverse Exponential Distribution

If a continuous random variable X follows the inverse exponential distribution
then the cdf, pdf, reversed hazard function, and cumulative reversed hazard
function are respectively:

FB xð Þ ¼ e−
λ
x x > 0 and λ > 0 ð2:5Þ

f B xð Þ ¼ λ

x2
e−

λ
x ; ð2:6Þ

rB xð Þ ¼ λ

x2
; ð2:7Þ

RB xð Þ ¼ −
λ

x
: ð2:8Þ

iii) Inverse Rayleigh Distribution

If a continuous random variable X follows the inverse Rayleigh distribution
then the cdf, pdf, reversed hazard function, and cumulative reversed hazard
function are respectively:

FB xð Þ ¼ e−
σ
xð Þ2 x > 0 and σ > 0 ð2:9Þ

f B xð Þ ¼ 2 σ2

x3
e−

σ
xð Þ2 ; ð2:10Þ
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rB xð Þ ¼ 2 σ2

x3
; ð2:11Þ

RB xð Þ ¼ −
σ

x

� �2
: ð2:12Þ

iv) Uniform Distribution

If a continuous random variable X follows the uniform distribution then the
cdf, pdf, hazard function,and cumulative hazard function are respectively:

FB xð Þ ¼ x 0 < x < 1: ð2:13Þ

f B xð Þ ¼ 1: ð2:14Þ

hB xð Þ ¼ 1
1−x

: ð2:15Þ

HB xð Þ ¼ −log 1−xð Þ: ð2:16Þ

v) Inverse Uniform Distribution

The inverse uniform (IU) distribution is defined by using the transformation
X ¼ 1

T −1 where T~U(0, 1). Then the cdf, pdf, reversed hazard function, and
cumulative reversed hazard function for invers uniform distribution are
respectively:

FB xð Þ ¼ x
x þ 1

; 0 < x < ∞: ð2:17Þ

f B xð Þ ¼ 1

x þ 1ð Þ2 ð2:18Þ
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rB xð Þ ¼ 1
x x þ 1ð Þ ð2:19Þ

RB xð Þ ¼ log
x

x þ 1

� �
: ð2:20Þ

i) Gompertz Distribution:

The pdf, survival function, hazard function, and cumulative hazard function of
a continuous random variable X follows a Gompertz distribution are given
respectively as:

f B xð Þ ¼ λξexp λx−ξ eλx−1
� �� 	

; ξ; λ > 0; x > 0 ð2:21Þ

SB xð Þ ¼ e−ξ eλx−1ð Þ ð2:22Þ

hB xð Þ ¼ λξeλx ð2:23Þ

HB xð Þ ¼ ξ eλx−1
� �

: ð2:24Þ
ii) Pareto Type I Distribution

The pdf, survival function, hazard function, and cumulative hazard function of
a continuous random variable X follows a Pareto distribution are given respec-
tively as:

f B xð Þ ¼ λ

1þ λx2
; λ > 0; x > 0 ð2:25Þ

SB xð Þ ¼ 1þ λx½ �−1 ð2:26Þ

hB xð Þ ¼ λ

1þ λx
; ð2:27Þ
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HB xð Þ ¼ log 1þ λxð Þ: ð2:28Þ

3 Bivariate Reversed Hazard Power Parameter (BRPP) Family
of Distributions

A reversed hazard power parameter model can be defined by adding a
power parameter (α) to the formula F(x) = e−R(x), as following

FRPP x; αð Þ ¼ e− RB xð Þ½ �α ; ∀x ð3:1Þ
where α > 0 and R(x) = − log F(x) is a cumulative reversed hazard function.

f RPP x; αð Þ ¼ α rB xð Þ RB xð Þ½ �α−1exp − RB xð Þ½ �αf g; ∀α > 0 ð3:2Þ
Where rB(.) and RB(.) are the baseline reversed hazard and cumulative
reversed hazard functions respectively. Accordingly, the reversed hazard
function for RPP family is given as

rRPP x; αð Þ ¼ α rB xð Þ RB xð Þ½ �α−1 ð3:3Þ

For more details in this manner [see Marshall and Olkin (2007), p257].
Now, the bivariate extension for this family is given as: Assume

U1~RPP(α1), U2~RPP(α2) and U3~RPP(α3) and U′s are independent random
variables. Let X1 = max (U1, U3) and X2 = max (U2, U3).

Then, (X1, X2) constitute a BRPP class of distributions denoted by
BRPP(α1, α2, α3) with the following cdf and pdf

FBRPP x1; x2ð Þ ¼ exp − RB x1ð Þ½ �α1− RB x2ð Þ½ �α2− RB x3ð Þ½ �α3f g
where x3 = min(x1, x2).

The joint cdf of BRPP models can be stretching in the following form

FBRPP x1; x2ð Þ ¼
F1 x1; x2ð Þ; x1 < x2

F2 x1; x2ð Þ; x1 > x2

F3 xð Þ; x1 ¼ x2 ¼ x

8>><>>: ð3:4Þ

Where

F1 x1; x2ð Þ ¼ exp − RB x1ð Þ½ �α1− RB x2ð Þ½ �α2− RB x1ð Þ½ �α3f g;
F2 x1; x2ð Þ ¼ exp − RB x1ð Þ½ �α1− RB x2ð Þ½ �α2− RB x2ð Þ½ �α3f g;
F3 xð Þ ¼ exp − RB xð Þ½ �α1− RB xð Þ½ �α2− RB xð Þ½ �α3f g:
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Accordingly, the joint pdf of BRPP model can be obtained by the following
proposition.

Proposition 1 Assume (X1, X2)~BRPP(α1, α2, α3) with the cdf FBRPP(x1, x2)
defined in (3.4). Then the joint pdf for this class denoted by fBRPP(x1, x2) is
given as

f BRPP x1; x2ð Þ ¼
f 1 x1; x2ð Þ; x1 < x2
f 2 x1; x2ð Þ; x1 > x2
f 3 xð Þ; x1 ¼ x2 ¼ x

8<: ð3:5Þ

Where

f 1 x1; x2ð Þ ¼ α1rB x1ð Þ RB x1ð Þ½ �α1−1 þ α3rB x1ð Þ RB x1ð Þ½ �α3−1
n o

:α2rB x2ð Þ RB x2ð Þ½ �α2−1:exp − RB x1ð Þ½ �α1− RB x2ð Þ½ �α2− RB x1ð Þ½ �α3f g;

f 2 x1; x2ð Þ ¼ α2rB x2ð Þ RB x2ð Þ½ �α2−1 þ α3rB x2ð Þ RB x2ð Þ½ �α3−1
n o

:α1rB x1ð Þ RB x1ð Þ½ �α1−1:exp − RB x1ð Þ½ �α1− RB x2ð Þ½ �α2− RB x2ð Þ½ �α3f g;
and f 3 xð Þ ¼ α3 rB xð Þ RB xð Þ½ �α3−1exp − RB xð Þ½ �α1− RB xð Þ½ �α2− RB xð Þ½ �α3f g.

Proof Let x1 < x2. In this case FBRPP(x1, x2) in (3.4) becomes

F1 x1; x2ð Þ ¼ exp − RB x1ð Þ½ �α1− RB x2ð Þ½ �α2− RB x1ð Þ½ �α3f g:
Hence, by differentiation we get f 1 x1; x2ð Þ ¼ ∂2 F1 x1;x2ð Þ

∂x1∂x2
.

Similarly for x1>x2 we can get the expression of f2(x1, x2) by the mixed
derivatives ∂2 F2 x1;x2ð Þ

∂x1∂x2
and hence f 2 x1; x2ð Þ ¼ ∂2 F2 x1;x2ð Þ

∂x1∂x2
.

But the expression of f3(x) can not be obtained by the similar manner. For
this reason the following identity will be used

∫∞0 ∫
x2
0 f 1 x1; x2ð Þdx1dx2 þ ∫∞0 ∫

x1
0 f 2 x1; x2ð Þdx2dx1 þ ∫∞0 f 3 xð Þ ¼ 1 ð3:6Þ

One can verify that

I 1 ¼ ∫∞0 ∫
x2
0 f 1 x1; x2ð Þdx1dx2

¼ ∫∞0 α2 rB x2ð Þ RB x2ð Þ½ �α2−1exp − RB x2ð Þ½ �α1− RB x2ð Þ½ �α2− RB x2ð Þ½ �α3f gdx2
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And

I 2 ¼ ∫∞0 ∫
x1
0 f 2 x1; x2ð Þdx2dx1

¼ ∫∞0 α1 rB x1ð Þ RB x1ð Þ½ �α1−1exp − RB x1ð Þ½ �α1− RB x1ð Þ½ �α2− RB x1ð Þ½ �α3f gdx1
Since

I 1 þ I 2 ¼ ∫∞0 α2rB xð Þ RB xð Þ½ �α2−1 þ α1rB xð Þ RB xð Þ½ �α1−1
n o

:exp − RB xð Þ½ �α1− RB xð Þ½ �α2− RB xð Þ½ �α3f gdx:
ð3:7Þ

Then, from (3.6) and (3.7) we can readily obtain

f 3 xð Þ ¼ α3rB xð Þ RB xð Þ½ �α3−1exp − RB xð Þ½ �α1− RB xð Þ½ �α2− RB xð Þ½ �α3f gdx:
Which completes the proof.

The joint reversed hazard function of (X1, X2)~BRPP(α1, α2, α3) is ob-
tained as follows

rBRPP x1; x2ð Þ ¼
r1 x1; x2ð Þ; x1 < x2
r2 x1; x2ð Þ; x1 > x2
r3 xð Þ; x1 ¼ x2 ¼ x

8<: ð3:8Þ

Where

r1 x1; x2ð Þ ¼ rRPP x2; α2ð Þ rRPP x1; α1ð Þ þ rRPP x1; α3ð Þf g
¼ α2rB x2ð Þ RB x2ð Þ½ �α2−1:

n
α1rB x1ð Þ RB x1ð Þ½ �α1−1

þ α3rB x1ð Þ RB x1ð Þ½ �α3−1
o
;

r2 x1; x2ð Þ ¼ rRPP x1; α1ð Þ rRPP x2; α2ð Þ þ rRPP x2; α3ð Þf g
¼ α1rB x1ð Þ RB x1ð Þ½ �α1−1:

n
α2rB x2ð Þ RB x2ð Þ½ �α2−1

þ α3rB x2ð Þ RB x2ð Þ½ �α3−1
o
;

and r3 xð Þ ¼ rRPP x; α3ð Þ ¼ α3 rB xð Þ RB xð Þ½ �α3−1.

3.1 Marginal and Conditional Densities
Assume (X1, X2)~BRPP(α1, α2, α3), then the marginal cdf and pdf of X1 and
X2 are given respectively, as follows

FXi xið Þ ¼ exp − RB xið Þ½ �α i− RB xið Þ½ �α3f g; i ¼ 1; 2

f Xi
xið Þ ¼ α i rB xið Þ RB xið Þ½ �α i−1 þ α3 rB xið Þ RB xið Þ½ �α3−1

n o
:exp − RB xið Þ½ �α i− RB xið Þ½ �α3f g; i ¼ 1; 2:
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Further, for (X1, X2)~BRPP(α1, α2, α3), the conditional density of X1i given
X2j = x2j is given by

f Xi=X j
x1; x2ð Þ ¼

f 1ð Þ
i= j xi=x j
� �

ifxi < x j

f 2ð Þ
i= j xi=x j
� �

ifx j > xi

f 3ð Þ
i= j xi=x j
� �

ifxi ¼ x j ;

8>><>>: ð3:9Þ

where

f 1ð Þ
i= j xi=x j
� � ¼ α2rB xið Þ RB xið Þ½ �α2−1 α1rB x j

� �
RB x j
� �
 �α1−1 þ α3rB x j

� �
RB x j
� �
 �α3−1

h i
α2rB x j

� �
RB x j
� �
 �α2−1 þ α3rB x j

� �
RB x j
� �
 �α3−1

h i
:exp − RB xið Þ½ �α1− RB xið Þ½ �α3 þ RB x j

� �
 �α3
� 	

;

f 2ð Þ
i= j xi=x j
� � ¼ α1rB x j

� �
RB x j
� �
 �α1−1exp − RB x j

� �
 �α1
� 	

;

f 3ð Þ
i= j xi=x j
� � ¼ α3rB xið Þ RB xið Þ½ �α3−1

α2rB x j
� �

RB x j
� �
 �α2−1 þ α3rB x j

� �
RB x j
� �
 �α3−1

h i
8<:

9=;
:exp − RB xið Þ½ �α1− RB xið Þ½ �α2− RB xið Þ½ �α3 þ RB x j

� �
 �α2 þ RB x j
� �
 �α3

� 	
:

3.2 Absolutely Continuous BRPP Family of Distributions
An absolutely continuous BRPP (BRPPac) family of distributions will be
introduced by removing the singular part and remaining only the absolutely
continuous part.

A random vector (Y1, Y2) follows a BRPPac family if its pdf is given by

f Y 1;Y 2
y1; y2ð Þ ¼ C f 1 y1; y2ð Þify1 < y2

C f 2 y1; y2ð Þify1 > y2

�
;

Where

f 1 y1; y2ð Þ ¼ α1rB y1ð Þ RB y1ð Þ½ �α1−1 þ α3rB y1ð Þ RB y1ð Þ½ �α3−1
n o

:α2rB y2ð Þ RB y2ð Þ½ �α2−1:exp − RB y1ð Þ½ �α1− RB y2ð Þ½ �α2− RB y1ð Þ½ �α3f g;
f 2 y1; y2ð Þ ¼ α2rB y2ð Þ RB y2ð Þ½ �α2−1 þ α3rB y2ð Þ RB y2ð Þ½ �α3−1

n o
:α1rB y1ð Þ RB y1ð Þ½ �α1−1:exp − RB y1ð Þ½ �α1− RB y2ð Þ½ �α2− RB y2ð Þ½ �α3f g:

and C is a normalizing constant. It will be denoted as (Y1, Y2)~BRPPac(α1, α2,
α3).
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It is easy to check that the marginal distributions in this case are not
univariate RPP models.

3.3 Parameters Estimation for BRPP Family of Distributions
In this section the shape parameters of BRPP models are estimated
based on MLE method. Assume that {(x11, x21), (x12, x22), …, (x1n,
x2n) } be a complete random sample from BRPP(α1, α2, α3) family of
distributions whose pdf and cdf are given in (3.5) and (3.4). Consider the
following notation

I 1 ¼ i; x1i < x2if g; I 2 ¼ i; x1i > x2if g; I 3 ¼ x1i ¼ x2i ¼ xif g; I ¼ I 1∪I 2∪I 3;
I 1j j ¼ n1; I 2j j ¼ n2; I 3j j ¼ n3; and n1 þ n2 þ n3 ¼ n:

The log-likelihood function of the sample of size n from BRPP(α1, α2, α3) is
given by

l αð Þ ¼ n1logα2 þ n2logα1 þ n3logα3 þ α2−1ð Þ∑
I1
log RB x2ið Þ½ �

þ α1−1ð Þ∑
I2
log RB x1ið Þ½ � þ α3−1ð Þ∑

I3
log RB xið Þ½ �

−∑
I

RB x1ið Þ½ �α1 þ RB x1ið Þ½ �α1 þ RB xið Þ½ �α1

−∑
I

RB x2ið Þ½ �α2 þ RB x2ið Þ½ �α2 þ RB x2ið Þ½ �α2

−∑
I

RB x2ið Þ½ �α3 þ RB x1ið Þ½ �α3 þ RB xið Þ½ �α3

þ∑
I
log rB x2ið Þ½ � þ log rB x1ið Þ½ � þ log rB xið Þ½ �

þ∑
I1
Φ x1i; α2; α3ð Þ þ∑

I2
Φ x2i; α1; α3ð Þ:

Where α ¼ α1ð ; α2 ; α3Þ,
Φ xki; αk ; α3ð Þ ¼ log α jrB xkið Þ RB xkið Þ½ �α j−1 þ α3rB xkið Þ RB xkið Þ½ �α3−1

h i
; for k

¼ 1; 2 and j ¼ 1; 2; k≠ j:
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Accordingly, the likelihood equations can be written as

n2bα1

þ∑
I2
log RB x1ið Þ½ � þ∑

I2
Ψ x2i; α1; α3ð Þ

¼ ∑
I
log RB x1ið Þ½ � RB x1ið Þbα 1 þ RB x1ið Þbα 1

( )
þ log RB xið Þ½ � RB xið Þ½ �bα 1 ;

n1bα2

þ∑
I1
log RB x2ið Þ½ � þ∑

I1
Ψ x1i; α2; α3ð Þ

¼ ∑
I
log RB x2ið Þ½ � RB x2ið Þbα 2 þ RB x2ið Þbα 2

( )
þ log RB xið Þ½ � RB xið Þ½ �bα 2

n3bα3

þ∑
I3
log RB xið Þ½ � þ ∑

I1∪I2
η x2i; α2; α3ð Þ þ η x1i; α1; α3ð Þ

¼ ∑
I
log RB x2ið Þ½ � RB x2ið Þ½ �bα 3 þ log RB x1ið Þ½ � RB x1ið Þ½ �bα 3

þ log RB xið Þ½ � RB xið Þ½ �bα 3 :

Where

η xki; αk ; α3ð Þ ¼ RB xkið Þ½ �α3−1 1þ α3log RB xkið Þ½ �½ �
α j RB xkið Þ½ �α j−1 þ α3 RB xkið Þ½ �α3−1

; k ¼ 1; 2; j ¼ 1; 2; i≠ j:

and Ψ xki; αk ; α3ð Þ ¼ RB xkið Þ½ �α j−1 1þα j log RB xkið Þ½ �½ �
α j RB xkið Þ½ �α j−1þα3 RB xkið Þ½ �α3−1 ; k ¼ 1; 2; j ¼ 1; 2; i≠ j:

Consequently, the second derivatives are given as follows
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∂2l αð Þ
∂α2

1
¼ −

n2

α2
1
þ∑

I2
ξ x2i; α1; α3ð Þþ

∑I log RB x1ið Þ½ �ð Þ2 RB x1ið Þbα 1 þ RB x1ið Þbα 1

( )
þ log RB xið Þ½ �ð Þ2 RB xið Þ½ �bα 1 ;

∂2l αð Þ
∂α2

2
¼ −

n1

α2
2
þ∑

I1
ξ x1i; α2; α3ð Þ−

∑I log RB x2ið Þ½ �ð Þ2 RB x2ið Þbα 2 þ RB x2ið Þbα 2

( )
þ log RB xið Þ½ �ð Þ2 RB xið Þ½ �bα 1

∂2l αð Þ
∂α2

3
¼ −

n3

α2
3
þ ∑

I1∪I2
ϵ x1i; α2; α3ð Þ þ ϵ x2i; α1; α3ð Þ−

∑
I

log RB x2ið Þ½ �ð Þ2 RB x2ið Þ½ �bα 3 þ log RB x1ið Þ½ �ð Þ2 RB x1ið Þ½ �bα 3

þ log RB xið Þ½ �ð Þ2 RB xið Þ½ �bα 1 ;

∂2l αð Þ
∂α1∂α3

¼ ∑
I2
δ x2i; α1; α3ð Þ; ∂

2l αð Þ
∂α2∂α3

¼ ∑
I1
δ x1i; α2; α3ð Þ and ∂2l αð Þ

∂α1∂α2
¼ 0:

Where

ξ xki; αk; α3ð Þ ¼ RB xkið Þ½ �α j−1log RB xkið Þ½ � 2þ α j log RB xkið Þ½ �
 �
α j RB xkið Þ½ �α j−1 þ α3 RB xkið Þ½ �α3−1

−
RB xkið Þ½ �α j−1 1þ α j log RB xkið Þ½ �
 �
α j RB xkið Þ½ �α j−1 þ α3 RB xkið Þ½ �α3−1

 !2

;

δ xki; αk; α3ð Þ ¼ − RB xkið Þ½ �α3−1 RB xkið Þ½ �α j−1 1þ α3log RB xkið Þ½ �½ � 1þ α j log RB xkið Þ½ �
 �
α j RB xkið Þ½ �α j−1 þ α3 RB xkið Þ½ �α3−1
� �2 ;

ϵ xki; αk; α3ð Þ ¼ RB xkið Þ½ �α3−1log RB xkið Þ½ � 1þ α3log RB xkið Þ½ �½ �
α j RB xkið Þ½ �α j−1 þ α3 RB xkið Þ½ �α3−1

−
RB xkið Þ½ �α3−1 1þ α3log RB xkið Þ½ �½ �
α j RB xkið Þ½ �α j−1 þ α3 RB xkið Þ½ �α3−1

 !2

:

3.3.1 Asymptotic Confidence Intervals
The asymptotic variance-covariance matrix of bα1; bα2and bα3 is obtained by
inverting the Fisher information matrix with elements that are negatives of
expected values of the second order derivatives of logarithms of the likelihood
function. In the present situation, it seems appropriate to approximate the
expected values by their maximum likelihood estimates. Accordingly; the
asymptotic variance –covariance matrix can be written as follows
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F−1 ¼
I 11I 12I 13
I 21I 22I 23
I 31I 32I 33

24 35−1






α¼bα

Where I i j ¼ −∂2l αð Þ
∂α i∂α j






α¼bα

Now, the asymptotic normality results will be stated to obtain the asymp-
totic confidence intervals of α1, α2 and α3. Under particular regularity condi-
tions it can be stated as follows.ffiffiffi

n
p bα1−α1

� �
; bα2−α2

� �
; bα3−α3

� �h i
→N 3 0; F−1� �

as n→∞

Where F−1 is the variance-covariance matrix, bα ¼ bα1ð ; bα2 ; bα3Þ and α = (α1,
α2, α3).

3.4 A New Bivariate Distributions Belongs to BRPP Class

i) Bivariate Inverse Weibull Distribution

A new bivariate inverse Weibull distribution is obtained by substituting Eqs.
(2.7)–(2.8) in Eqs. (3.4)–(3.5) as follows.

The joint cdf for the bivariate inverse Weibull (BIW) distribution is given
as

FBIW x1; x2ð Þ ¼ exp −
λ

x1

� �α1

−
λ

x2

� �α2

−
λ

x3

� �α3
� �

It can be rewritten in the following form

FBIW x1; x2ð Þ ¼

exp −
λ

x1

� �α1

−
λ

x2

� �α2

−
λ

x1

� �α3
� �

; x1 < x2

exp −
λ

x1

� �α1

−
λ

x2

� �α2

−
λ

x2

� �α3
� �

; x1 > x2

exp −
λ

x

� �α1

−
λ

x

� �α2

−
λ

x

� �α3
� �

; x1 ¼ x2 ¼ x

8>>>>>>><>>>>>>>:
where x3 = min(x1, x2)
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The corresponding joint pdf is given as

f BIW x1; x2ð Þ ¼
f 1 x1; x2ð Þ; x1 < x2
f 2 x1; x2ð Þ; x1 > x2
f 3 xð Þ; x1 ¼ x2 ¼ x

8<: ð3:10Þ

where

f 1 x1; x2ð Þ ¼ α2
2λ

2

x1x2ð Þ2
λ

x2

� �α2−1

α1
λ

x1

� �α1−1

þ α3
λ

x1

� �α3−1
( )

exp −
λ

x1

� �α1

−
λ

x2

� �α2

−
λ

x1

� �α3
� �

f 2 x1; x2ð Þ ¼ α2
1λ

2

x1x2ð Þ2
λ

x1

� �α1−1

α2
λ

x2

� �α2−1

þ α3
λ

x2

� �α3−1
( )

exp −
λ

x1

� �α1

−
λ

x2

� �α2

−
λ

x2

� �α3
� �

;

and

f 3 xð Þ ¼ α3λ

x2
λ

x

� �α3−1

exp −
λ

x

� �α1

−
λ

x

� �α2

−
λ

x

� �α3
� �

ii) Bivariate Generalized Invers Rayleigh Distribution

A new bivariate Generalized inverse Rayleigh distribution is defined by using
Eqs. (2.11)–(2.12) in Eqs. (3.4)–(3.5) with the following joint cdf and pdf
respectively

FBGIR x1; x2ð Þ ¼ exp −
σ

x1

� �2
" #α1

−
σ

x2

� �2
" #α2

−
σ

x3

� �2
" #α3

( )

where x3 = min(x1, x2). and denoted by BGIR(α1, α2, α3, σ).
The joint cdf of BGIR model can be stretching in the following form

FBGIR x1; x2ð Þ ¼
F1 x1; x2ð Þ; x1 < x2
F2 x1; x2ð Þ; x1 > x2
F3 xð Þ; x1 ¼ x2 ¼ x

8<:
Where
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F1 x1; x2ð Þ ¼ exp −
σ

x1

� �2
" #α1

−
σ

x2

� �2
" #α2

−
σ

x1

� �2
" #α3

( )
;

F2 x1; x2ð Þ ¼ exp −
σ

x1

� �2
" #α1

−
σ

x2

� �2
" #α2

−
σ

x2

� �2
" #α3

( )
;

F3 xð Þ ¼ exp −
σ

x

� �2� �α1

−
σ

x

� �2� �α2

−
σ

x

� �2� �α3
� �

:

Accordingly, the joint pdf of BGIR model can be obtained as

f BGIR x1; x2ð Þ ¼
f 1 x1; x2ð Þ; x1 < x2
f 2 x1; x2ð Þ; x1 < x2
f 3 xð Þ; x1 ¼ x2 ¼ x

8<: ð3:11Þ

Where

f 1 x1; x2ð Þ ¼ α2
4σ4

x31x
3
2

σ

x2

� �2
" #α2−1

α1
σ

x1

� �2
" #α1−1

þ α3
σ

x1

� �2
" #α3−1

( )
:

:exp −
σ

x1

� �2
" #α1

−
σ

x2

� �2
" #α2

−
σ

x1

� �2
" #α3

( )
;

f 2 x1; x2ð Þ ¼ α1
4σ4

x31x
3
2

σ

x1

� �2
" #α2−1

α2
σ

x2

� �2
" #α1−1

þ α3
σ

x2

� �2
" #α3−1

( )
:

:exp −
σ

x1

� �2
" #α1

−
σ

x2

� �2
" #α2

−
σ

x2

� �2
" #α3

( )
;

and f 3 xð Þ ¼ α3:
σ

x

� �2� �α3−1

exp −
σ

x

� �2� �α1

−
σ

x

� �2� �α2

−
σ

x

� �2� �α3
� �

:

:

iii) Bivariate Generalized Inverse Uniform Distribution

A bivariate generalized inverse uniform distribution denoted by BGIU(α1, α2,
α3) can be introduced by substituting Eqs. (2.15)–(2.16) in Eqs. (3.4)–(3.5) to
get the joint cdf and pdf as follows

FBGIU x1; x2ð Þ ¼ exp − log
x1 þ 1
x1

� �� �α1

− log
x2 þ 1
x2

� �� �α2

− log
x3 þ 1
x3

� �� �α3
� �

where x3 = min(x1, x2).
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The joint cdf of BGIU model can be stretching in the following form

FBGIU x1; x2ð Þ ¼
F1 x1; x2ð Þ; x1 < x2
F2 x1; x2ð Þ; x1 > x2
F3 xð Þ; x1 ¼ x2 ¼ x

8<:
Where

F1 x1; x2ð Þ ¼ exp − log
x1 þ 1
x1

� �� �α1

− log
x2 þ 1
x2

� �� �α2

− log
x1 þ 1
x1

� �� �α3
� �

;

F2 x1; x2ð Þ ¼ exp − log
x1 þ 1
x1

� �� �α1

− log
x2 þ 1
x2

� �� �α2

− log
x2 þ 1
x2

� �� �α3
� �

;

F3 xð Þ ¼ exp − log
x þ 1
x

� �� �α1

− log
x þ 1
x

� �� �α2

− log
x þ 1
x

� �� �α3
� �

:

Accordingly, the joint pdf of BGIU model can be obtained as

f BGIU x1; x2ð Þ ¼
f 1 x1; x2ð Þ; x1 < x2
f 2 x1; x2ð Þ; x1 < x2
f 3 xð Þ; x1 ¼ x2 ¼ x

8<: ð3:12Þ

where

f 1 x1; x2ð Þ ¼ α2

x2 x2 þ 1ð Þ log
x2 þ 1
x2

� �� �α2−1

α1 log
x1 þ 1
x1

� �� �α1−1

þ α3 log
x1 þ 1
x1

� �� �α3−1
( )

:

:exp − log
x1 þ 1
x1

� �� �α1

− log
x2 þ 1
x2

� �� �α2

− log
x1 þ 1
x1

� �� �α3
� �

;

f 2 x1; x2ð Þ ¼ α1

x1 x1 þ 1ð Þ log
x1 þ 1
x1

� �� �α1−1

α2 log
x2 þ 1
x2

� �� �α2−1

þ α3 log
x2 þ 1
x2

� �� �α3−1
( )

:

:exp − log
x1 þ 1
x1

� �� �α1

− log
x2 þ 1
x2

� �� �α2

− log
x2 þ 1
x2

� �� �α3
� �

;

f 3 xð Þ ¼ α3

x x þ 1ð Þ log
x þ 1
x

� �� �α3−1

:exp − log
x þ 1
x

� �� �α1

− log
x þ 1
x

� �� �α2

− log
x þ 1
x

� �� �α3
� �

:
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4 Bivariate Hazard Power Parameter (BHPP)Family
of Distributions

The survival function S(.) and its corresponding cumulative hazard func-
tion H(.) can related by the following formula S(x) = e−H(x), ∀ x.

So, The hazard power parameter model can be defined as follows

SHPP x; αð Þ ¼ exp − HB xð Þ½ �αf g; ∀α > 0: ð4:1Þ
The corresponding pdf is given by differentiating (4.1) as

f HPP x; αð Þ ¼ α hB xð Þ HB xð Þ½ �α−1exp − HB xð Þ½ �αf g; ∀α > 0 ð4:2Þ
Where hB(.) andHB(.) are the baseline hazard and cumulative hazard functions
respectively. Accordingly, the hazard function for HPP family is given as

hHPP x; αð Þ ¼ α hB xð Þ HB xð Þ½ �α−1 ð4:3Þ
It is follows if hB increasing and α ≥ 1, then hHPP is increasing; if hB decreasing
and 0 < α < 1, then hHPP is decreasing

Now, to get the bivariate HPP class of distributions. Assume the univariate
hazard power parameter model is denoted byHPP(α, Θ) where α is the hazard
power parameter and Θ may be a vector of parameters for an underlying
distribution. Now suppose that Ui~HPP(αi, Θ), i = 1, 2, 3 such that Ui

′s are
mutually independent random variables and defineXj = min (Uj, U3 ), j = 1,
2. Such that; Xj

′s are dependent random variables. Hence BHPP model
denoted by BHPP(α1, α2, α3) is defined with the following joint survival
function.

SBHPP x1; x2ð Þ ¼ SHPP x1; α1ð ÞSHPP x2; α2ð ÞSHPP x3; α3ð Þ:
¼ exp − HB x1ð Þ½ �α1− HB x2ð Þ½ �α2− HB x3ð Þ½ �α3f g:

where x3 = max(x1, x2).
The joint survival function of (X1, X2)~BHPP(α1, α2, α3) can be stretching

in the following form

SBHPP x1; x2ð Þ ¼
S1 x1; x2ð Þ; x1 < x2
S2 x1; x2ð Þ; x1 > x2
S3 xð Þ; x1 ¼ x2 ¼ x

8<: ð4:4Þ

Where
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S1 x1; x2ð Þ ¼ exp − HB x1ð Þ½ �α1− HB x2ð Þ½ �α2− HB x2ð Þ½ �α3f g;
S2 x1; x2ð Þ ¼ exp − HB x1ð Þ½ �α1− HB x1ð Þ½ �α3− HB x2ð Þ½ �α2f g;
and S3 xð Þ ¼ exp − HB xð Þ½ �α1− HB xð Þ½ �α2− HB xð Þ½ �α3f g:

Accordingly, the joint pdf of BHPP model can be obtained by the following
proposition.

Proposition 2 Assume (X1, X2)~BHPP(α1, α2, α3) with the survival function
SBHPP(x1, x2) defined in (4.4). Then the joint pdf for this family denoted by
fBHPP(x1, x2) is given as

f BHPP x1; x2ð Þ ¼
f 1 x1; x2ð Þ; x1 < x2
f 2 x1; x2ð Þ; x1 < x2
f 3 xð Þ; x1 ¼ x2 ¼ x

8<: ð4:5Þ

where

f 1 x1; x2ð Þ ¼ α2hB x2ð Þ HB x2ð Þ½ �α2−1 þ α3hB x2ð Þ HB x2ð Þ½ �α3−1
n o

:α1hB x1ð Þ HB x1ð Þ½ �α1−1:exp − HB x1ð Þ½ �α1− HB x2ð Þ½ �α2− HB x2ð Þ½ �α3f g;
f 2 x1; x2ð Þ ¼ α1hB x1ð Þ HB x1ð Þ½ �α1−1 þ α3hB x1ð Þ HB x1ð Þ½ �α3−1

n o
:α2hB x2ð Þ HB x2ð Þ½ �α2−1:exp − HB x2ð Þ½ �α2− HB x1ð Þ½ �α1− HB x1ð Þ½ �α3f g;

f 3 xð Þ ¼ α3hB xð Þ HB xð Þ½ �α3−1exp − HB xð Þ½ �α1− HB xð Þ½ �α2− HB xð Þ½ �α3f g:

Proof By Following the same idea as in Proposition 1 the pdf is derived
The joint hazard function of the dependent variables (X1, X2)~BHPP(α1,

α2, α3) is obtained as follows

hBHPP x1; x2ð Þ ¼
h1 x1; x2ð Þ; x1 < x2
h2 x1; x2ð Þ; x1 > x2
h3 xð Þ; x1 ¼ x2 ¼ x

8<: ð4:6Þ
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where

h1 x1; x2ð Þ ¼ hHPP x1; α1ð Þ hHPP x2; α2ð Þ þ hHPP x2; α3ð Þf g
¼ α1hB x1ð Þ HB x1ð Þ½ �α1−1:

n
α2hB x2ð Þ HB x2ð Þ½ �α2−1

þ α3hB x2ð Þ HB x2ð Þ½ �α3−1
o
;

h2 x1; x2ð Þ ¼ hHPP x2; α2ð Þ hHPP x1; α1ð Þ þ hHPP x1; α3ð Þf g
¼ α2hB x2ð Þ HB x2ð Þ½ �α2−1:

n
α1hB x1ð Þ HB x1ð Þ½ �α1−1

þ α3hB x1ð Þ HB x1ð Þ½ �α3−1
o
;

and
h3 xð Þ ¼ hHPP x; α3ð Þ ¼ α3hB xð Þ HB xð Þ½ �α3−1:

4.1 Marginal and Conditional Densities
Assume (X1, X2)~BHPP(α1, α2, α3).Then, the marginal survival functions and
densities of X1 and X2 are given respectively, as follows

SXi xið Þ ¼ exp − HB xið Þ½ �α i− HB xið Þ½ �α3f g; i ¼ 1; 2 :

f Xi
xið Þ ¼ α i hB xið Þ HB xið Þ½ �α i−1 þ α3 hB xið Þ HB xið Þ½ �α3−1

n o
:exp − HB xið Þ½ �α i− HB xið Þ½ �α3f g; i ¼ 1; 2:

Further, for (X1, X2)~BHPP(α1, α2, α3), the conditional density of X1i given
X2j = x2j is given by

f Xi=X j
x1; x2ð Þ ¼

f 1ð Þ
i= j xi=x j
� �

ifxi < x j

f 2ð Þ
i= j xi=x j
� �

ifx j > xi

f 3ð Þ
i= j xi=x j
� �

ifxi ¼ x j ;

8>><>>: ð4:7Þ

where

f 1ð Þ
i= j xi=x j
� � ¼ α1hB xið Þ HB xið Þ½ �α1−1exp − HB xið Þ½ �α1f g;

f 2ð Þ
i= j xi=x j
� � ¼ α2hB x j

� �
HB x j
� �
 �α2−1exp − HB x j

� �
 �α2
� 	

;

f 3ð Þ
i= j xi=x j
� � ¼ α3hB x j

� �
HB x j
� �
 �α3−1

α2hB x j
� �

HB x j
� �
 �α2−1 þ α3hB x j

� �
HB x j
� �
 �α3−1

h i
8<:

9=;:

:exp − HB xið Þ½ �α1− HB xið Þ½ �α2− HB xið Þ½ �α3 þ HB x j
� �
 �α2 þ HB x j

� �
 �α3
� 	

:
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4.2 Absolutely Continuous BHPP Family of Distributions
An absolutely continuous BHPP (BHPPac) family of distributions will be
introduced by removing the singular part and remaining only the absolutely
continuous part.

A random vector (Y1, Y2) follows a BHPPac family if its pdf is given by

f Y 1;Y 2
y1; y2ð Þ ¼ C f 1 y1; y2ð Þify1 < y2

C f 2 y1; y2ð Þify1 > y2

�
;

where

f 1 y1; y2ð Þ ¼ α2hB y2ð Þ HB y2ð Þ½ �α2−1 þ α3hB y2ð Þ HB y2ð Þ½ �α3−1
n o

:α1hB y1ð Þ HB y1ð Þ½ �α1−1:exp − HB y1ð Þ½ �α1− HB y2ð Þ½ �α2− HB y2ð Þ½ �α3f g;
f 2 y1; y2ð Þ ¼ α1hB y1ð Þ HB y1ð Þ½ �α1−1 þ α3hB y1ð Þ HB y1ð Þ½ �α3−1

n o
:α2hB y2ð Þ HB y2ð Þ½ �α2−1:exp − HB y2ð Þ½ �α2− HB y1ð Þ½ �α1− HB y1ð Þ½ �α3f g;

and C is a normalizing constant. It will be denoted as (Y1, Y2)~BHPPac(α1, α2,
α3).

Again the marginal distributions in this case are not univariate HPP
models.

4.3 Parameter Estimation for BHPP Family of Distributions
Assume that {(x11, x21), (x12, x22), …, (x1n, x2n) } be a complete random sample
from BHPP(α1, α2, α3) family of distributions whose pdf and survival function
are given in Eqs. (4.5) and (4.4). Again, consider the following notation

I 1 ¼ i; x1i < x2if g; I 2 ¼ i; x1i > x2if g; I 3 ¼ x1i ¼ x2i ¼ xif g; I ¼ I 1∪I 2∪I 3;
I 1j j ¼ n1; I 2j j ¼ n2; I 3j j ¼ n3; and n1 þ n2 þ n3 ¼ n:

The log-likelihood function of the sample of size n from BHPP(α1, α2, α3) is
given by

l αð Þ ¼ n1logα1 þ n2logα2 þ n3logα3 þ α1−1ð Þ∑I1 log HB x1ið Þ½ �
þ α2−1ð Þ∑I2 log HB x2ið Þ½ � þ α3−1ð Þ∑I3 log HB xið Þ½ �
−∑I HB x1ið Þ½ �α1 þ HB x1ið Þ½ �α1 þ HB xið Þ½ �α1

−∑I HB x2ið Þ½ �α2 þ HB x2ið Þ½ �α2 þ HB x2ið Þ½ �α2

−∑I HB x2ið Þ½ �α3 þ HB x1ið Þ½ �α3 þ HB xið Þ½ �α3

þ∑I log hB x1ið Þ½ � þ log hB x2ið Þ½ � þ log hB xið Þ½ �
þ∑I1Φ x2i; α2; α3ð Þ þ∑I2Φ x1i; α1; α3ð Þ:
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Where α ¼ α1ð ; α2; α3Þ,

Φ xki; αk ; α3ð Þ ¼ log αkhB xkið Þ HB xkið Þ½ �αk−1 þ α3hB xkið Þ HB xkið Þ½ �α3−1
h i

;

for k = 1, 2.
Accordingly, the likelihood equations can be written as

n1bα1

þ∑
I1
log HB x1ið Þ½ � þ∑

I2
Ψ x1i; α1; α3ð Þ

¼ ∑
I
log HB x1ið Þ½ �

n
HB x1ið Þbα 1þHB x1ið Þbα 1

o
þ log HB xið Þ½ � HB xið Þ½ �bα 1 ;

n2bα2

þ∑
I2
log HB x2ið Þ½ � þ∑

I1
Ψ x2i; α2; α3ð Þ

¼ ∑
I
log HB x2ið Þ½ �

n
HB x2ið Þbα 2þHB x2ið Þbα 2

o
þ log HB xið Þ½ � HB xið Þ½ �bα 2 ;

n3bα3

þ∑
I3
log HB xið Þ½ � þ ∑

I1∪I2
ξ x2i; α2; α3ð Þ

þξ x1i; α1; α3ð Þ ¼∑
I
log HB x2ið Þ½ � HB x2ið Þ½ �bα 3

þlog HB x1ið Þ½ � HB x1ið Þ½ �bα 3þlog HB xið Þ½ � HB xið Þ½ �bα 3 :

Where

ξ xki; αk ; α3ð Þ ¼ HB xkið Þ½ �α3−1 1þ α3log HB xkið Þ½ �½ �
αk HB xkið Þ½ �αk−1 þ α3 HB xkið Þ½ �α3−1

; k ¼ 1; 2:

and Ψ xkið ; αk ; α3Þ ¼ HB xkið Þ½ �αk−1 1þαk log HB xkið Þ½ �½ �
αk HB xkið Þ½ �αk−1þα3 HB xkið Þ½ �α3−1 ; k ¼ 1; 2:
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The second derivatives are given as follows

∂2l αð Þ
∂α2

1
¼ −

n1

α2
1
þ∑

I2
η x1i; α1; α3ð Þ−

∑
I

log HB x1ið Þ½ �ð Þ2 HB x1ið Þbα 1 þHB x1ið Þbα 1

( )
þ log HB xið Þ½ �ð Þ2 HB xið Þ½ �bα 1 ;

∂2l αð Þ
∂α2

2
¼ −

n2

α2
2
þ∑

I1
η x2i; α2; α3ð Þ−

∑
I

log HB x2ið Þ½ �ð Þ2 HB x2ið Þbα 2 þHB x2ið Þbα 2

( )
þ log HB xið Þ½ �ð Þ2 HB xið Þ½ �bα 1 ;

∂2l αð Þ
∂α2

3
¼ −

n3

α2
3
þ ∑

I1∪I2
δ x2i; α2; α3ð Þ þ δ x1i; α1; α3ð Þ−

∑
I

log HB x2ið Þ½ �ð Þ2 HB x2ið Þ½ �bα 3 þ log HB x1ið Þ½ �ð Þ2 HB x1ið Þ½ �bα 3

þ log HB xið Þ½ �ð Þ2 HB xið Þ½ �bα 1 ;

∂2l αð Þ
∂α1∂α3

¼ ∑
I2
ϵ x1i; α1; α3ð Þ; and ∂2l αð Þ

∂α2∂α3
¼ ∑

I1
ϵ x2i; α2; α3ð Þ:

Where

A xki; αk ; α3ð Þ ¼ αk HB xkið Þ½ �αk−1 þ α3 HB xkið Þ½ �α3−1 k ¼ 1; 2:
B xki; αkð Þ ¼ HB xkið Þ½ �αk−1 1þ αk log HB xkið Þ½ �½ � k ¼ 1; 2:
C xki; α3ð Þ ¼ HB xkið Þ½ �α3−1 1þ α3log HB xkið Þ½ �½ � k ¼ 1; 2:
E xki; αkð Þ ¼ HB xkið Þ½ �αk−1log HB xkið Þ½ � 2þ log HB xkið Þ½ �½ � k ¼ 1; 2:
G xki; αkð Þ ¼ HB xkið Þ½ �α3−1log HB xkið Þ½ � 2þ log HB xkið Þ½ �½ � k ¼ 1; 2:

η xki; αk ; α3ð Þ ¼ A xki; αk ; α3ð Þ:E xki; αkð Þ− B xki; αkð Þ½ �2
A xki; αk ; α3ð Þ½ �2 ; k ¼ 1; 2:

δ xki; αk ; α3ð Þ ¼ A xki; αk ; α3ð Þ½ �2:G xki; αkð Þ− C xki; αkð Þ½ �2
A xki; αk ; α3ð Þ½ �2 ; k ¼ 1; 2:

and ϵ xki; αk ; α3ð Þ ¼ −
B xki; αkð Þ C xki; αkð Þ

A xki; αk ; α3ð Þ½ �2 ; k ¼ 1; 2:

The asymptotic variance-covariance matrix for the parameters of BHPP family
of distributions can be obtained by using the above second derivatives and
doing the same steps explained in Section (3.3).
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4.4 A New Bivariate Distributions Belongs to BHPP Class
i) Bivariate Weibull Distribution

Using Eqs. (2.3)-(2–4) in Eqs. (4.4)–(4.5). A new bivariate Weibull distribution
denoted by BW(α1, α2, α3, λ) can be defined by the joint survival function

SBW x1; x2ð Þ ¼ exp − λx1ð Þα1f gexp − λx2ð Þα2f g exp − λx3ð Þα3f g
where x3 = max(x1, x2).

The joint survival function of BW model can be stretching in the following
form

SBW x1; x2ð Þ ¼
S1 x1; x2ð Þ; x1 < x2
S2 x1; x2ð Þ; x1 > x2
S3 xð Þ; x1 ¼ x2 ¼ x

8<:
Where

S1 x1; x2ð Þ ¼ exp − λx1ð Þα1− λx2ð Þα2− λx2ð Þα3f g;
S2 x1; x2ð Þ ¼ exp − λx1ð Þα1− λx1ð Þα3− λx2ð Þα2f g;
S3 xð Þ ¼ exp − λxð Þα1− λxð Þα2− λxð Þα3f g:

Accordingly, the joint pdf of BW model can be obtained as

f BW x1; x2ð Þ ¼
f 1 x1; x2ð Þ; x1 < x2
f 2 x1; x2ð Þ; x1 < x2
f 3 xð Þ; x1 ¼ x2 ¼ x

8<: ð4:8Þ

where

f 1 x1; x2ð Þ ¼ α1λ
α1xα1−1

1 α2λ
α2xα2−1

2 þ α3λ
α3xα3−1

2

� 	
:exp − λx1ð Þα1− λx2ð Þα2− λx2ð Þα3f g;

f 2 x1; x2ð Þ ¼ α2λ
α2xα2−1

2 α1λ
α1xα1−1

1 þ α3λ
α3xα3−1

1

� 	
:exp − λx1ð Þα1− λx2ð Þα2− λx1ð Þα3f g;

and f 3 xð Þ ¼ α3λ
α3xα3−1exp − λxð Þα1− λxð Þα2− λxð Þα3f g:

Surface plots of the joint pdf of the BW model are given in Fig. 1. Where the
values of (α1, α2, α3, λ) are taken to be as follows a = (5,5,5,0.5), b =
(2,3,10,0.6), c = (8,4,3,0.5) d = (2,2,2,1), e = (2,2.5,2,2) and f =
(1,1,1,0.05)

ii) Bivariate Generalized Gompertz (BGG) Distribution
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Using Eqs. (2.23)-(2–24) in Eqs. (4.4)–(4.5). A new bivariate generalized
Gompertz distribution denoted by BGG(α1, α2, α3, λ, ξ) can be defined by
the following joint survival function

SBGG x1; x2ð Þ ¼ exp − ξ eλx1−1
� �
 �α1− ξ eλx2−1

� �
 �α2− ξ eλx3−1
� �
 �α3

� 	
where x3 = max(x1, x2).

Or, the joint survival function of BGG model can be written as

SBGG x1; x2ð Þ ¼
S1 x1; x2ð Þ; x1 < x2
S2 x1; x2ð Þ; x1 > x2
S3 xð Þ; x1 ¼ x2 ¼ x

8<:
Where

S1 x1; x2ð Þ ¼ exp − ξ eλx1−1
� �
 �α1− ξ eλx2−1

� �
 �α2− ξ eλx2−1
� �
 �α3

� 	
;

S2 x1; x2ð Þ ¼ exp − ξ eλx1−1
� �
 �α1− ξ eλx2−1

� �
 �α2− ξ eλx1−1
� �
 �α3

� 	
;

and S3 xð Þ ¼ exp − ξ eλx−1
� �
 �α1− ξ eλx−1

� �
 �α2− ξ eλx−1
� �
 �α3

� 	
:

a) b) c)

d) e) f)

Fig. 1: 3D plots for the pdf of the absolutely continuous part of the BW model
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The joint pdf of BGG model can be written as

f BGG x1; x2ð Þ ¼
f 1 x1; x2ð Þ; x1 < x2
f 2 x1; x2ð Þ; x1 < x2
f 3 xð Þ; x1 ¼ x2 ¼ x

8<: ð4:9Þ

where

f 1 x1; x2ð Þ ¼ λξð Þ2α1 eλx1eλx2 ξ eλx1−1
� �
 �α1−1

:
n
α2 ξ eλx2−1

� �
 �α2−1

þα3 ξ eλx2−1
� �
 �α3−1

o
:exp − ξ eλx1−1

� �
 �α1− ξ eλx2−1
� �
 �α2− ξ eλx2−1

� �
 �α3
� 	

;

f 2 x1; x2ð Þ ¼ λξð Þ2α2 eλx1eλx2 ξ eλx2−1
� �
 �α2−1

:
n
α1 ξ eλx1−1

� �
 �α1−1

þα3 ξ eλx1−1
� �
 �α3−1

o
:exp − ξ eλx1−1

� �
 �α1− ξ eλx1−1
� �
 �α3− ξ eλx2−1

� �
 �α2
� 	

;

and
f 3 xð Þ ¼ λξα3 eλx ξ eλx−1

� �
 �α3−1exp − ξ eλx−1
� �
 �α1− ξ eλx−1

� �
 �α2− ξ eλx−1
� �
 �α3

� 	
:

Surface plots of the joint pdf of the BGG model are given in Fig. 2. Where the
values of (α1, α2, α3, λ, ξ) are taken to be as follows a = (2, 2.5, 2, 1, 1), b =
(2, 2, 2, 1, 0.1), c = (1.5, 1.5,1,1,0.2), d = (1.2,1.5,1.1, 1, 0.2), e =
(1,1,1,1,0.2) and f = (1,2.4,1,1,1).

a) b) c)

d) e) f)

Fig. 2: 3D plots for the pdf of the absolutely continuous part of the BGGmodel
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iii) Bivariate Generalized Pareto (BGP) Distribution

Using Eqs. (2.27)-(2-28) in Eqs. (4.4)–(4.5). A BGP distribution denoted by
BGP(α1, α2, α3, λ) can be introduced by the joint survival function

SBGP x1; x2ð Þ ¼ exp − log 1þ λx1ð Þ½ �α1f gexp − log 1þ λx2ð Þ½ �α2f g
:exp − log 1þ λx3ð Þ½ �α3f g

where x3 = max(x1, x2).
That is,

SBGP x1; x2ð Þ ¼
S1 x1; x2ð Þ; x1 < x2
S2 x1; x2ð Þ; x1 > x2
S3 xð Þ; x1 ¼ x2 ¼ x

8<:
Where

S1 x1; x2ð Þ ¼ exp − log 1þ λx1ð Þ½ �α1− log 1þ λx2ð Þ½ �α2− log 1þ λx2ð Þ½ �α3f g;
S2 x1; x2ð Þ ¼ exp − log 1þ λx1ð Þ½ �α1− log 1þ λx1ð Þ½ �α3− log 1þ λx2ð Þ½ �α2f g;
S3 xð Þ ¼ exp − log 1þ λxð Þ½ �α1− log 1þ λxð Þ½ �α2− log 1þ λxð Þ½ �α3f g:

The joint pdf of BGP model can be written as

f BGP x1; x2ð Þ ¼
f 1 x1; x2ð Þ; x1 < x2
f 2 x1; x2ð Þ; x1 < x2
f 3 xð Þ; x1 ¼ x2 ¼ x

8<: ð4:10Þ

where

f 1 x1; x2ð Þ ¼ λ2α1

1þ λx1ð Þ 1þ λx2ð Þ log 1þ λx1ð Þ½ �α1−1
n
α2 log 1þ λx2ð Þ½ �α2−1þ

α3 log 1þ λx2ð Þ½ �α3−1: exp − log 1þ λx1ð Þ½ �α1− log 1þ λx2ð Þ½ �α2− log 1þ λx2ð Þ½ �α3f g;
f 2 x1; x2ð Þ ¼ λ2α2

1þ λx1ð Þ 1þ λx2ð Þ log 1þ λx2ð Þ½ �α2−1
n
α1 log 1þ λx1ð Þ½ �α1−1þ

α3 log 1þ λx1ð Þ½ �α3−1
o
:exp − log 1þ λx1ð Þ½ �α1− log 1þ λx1ð Þ½ �α3− log 1þ λx2ð Þ½ �α2f g;

f 3 xð Þ ¼ λα3

1þ λxð Þ log 1þ λxð Þ½ �α3−1exp − log 1þ λxð Þ½ �α1− log 1þ λxð Þ½ �α2− log 1þ λxð Þ½ �α3f g:

Surface plots of the joint pdf of the BGP model are given in Fig. 3. Where the
values of (α1, α2, α3, λ) are taken to be as follows a = (3,2,1, 0.5), b =
(3,2,2,5), c = (3,2,1,0,05), d = (2,3,2,0.5) e = (3,2,1,5) and f = (1,1,1,0.5)
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iv) Bivariate Generalized Uniform (BGU) Distribution

Using Eqs. (2.15)-(2-16) in Eqs. (4.4)–(4.5). A new BGU distribution denoted
by BGU(α1, α2, α3) can be introduced by the joint survival function

SBGU x1; x2ð Þ ¼ exp − −log 1−x1ð Þ½ �α1f gexp − −log 1−x2ð Þ½ �α2f g
:exp − −log 1−x3ð Þ½ �α3f g:

where x3 = max(x1, x2).

SBGU x1; x2ð Þ ¼
S1 x1; x2ð Þ; x1 < x2
S2 x1; x2ð Þ; x1 > x2
S3 xð Þ; x1 ¼ x2 ¼ x

8<:
where

S1 x1; x2ð Þ ¼ exp − −log 1−x1ð Þ½ �α1− −log 1−x2ð Þ½ �α2− −log 1−x2ð Þ½ �α3f g;
S2 x1; x2ð Þ ¼ exp − −log 1−x1ð Þ½ �α1− −log 1−x2ð Þ½ �α2− −log 1−x1ð Þ½ �α3f g;
S3 xð Þ ¼ exp − −log 1−xð Þ½ �α1− −log 1−xð Þ½ �α2− −log 1−xð Þ½ �α3f g:

a) b) c)

d) e) f)

Fig. 3: 3D plots for the pdf of the absolutely continuous part of the BGPmodel
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The joint pdf of BGU model can be written as

f BGU x1; x2ð Þ ¼
f 1 x1; x2ð Þ; x1 < x2
f 2 x1; x2ð Þ; x1 < x2
f 3 xð Þ; x1 ¼ x2 ¼ x

8<: ð4:11Þ

where

f 1 x1; x2ð Þ ¼ α1 1−x1ð Þ−1 1−x2ð Þ−1 −log 1−x1ð Þ½ �α1−1:
n
α2 −log 1−x2ð Þ½ �α2−1

þα3 −log 1−x2ð Þ½ �α3−1:exp − −log 1−x1ð Þ½ �α1− −log 1−x2ð Þ½ �α2− −log 1−x2ð Þ½ �α3f g;
f 2 x1; x2ð Þ ¼ α2 1−x1ð Þ−1 1−x2ð Þ−1 −log 1−x2ð Þ½ �α2−1:

n
α1 −log 1−x1ð Þ½ �α1−1

þα3 −log 1−x1ð Þ½ �α3−1:exp − −log 1−x1ð Þ½ �α1− −log 1−x2ð Þ½ �α2− −log 1−x1ð Þ½ �α3f g;
and
f 3 xð Þ ¼ α3 1−xð Þ−1 −log 1−xð Þ½ �α3−1:exp − −log 1−xð Þ½ �α1− −log 1−xð Þ½ �α2− −log 1−xð Þ½ �α3f g

5 Bivariate Power Parameter Family of Distributions (BPP)

Let FB be a baseline cdf. Suppose that that FPPF(.; α) is defined in terms of
FB by the formula

FPPF x; αð Þ ¼ FB xαð Þ; α > 0 ð5:1Þ

Then α is called a power parameter and {FPPF(.; α), α > 0} is a power
parameter family with underling distribution FB.

The corresponding pdf and hazard function is given respectively, as

f PPF x; αð Þ ¼ α xα−1 f B xαð Þ ð5:2Þ

hPPF x; αð Þ ¼ α xα−1 hB xαð Þ: ð5:3Þ
Where fBand hB are a baseline pdf and hazard functions respectively.

The bivariate version correspondence to this family can introduced as
follows Assuming that U1, U2 and U3 are mutually independent random
variables such that

U1~PP(α1), U2~PP(α2) and U3~PP(α3). Define X1 = Max (U1, U3) and
X2 = Max (U2, U3) then by using Eqs. (5.1) and (5.2), the bivariate Power
parameter family of distributions denoted by BPP(α1, α2, α3) is defined by the
following joint cdf
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FBPP x1; x2ð Þ ¼ FB xα1
1ð Þ FB xα2

2ð ÞFB xα3
3

� �
where x3 ¼ min x1; x2ð Þ

FBPP x1; x2ð Þ ¼
F1 x1; x2ð Þ; x1 < x2
F2 x1; x2ð Þ; x1 > x2
F3 xð Þ; x1 ¼ x2 ¼ x

8<:
Where

F1 x1; x2ð Þ ¼ FB xα1
1ð Þ FB xα3

1ð ÞFB xα2
2ð Þ;

F2 x1; x2ð Þ ¼ FB xα1
1ð Þ FB xα2

2ð ÞFB xα3
2ð Þ;

And F3 xð Þ ¼ FB xα1ð Þ FB xα2ð ÞFB xα3ð Þ:

6 Bivariate Proportional Hazard Family of Distributions (BPHP)

Let SB be a baseline survival function with cumulative hazard function
HB(x) = − log SB(x) Suppose that SFPF(.; α) is defined in terms of SB by the
formula

SFP x; αð Þ ¼ SB xð Þ½ �α ¼ exp −αHB xð Þf g; α > 0 ð6:1Þ
In this case α is called a frailty parameter and {SFP(.; α), α > 0} is a frailty
parameter family, or alternatively, a proportional hazard family with underly-
ing survival functionSB.

The corresponding pdf and hazard function is given respectively, as

f FP x; αð Þ ¼ α SB xð Þ½ �α−1 f B xð Þ ð6:2Þ

hFP x; αð Þ ¼ α hB xð Þ: ð6:3Þ
Where fBand hB are a baseline pdf and hazard functions respectively.

The bivariate version correspondence to this family has introduced by
Shoaee (2020) as follows:

Assuming that U1, U2 and U3 are mutually independent random variables
such that
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U1~UFP(α1), U2~UFP(α2) and U3~UFP(α3). Define X1 = min (U1, U3)
and X2 = min (U2, U3) then by using Eqs. (6.1) and (6.2), the bivariate
frailty parameter family of distributions(or bivariate proportional hazard
models) denoted by BFP(α1, α2, α3) is defined by the joint survival and density
functions respectively, as follows

SBFP x1; x2ð Þ ¼ SB x1ð Þ½ �α1 SB x2ð Þ½ �α2 SB x3ð Þ½ �α3 ; such that x3 ¼ max x1; x2ð Þ

or SBFP x1; x2ð Þ ¼ exp −α1HB x1ð Þ−α2HB x2ð Þ−α3HB x3ð Þf g;
and

f BFP x1; x2ð Þ ¼
f 1 x1; x2ð Þ; x1 < x2
f 2 x1; x2ð Þ; x1 > x2
f 3 xð Þ; x1 ¼ x2 ¼ x

8<:
Where

f 1 x1; x2ð Þ ¼ α1 α2 þ α3ð Þ f B x1ð Þ f B x2ð Þ SB x1ð Þ½ �α1−1 SB x1ð Þ½ �α2þα3−1;

f 2 x1; x2ð Þ ¼ α1 þ α3ð Þα2 f B x1ð Þ f B x2ð Þ SB x1ð Þ½ �α1þα3−1 SB x1ð Þ½ �α2−1;

and f 3 xð Þ ¼ α3 f B xð Þ SB x1ð Þ½ �α1þα2þα3−1.

7 Bivariate Proportional Reversed Hazard Family of Distributions
(BPRP)

Suppose that FRP(.; α) is defined in terms of FB by the formula

FRP x; αð Þ ¼ FB xð Þ½ �α ¼ exp αRB xð Þf g; α > 0 ð7:1Þ

In this case α is called a resilience parameter and {FRP(.; α), α > 0} is a
resilience parameter family, or alternatively, a proportional reversed hazard
family with baseline cdf FB.

The corresponding pdf and reversed hazard function is given respectively, as

f RP x; αð Þ ¼ α FB xð Þ½ �α−1 f B xð Þ ð7:2Þ

rRP x; αð Þ ¼ α rB xð Þ: ð7:3Þ
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Where fBand rB are a baseline pdf and reversed hazard functions respectively.
Kundu and Gupta (2010) introduced a bivariate proportional reversed

hazard family of distributions with the joint cdf and pdf respectively, as follows
FBRP x1ð ; x2Þ ¼ FB x1ð Þ½ �α1 FB x2ð Þ½ �α2 FB x3ð Þ½ �α3 , such that x3 = min(x1,

x2)

f BRP x1; x2ð Þ ¼
f 1 x1; x2ð Þ; x1 < x2
f 2 x1; x2ð Þ; x1 > x2
f 3 xð Þ; x1 ¼ x2 ¼ x

8<: ;

where

f 1 x1; x2ð Þ ¼ α1 þ α3ð Þα2 f B x1ð Þ f B x2ð Þ FB x1ð Þ½ �α1þα3−1 FB x2ð Þ½ �α2−1;

f 2 x1; x2ð Þ ¼ α1 α2 þ α3ð Þ f B x1ð Þ f B x2ð Þ FB x1ð Þ½ �α1−1 FB x2ð Þ½ �α2þα3−1;

and f 3 xð Þ ¼ α3 f B xð Þ FB xð Þ½ �α1þα2þα3−1.

8 Numerical Study

8.1 Simulation Study
As be mentioned above the BRPP and BHPP contain different distributions.
So it is better to use the different distributions in both BRPP and BHPP
families. Such as bivariate Weibull (BW), bivariate generalized Gompertz
(BGG), bivariate generalized inverse uniform (BGIU) distributions. Also, the
following algorithm can be used to simulate these families in general.

Algorithm to generate from BRPP models

Step 1. Generate U1, U2 and U3 from U(0, 1).

Step 2. Compute Z1 ¼ R−1
B −logU 1½ �1=α1
� �

, Z2 ¼ R−1
B −logU 2½ �1=α2
� �

,

and Z3 ¼ R−1
B −logU 3½ �1=α3
� �

.

Step3. Obtain X1 = min (Z1, Z3) and X2 = min (Z2, Z3).
Step4. Define the indicator functions as

δ1i ¼ 1; x1i < x1i
0; otherwise

�
; δ2i ¼ 1; x1i > x1i

0; otherwise

�
and δ3i ¼ 1; x1i ¼ x1i

0; otherwise

�
:

Step5. The corresponding sample size n must satisfy n = n1 + n2 + n3
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Such that n1 ¼ ∑
n

i¼1
δ1i; n2 ¼ ∑

n

i¼1
δ2i and n3 ¼ ∑

n

i¼1
δ1i:

To generate from BHPP model apply the same steps from 1 to 5 except in
step 2 the quantile function is exchanged to be

Z1 ¼ H−1
B −logU 1½ �1=α1
� �

; Z2 ¼ H−1
B −logU 2½ �1=α2
� �

; and Z3

¼ H−1
B −logU 3½ �1=α3
� �

:

AMonte Carlo simulation study testing the performance ofMLE for the BRPP and
BHPP models parameters will be introduced in general and especially for BGIU
modelwhich defined byEq. (3.12) and denoted byBGIU(α1, α2, α3) and belongs to
the BRPP family, BGG model which defined by Eq. (4.9) and denoted by BGG
(α1, α2, α3, λ, ξ) and belongs to theBHPP family, andBWmodel which defined by
Eq. (4.8) and denoted by BW(α1, α2, α3, λ) and belongs to the BHPP family.

The evaluation of the MLE was performed based on the following quantities
for each sample size: the mean of the MLEs (MLE) and the corresponding
Mean Squared Error, (MSE). For different choices for the sample sizes and
different sets of parameters real values which are as follows

Group1:
For BGG model (α1, α2, α3, λ, ξ) = (0.8, 0.7, 0.7, 0.2,0.002)
For BW model (α1, α2, α3, λ) = (0.2, 0.3, 0.5, 0.2)
For BGIU model (α1, α2, α3) = (1.3, 1.5, 1.2)
Group 2:
For BGG model (α1, α2, α3, λ, ξ) = (0.7, 0.7, 0.6, 0.3,0.002)
For BW model (α1, α2, α3, λ) = (0.8, 0.7, 0.7, 0.2)
For BGIU model (α1, α2, α3) = (2, 2.5, 2)
The results of these simulations are presented in Tables 1 and 2. These

results are useful, and it is observed that in most of the cases as the sample size
increases, the MSEs decrease. This represents that the MLEs are consistent.

8.2 Application to Real Data Sets
In this section, three real data sets will be examined.Here, these datawill be fitted to
seven sub models. Four of them belong to BHPP family namely: (i) bivariate
Weibull (BW) distribution, which defined by Eq. (4.8) (ii) bivariate generalized
Gompertz (BGG) distribution which defined by Eq. (4.9), (iii) bivariate generalized
Pareto (BGP)distributionwhich definedbyEq. (4.10) and (iv) bivariate generalized
uniform distribution (BGU) which defined by Eq. (4.11). And three of them belong
to BRPP family namely (i) bivariate inverse Weibull (BIW) distribution which
defined by Eq. (3.10), (ii) bivariate generalized invers Rayleigh (BGIR) distribution
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which defined by Eq. (3.11), and (iii) bivariate generalized inverse uniform (BGIU)
distribution which defined by Eq. (3.12).

8.2.1 Data Set 1: UEFA Champion’s League Data
The data set has been obtained from Meintanis (2007) and represented in
Table 3. He explained that: the data represent the football (soccer) data where
at least one goal scored by the home team and at least one goal scored directly
from a penalty kick, foul kick or any other direct kick (all of them together will
be called as kick goal) by any team have been considered. Here X1 represents
the time in minutes of the first kick goal scored by any team and X2 represents
the first goal of any type scored by the home team. In this case all possibilities
are open, for example X1 X2 or X1 X2 or X1 = X2 = X.

8.2.2 Data Set 2: Cholesterol Levels
This data set contains cholesterol levels at 5 and 25 weeks after treatment in 30
patients and represented in Table 4. Before analyzing this data, the transfor-
mation (X − 150)/100 is applied to all data, this transformation will not effect
on the analysis and are for computational reasons only. This data set was used
by Shoaee (2020). Again, in this case all possibilities are exist, i.e., X1 X2 or
X1 X2 or X1 = X2 = X.

8.2.3 Data Set 3: Burr Data
The data set has been obtained from Shoaee (2020) and represented in Table 5.

Table 3: UEFA Champion's League data

S.N. X1 X2 S.N. X1 X2 S.N. X1 X2 S.N. X1 X2

1 26 20 11 72 72 21 53 39 31 49 49

2 63 18 12 66 62 22 54 7 32 24 24

3 19 19 13 25 9 23 51 28 33 44 30

4 66 85 14 41 3 24 76 64 34 42 3

5 4 4 15 16 75 25 64 15 35 27 47

6 49 49 16 18 18 26 26 48 36 28 28

7 8 8 17 22 14 27 16 16 37 2 2

8 69 71 18 42 42 28 44 6

9 39 39 19 36 52 29 25 14

10 82 48 20 34 34 30 55 11

< >

<
>
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This dataset contains 50 observations on the burr. In the first component, the
hole diameter is 12 mm and the sheet thickness is 3.15 mm. In the second
component, the hole diameter is 9 mm and the sheet thickness is 2 mm. These
two datasets are derived from two different machines. Also, in this case all
possibilities are exist, for example X1 X2 or X1 X2 or X1 = X2 = X.

The marginal distributions of both families are fitted to each data set
separately which are: Weibull (W), generalized Gompertz (GE), generalized
Pareto (GP), generalized uniform (GU), inverse Weibull (IW), generalized
inverse Rayleigh (GIR) and generalized inverse uniform (GIU). The MLEs,
The Kolmogorov-Smirnov (K-S) distances between the fitted distribution and
the empirical distribution function for X1 and X2 and their maximum are
shown in Tables 6 and 7 separately.

Now, the three data sets will fit to the seven bivariate sub-models
(BW, BGG, BGP, BGU, BIW, BGIR, BGIU) defined above, the MLEs,
the standard error (SE) and the confidence intervals(CI) with confidence
interval lengths (CIL) will be calculated for each data set and listed in
Tables 8, 9, and 10. To compare these models with each other or with
any other bivariate models that represent this data the Akaike informa-
tion criterion (AIC), Bayesian information criterion (BIC), the consistent
Akaike information criterion (CAIC) and Hannan-Quinn information
criterion (HQIC) are calculated for each model and each data set and
listed in Table 11.

Table 4: Cholesterol levels at 5 and 25 weeks after treatment in 30 patients

S.N. X1 X2 S.N. X1 X2 S.N. X1 X2

1 325 246 11 217 252 21 316 283

2 278 245 12 248 305 22 243 245

3 257 212 13 225 225 23 305 272

4 192 192 14 287 208 24 197 197

5 276 325 15 233 217 25 243 247

6 262 294 16 198 198 26 315 283

7 309 232 17 229 179 27 205 205

8 287 287 18 310 352 28 315 255

9 304 245 19 214 274 29 263 215

10 215 261 20 253 209 30 210 271

< >
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Table 6: The Marginals Fittings of BHPP Models Parameters

Data Model Variables α λ ξ K-S
Data 1 W X1 2.358 0.182 0.542

X2 1.01 0.182 0.440

Min (X1,X2) 3.139 0.182 0.433

GG X1 0.836 0.705 0.358 0.336

X2 0.915 0.705 0.358 0.975

Min (X1,X2) 1.346 0.705 0.358 0.285

GP X1 3.743 0.11 1.007

X2 3.018 0.11 0.964

Min (X1,X2) 4.96 0.11 0.955

GU X1 3.07 0.084

X2 2.528 0.176

Min (X1,X2) 4.146 0.142

Data 2 W X1 2.526 0.26 0.508

X2 1.946 0.26 0.370

Min (X1,X2) 3.022 0.26 0.338

GG X1 2.678 0.6 0.805 0.215

X2 2.858 0.6 0.805 1.517

Min (X1,X2) 4.23 0.6 0.805 0.284

GP X1 2.216 0.13 0.742

X2 2.796 0.13 0.787

Min (X1,X2) 3.901 0.13 0.661

GU X1 0.869 0.757

X2 0.914 0.718

Min (X1,X2) 1.33 0.872

Data 3 W X1 3.432 4.694 0.201

X2 3.633 4.694 0.182

Min (X1,X2) 5.481 4.694 0.488

GG X1 1.958 1.8 1.772 0.255

X2 2.099 1.8 1.772 1.147

Min (X1,X2) 3.14 1.8 1.772 0.220

GP X1 3.631 0.129 1.013

X2 2.872 0.129 0.954

Min (X1,X2) 4.471 0.129 0.929

GU X1 1.204 0.344

X2 1.349 0.389

Min (X1,X2) 1.943 0.295
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Table 7: The Marginals Fittings of BRPP Models Parameters

Data Model Variables α λ σ K-S

Data 1 IW X1 2.055 0.128 0.906

X2 2.281 0.128 0.917

Max (X1,X2) 3.317 0.128 0.938

GIR X1 2.677 0.134 0.958

X2 1.265 0.134 0.917

Max (X1,X2) 3.216 0.134 0.944

GIU X1 2.536 0.943

X2 2.033 0.916

Max (X1,X2) 3.345 0.917

Data 2 IW X1 3.269 0.18 0.985

X2 2.705 0.18 0.921

Max (X1,X2) 4.194 0.18 0.897

GIR X1 1.793 0.26 0.753

X2 1.755 0.26 0.776

Max (X1,X2) 3.255 0.26 0.771

GIU X1 6.549 0.944

X2 7.022 0.965

Max (X1,X2) 10.336 0.963

Data 3 IW X1 2.979 0.05 0.959

X2 2.615 0.05 0.938

Max (X1,X2) 1.46 0.05 0.98

GIR X1 0.227 0.013 0.796

X2 0.534 0.013 0.738

Max (X1,X2) 0.672 0.013 0.897

GIU X1 1.357 0.953

X2 1.359 0.933

Max (X1,X2) 2.074 0.898
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Table 8: The MLE, the CIL and the SE for both BHPP and BRPP Models
parameters for Data 1

Models α1 α2 α3 λ
σ

ξ

MLE(SE )
[CI] CIL

MLE(SE )
[CI] CIL

MLE(SE )
[CI] CIL

MLE(SE )
[CI] CIL

MLE(SE )
[CI] CIL

BW 2.129
(0.468)
[1.909,2.35]
0.441

0.781
(0.02)
[0.734,0.828]
0.094

0.229
(0.0013)
[0.217,0.24]
0.023

0.182
(0.00093)
[0.172,0.192]
0.02

BGG 0.431
(0.0083)
[0.402, 0.46]
0.059

0.51
(0.011)
[0.476, 0.544]
0.069

0.405
(0.0062)
[0.38,0.43]
0.051

0.705
(0.044)
[0.638, 0.773]
0.135

0.358
(0.014)

[0.32, 0.397]
0.077

BGP 1.942
(0.018)
[1.899, 1.986]
0.087

1.217
(0.0049)
[1.194, 1.239]
0.045

1.801
(0.02)
[1.754,1.848]
0.094

0.11
(0.00022)
[0.106, 0.115]
0.0096

BGU 1.618
(0.136)
[1.499,1.737]
0.237

1.076
(0.037)
[1.014, 1.138]
0.124

1.452
(0.069)
[1.367,1.537]
0.17

BIW 1.036
(0.035)
[0.976, 1.097]
0.12

1.262
(0.039)
[1.198, 1.325]
0.127

1.019
(0.024)
[0.969, 1.069]
0.1

0.128
(0.0003)
[0.123, 0.134]
0.011

BGIR 1.951
(0.078)
[1.861, 2.041]
0.18

0.539
(0.008)
[0.51, 0.568]
0.058

0.726
(0.0069)
[0.699, 0.753]
0.054

0.134
(0.00009)
[0.131, 0.137]
0.0061

BGIU 1.312
(0.041)
[1.247, 1.377]
0.131

0.809
(0.042)
[0.743, 0.875]
0.133

1.224
(0.031)
[1.167, 1.281]
0.114
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Table 9: The MLE, the CIL and the SE for both BHPP and BRPP Models
parameters for Data 2

Models α1 α2 α3 λ
σ

ξ

MLE(SE )
[CI] CIL

MLE(SE )
[CI] CIL

MLE(SE )
[CI] CIL

MLE(SE )
[CI] CIL

MLE(SE )
[CI] CIL

BW 1.076
(0.096)
[0.965,1.187]
0.222

0.496
(0.011)
[0.458,0.534]
0.076

1.45
(0.363)
[1.235, 1.666]
0.431

0.26
(0.0081)
[0.228, 0.292]
0.064

BGG 1.371
(0.064)
[1.28, 1.462]
0.181

1.551
(0.075)
[1.454, 1.649]
0.196

1.307
(0.065)
[1.215, 1.399]
0.183

0.6
(0.045)
[0.524, 0.676]
0.152

0.805
(0.177)

[0.655, 0.956]
0.301

BGP 1.106
(0.0079)
[1.074, 1.138]
0.063

1.686
(0.037)
[1.617,1.755]
0.138

1.11
(0.00802)
[1.078, 1.142]
0.064

0.13
(0.00032)
[0.124, 0.136]
0.013

BGU 0.415
(0.0016)
[0.381, 0.449]
0.068

0.416
(0.0023)
[0.427, 0.494]
0.067

0.415
(0.00112)
[0.415, 0.492]
0.077

BIW 1.49
(0.096)
[1.379, 1.6]
0.222

0.925
(0.025)
[0.869, 0.982]
0.113

1.78
(0.514)
[1.523,2.036]
0.513

0.18
(0.0012)
[0.167,0.193]
0.513

BGIR 1.5
(0.021)
[1.449,
11.551]

0.103

1.462
(0.051)
[1.381, 1543]
0.162

0.293
(0.0027)
[0.274, 0.311]
0.037

0.26
(0.00043)
[0.253, 0.267]
0.015

BGIU 3.314
(0.413)
[3.084, 3.544]
0.46

3.786
(0.514)
[3.53, 4.043]
0.474

3.236
(0.438)
[2.999, 3.473]
0.474
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Table 10: The MLE, the CIL and the SE for both BHPP and BRHPP Models
parameters for Data 3

Models α1 α2 α3 λ
σ

ξ

MLE(SE )
[CI] CIL

MLE(SE )
[CI] CIL

MLE(SE )
[CI] CIL

MLE(SE )
[CI] CIL

MLE(SE )
[CI] CIL

BW 1.848
(0.099)
[1.76, 1.935]
0.175

2.049
(0.105)
[1.959, 2.139]
0.18

1.584
(0.095)
[1.499, 1.67]
0.171

4.694
(0.072)
[4.62, 4.769]
0.149

BGG 1.04
(0.029)
[0.993, 1.088]
0.095

1.182
(0.036)
[1.129, 1.234]
0.105

0.918
(0.026)
[0.873, 0.963]
0.089

1.8
(0.112)
[1.707, 1.893]
0.186

1.772
(0.159)
[1.661, 1.882]
0.221

BGP 1.599
(0.014)
[1.566, 1.631]
0.065

0.84
(0.00055)
[0.834, 0.846]
0.013

2.032
(0.0034)
[2.006, 2.058]
0.051

0.129
(0.00017)
[0.125, 0.132]
0.00725

BGU 0.594
(0.00726)
[0.75, 0.618]
0.047

0.739
(0.01)
[0.711, 0.767]
0.055

0.61
(0.0081)
[0.585, 0.635]
0.05

BIW 1.519
(0.032)
[1.469, 1.569]
0.1

1.155
(0.024)
[1.112, 1.198]
0.086

1.46
(0.037)
[1.407, 1.514]
0.106

0.05
(0.000015)
[0.049, 0.051]
0.00214

BGIR 1.138
(0.0005)
[0.132, 0.143]
0.012

0.445
(0.0099)
[0.417, 0.473]
0.055

0.089
(0.00028)
[0.084, 0.093]
0.0092

0.013
(0.000015)
[0.012, 0.014]
0.00213

BGIU 0.715
(0.009)
[0.689, 0.742]
0.052

0.717
(0.011)
[0.687, 0.747]
0.059

0.642
(0.016)
[0.606, 0.678]
0.071
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9 Conclusion

In this study new bivariate families of distributions are proposed by adding
an extra shape parameter to the base distributions by different manners using
the hazard and reversed hazard functions. In most of the cases the joint
probability distribution, joint distribution and joint hazard and joint reversed
hazard functions can be expressed in compact forms. The maximum likelihood
estimation is considered for the vector of the unknown parameters. A simula-
tion study is performed to see the performances of the estimators. For

Table 11: Comparison between Bivariate Models

Data Sets models -2lnl AIC BIC AICC HQIC

Data 1 BW 212.849 220.849 227.292 222.099 223.12

BGG 129.096 139.096 147.151 141.032 141.936

BGP 472.503 480.503 486.946 481.753 482.774

BGU 29.996 35.996 40.828 36.723 37.699

BIW 71.068 79.068 85.511 80.318 81.339

BGIR 137.224 145.224 151.668 146.474 147.496

BGIU 224.383 230.383 235.216 231.111 232.087

Data 2 BW 174.28 182.28 187.885 183.88 184.074

BGG 82.642 92.642 99.648 95.142 94.883

BGP 352.79 360.79 366.395 362.39 362.583

PGU 188.208 194.208 198.412 195.131 195.553

BIW 187.607 195.607 201.212 197.207 197.4

BGIR 207.529 215.529 221.134 217.129 217.322

BGIU 52.922 58.922 63.125 59.845 60.266

Data 3 BW −181.969 −173.969 −166.321 −173.08 −171.057
BGG −160.678 −150.678 −141.117 −149.314 −147.037
BGP 770.136 778.136 785.784 779.024 781.048

PGU −53.68 −47.68 −41.944 −47.158 −45.496
BIW −106.59 −98.59 −90.942 −97.701 −95.677
BGIR 64.957 72.957 80.605 73.845 75.869

BGIU 384.869 390.869 396.605 391.391 393.054
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illustrative purposes three data sets has been re-analyzed and the performances
are quite satisfactory.
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