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Abstract

In this paper, maximum likelihood estimation for the parameters in a single
server queues are investigated. The queues are observed over a continuous
time interval (0, T ], where T is determined by a suitable stopping rule. The
existence of the maximum likelihood estimator is proved by applying Rolle’s
theorem. Also, we have obtained the limiting distribution of the error of
estimation.
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1 Introduction

The problem of statical estimation for queueing parameters such as the
arrival rate, service rate, traffic intensity etc., plays an extremely important
role in the decision analysis of queues due to its practical application. The
pioneering work in this direction was due due to Clarke (1957), in which
the parameters of an 1 queue have been estimated by the maximum
likelihood principle. Since then, some notable works in this field have been
done. The papers by Cox (1965), Wolff (1965), Goyal and Harris (1972),
& Basawa and Prabhu (1981) and Bhat and Rao (1987) are also worth
mentioning. Basawa and Prabhu (1988) have investigated the large sample
properties of the parameters for single server queues in the context of expo-
nential families of interarrival and service times density, and have established
the consistency and asymptotic normality properties of the maximum likeli-
hood estimators. Acharya (1999) has extended the research work of Basawa
and Prabhu (1988) to find the rate of convergence of the distribution of the
maximum likelihood estimators. Acharya and Mishra (2007) have proved
the Bernstein-von Mises theorem for the arrival process in a single server

1 queue.
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Recently, Acharya and Singh (2019) have established the asymptotic
properties of the maximum likelihood estimator from single server queues
by applying the martingale technique. Singh and Acharya (2019a) have ob-
tained the bound for the equivalence of the Bayes and maximum likelihood
estimator and also pointed out the bound on the difference between the Bayes
estimator from their true values of arrival and service rate parameter in an

1 queue. Singh and Acharya (2019b) have studied the normal ap-
proximation of the joint posterior distribution of the arrival and service rate
parameters in 1 queueing system. Singh (2020) has found a mod-
erate deviation result of the maximum likelihood estimator for the single
server queueing model under certain regular conditions. Singh and Acharya
(2021a) have proved the Bernstein-von Mises theorem and investigated the
large sample properties of Bayes estimator from single server queues. Singh
and Acharya (2021b) have derived the rate of convergence in the Bernstein-
von Mises theorem for 1 queueing system by extending the work of
Acharya and Mishra (2007).

In this study, we consider the method of maximum likelihood estimation
for the arrival and service rate parameters in a single server 1 queueing
system by assuming that the interarrival density and service time density
belong to an exponential family. The idea that using maximum likelihood
estimation to estimate for the arrival rate and service rate parameters is
different from previous literatures. The results in this paper are due to
Basawa and Prabhu (1988) in which they have used random sum central limit
theorem and Cramer-Wold argument. But we provide simple elementary
analysis and probability techniques to show the consistency and asymptotic
normality properties of the maximum likelihood estimators. At first, we
find an interval in which the likelihood function gets the same value at two
endpoints. Then, we apply Rolle’s theorem to prove the existence of the
maximum likelihood estimators on which the likelihood function gets the
local maximum. Finally, the consistency in probability of the maximum
likelihood estimator is proved and the limiting distribution of the error of
estimation is obtained.

The rest of the paper is organised as follows. Section 2 introduces the
queueing system of our interest and constructs the likelihood function based
on the sample data which is observed over a continuous time interval (0 ].
The main results are provided in Section 3 where the existence and consis-
tency in probability of the maximum likelihood estimator are proved and the
limiting distribution of the error of estimation is investigated. In Section 4,
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we provide two examples to illustrate the main results. Finally, Section 5
gives concluding remarks of the paper.

2 Preliminaries

Let us consider a single server queueing system where the interarrival
times 1 and the service times 1 are two independent
sequences of independent and identically distributed (i.i.d.) non-negative
random variables with probability density functions ( ; ) and ( ; ), re-
spectively, where the arrival rate parameter and the service rate parameter
are unknown parameters. Let us assume that the probability density func-

tions of interarrival times, ( ; ), and service times ( ; ) belong to the
continuous exponential families given by

( ; ) = 1( ) exp 1( ) 1( ) (2.1)

( ; ) = 2( ) exp 2( ) 2( ) (2.2)

and ( ; ) = ( ; ) = 0 on ( 0). The moment generating function of
the random variables 1( ) is

( ) = exp [ 1( + ) 1( )]

and consequently we get

1( ) = [ 1( )] = 1( ) 2
1( ) = ( 1( )) = 1( ) (2.3)

Similarly, for the random variable 2( ) we have

2( ) = [ 2( )] = 2( ) 2
2( ) = ( 2( )) = 2( ) (2.4)

Let the first customer arrive at time = 0 and the service starts at the arrival
of the first customer. We observe the queueing system over a continuous time
interval (0 ], where is a suitable stopping time. The sample observations
for the arrival and departure processes are

( ) ( ) 1 2 ( ) 1 2 ( ) (2.5)

where ( ) and ( ) are the number of arrivals and the number of depar-
tures respectively during the time interval (0 ]. Notice that there are no

arrivals during the time interval [
( )
=1 ] and no departures during the

time interval [ ( ) +
( )

=1 ], in which ( ) is the total idle period in
(0 ].

The followings are the some possible stopping rules to determine ac-
cording to Basawa and Prabhu (1988).
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Rule 1. Observe the system until a fixed time . Here, = with proba-
bility one and ( ) and ( ) are both random variables.

Rule 2. Observe the system until departures have occurred so that ( ) =
. Here, = ( )+ 1+ 2+ + and ( ) are random variables.

Rule 3. Observe the system until arrivals take place so that ( ) = .
Here, = 1 + 2 + 3 + + and ( ) are random variables.

Rule 4. Stop at the transition epoch. Here, ( ) and ( ) are all
random variables and ( ) + ( ) = .

Under Rule 4, we stop either with an arrival or in a departure. If we

stop with an arrival, then
( )
=1 = , and no departures during [ ( ) +

( )
=1 ]. Similarly, if we stop in a departure, then ( )+

( )
=1 = ,

and there are no arrivals during [
( )
=1 ].

The likelihood function based on sample data Eq. 2.5 is given by

A(T ),D(T )( ) =

A(T )

i=1

( i )

D(T )

i=1

( i )

⎡

⎣1 θ

⎛

⎝
A(T )

i=1

i

⎞

⎠

⎤

⎦

⎡

⎣1 φ

⎛

⎝ ( )

D(T )

i=1

i

⎞

⎠

⎤

⎦ (2.6)

where and are distribution functions corresponding to the probabil-
ity density functions of the interarrival times, , and the service times, ,
respectively. The likelihood function ( ) remains valid under all the
stopping rules.

According to Basawa and Prabhu (1988), the approximate likelihood
function ( ) is given by

( ) ( )( ) =

( )

=1

( )

( )

=1

( ) (2.7)

The maximum likelihood estimators of and obtained from Eq. 2.7
are asymptotically equivalent to those obtained from Eq. 2.6 provided that
the following two conditions are satisfied as :

1

( )
log 1

( )

=1

0 (2.8)
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and

1

( )
log 1 ( )

( )

=1

0 (2.9)

To understand the implications of the above two conditions observe that

( )

=1

= ( )+1 ( )

( )

=1

= ( )+1

where ( )+1 is the last interarrival time, and ( )+1 is the residual service

time of the customer (if any) still being served at time . If = with
probability one (stopping rule 1) then from renewal theory we know that

( )+1 has a limit distribution as . Since

log 1

( )

=1

is a continuous function of ( )+1 so this has also a limit distribution as

. Thus, the condition (2.8) is satisfied under rule 1. Using similar
argument one can also verify condition (2.9). For further implications of
these conditions we refer (Basawa and Prabhu, 1988). From Eq. 2.7, we
have the likelihood function

a
A(T ),D(T )( ) =

A(T )

i=1

1( i)

D(T )

i=1

1( i)

exp

⎧
⎨

⎩

A(T )

i=1

[ 1( i) 1( )] +

D(T )

i=1

[ 2( i) 2( )]

⎫
⎬

⎭ (2.10)

The log-likelihood function can be written as

log ( ) ( )( ) =

( )

=1

log 1( ) +

( )

=1

[ 1( ) 1( )]

+

( )

=1

log 2( ) +

( )

=1

[ 2( ) 2( )]

= ( )( ) + ( )( ) (2.11)
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where

( )( ) =

( )

=1

log 1( ) +

( )

=1

[ 1( ) 1( )] (2.12)

and

( )( ) =

( )

=1

log 2( ) +

( )

=1

[ 2( ) 2( )] (2.13)

We assume that the following stability conditions on our stopping time
holds:

( )

( ( ))
1 as a s (2.14)

and
( )

( ( ))
1 as a s (2.15)

From Eqs. 2.12 and 2.13 we note that ( )( ) and ( )( ) are of the
same form. So, from here onwards we will deal only with the arrival rate
parameter, that is, . The results, we will prove for the parameter using
the condition (2.14), can be obtained for service parameter in similar
fashion under the condition (2.15). From here onwards we denote ( )( )

by ( )( ) only.
From Eq. 2.12, applying first and second derivatives with respect to we

have

( )( ) =
( )( )

=

( )

=1

1( ) ( ) 1( ) (2.16)

and

( )( ) =

2
( )( )

2
= ( ) 1( ) (2.17)

Let us define

( )( ) = ( ) +
1

( ( ))
( )

1

( ( ))
(2.18)

The expression in Eq. 2.18 will be used in the next section to find out an
interval in which the likelihood function gets the same value at two points.
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3 Main Results

In this section, we prove our main two results in the form of theorems.
The first theorem says about the existence and consistency of the maximum
likelihood estimator which satisfies the equation ( )( ) = 0. And, the
second theorem gives the limiting distribution of the error of estimation.

Theorem 3.1. Under the stability condition, (2.14), for any 0 there
exists a solution ( ) to the equation ( )( ) = 0 with probability greater

than 1 and ( ) as .

Proof. In the first step, we will find an element ( ) that satisfies the
equation

( ) +
1

( ( ))
( )

1

( ( ))
= 0 (3.1)

For any in the neighbourhood of ,

A(T ) τ
1

(A(T ))
= A(T )(θ) + τ

1

(A(T ))
A(T )(θ)

+
1

2
τ

1

(A(T ))

2

A(T ) θ+δ τ
1

(A(T ))
θ (3.2)

where 0 1.
Then, we have

ΨA(T )(τ) = A(T ) τ +
1

(A(T ))
A(T ) τ

1

(A(T ))

=
2

(A(T ))
A(T )(θ) +

1

2
(τ θ)2 A(T ) θ + δ τ +

1

(A(T ))
θ

A(T ) θ + δ τ
1

(A(T ))
θ

+
1

2 (A(T )) A(T ) θ + δ τ +
1

(A(T ))
θ

A(T ) θ + δ τ
1

(A(T ))
θ

+
τ θ

(A(T ))
A(T ) θ + δ τ +

1

(A(T ))
θ

A(T ) θ + δ τ
1

(A(T ))
θ . (3.3)
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Thus, for any constant 0 form Eq. 3.3 we get

ΨA(T ) θ +
M

(A(T ))
= A(T ) θ +

M + 1

(A(T ))
A(T ) θ +

M 1

(A(T ))

=
2

(A(T ))
A(T )(θ) +

M2

(A(T )) A(T ) θ +
δ(M + 1)

(A(T ))

A(T ) θ +
δ(M 1)

(A(T ))

+
1

2 (A(T )) A(T ) θ +
δ(M + 1)

(A(T ))
A(T ) θ +

δ(M 1)

(A(T ))

+
M

(A(T )) A(T ) θ+
δ(M + 1)

(A(T ))
+ A(T ) θ+

δ(M 1)

(A(T ))
(3.4)

and

ΨA(T ) θ
M

(A(T ))
= A(T ) θ

M 1

(A(T ))
A(T ) θ

M + 1

(A(T ))

=
2

(A(T ))
A(T )(θ) +

M2

(A(T )) A(T ) θ
δ(M 1)

(A(T ))

A(T ) θ
δ(M + 1)

(A(T ))

+
1

2 (A(T )) A(T ) θ
δ(M 1)

(A(T ))
A(T ) θ

δ(M + 1)

(A(T ))

M

(A(T )) A(T ) θ
δ(M 1)

(A(T ))
+ A(T ) θ

δ(M+1)

(A(T ))
(3.5)

where we assume that
( ( ))

is small enough when .

Let be the true value of arrival rate parameter.
Now, using the fact

( ( ))
0 as in the Taylor’s expansion

of ( )
( +1)

( ( ))
about , and then applying Eq. 2.17 we get that

( )

( + 1)

( ( ))
= ( )( ) + ( +1)

( ( )) ( )( ( ))

( )( ) = ( ) 1( ) as (3.6)

where ( )
( +1)

( ( ))
.
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Similarly,

( )

( 1)

( ( ))
( ) 1( ) as (3.7)

Thus, using Eqs. 3.6 and 3.7 in 3.4, and then applying Eq. 2.14 we have

ΨA(T ) θ +
M

(A(T ))

2

(A(T ))
A(T )(θ) 2M

A(T )

(A(T ))
k1 (θ)

a.s. 2

(A(T ))
A(T )(θ) 2Mk1 (θ) as T . (3.8)

Using similar arguments from Eq. 3.5, we get

ΨA(T ) θ
M

(A(T ))

a.s. 2

(A(T )) A(T )(θ) + 2Mk1 (θ) as T . (3.9)

Let be the true value of the arrival rate parameter.
Now, from Eq. 2.16 we have

( )( ) =

( )

=1

1( ) ( ) 1( )

= ( ( )) ( 1( )) ( ( )) 1( )

= 0 (using Eq 3 ( 1( )) = 1( ))

and

( )( )
2

=

( )

=1

1( ) 1( )

2

=

( )

=1

[ 1( ) 1( )]2 (Since ’s are i.i.d.)

= ( ( )) ( 1( ))

= ( ( )) 1( ) (using Eq. 2.3 ( 1( )) = 1( ))

Thus, using the above expressions we have

1

( ( ))
( )( ) 0 1( ) (3.10)
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Therefore, applying Eq. 3.10 in Eqs 3.8 and 3.9 respectively, we get

( ) +
( ( ))

2 1( ) 4 1( ) as (3.11)

and

( )
( ( ))

2 1( ) 4 1( ) as (3.12)

Since 1( ) 0, for any 0 and for large and , it follows that

( ) +
( ( ))

0 1
4

(3.13)

and

( )
( ( ))

0 1
4

(3.14)

Let the sets

= ( ) +
( ( ))

0

and

= ( )
( ( ))

0

Then, we have

( ) 1
4

and ( ) 1
4

Thus, it follows that

( ) = ( ) + ( ) ( )

1
4

+ 1
4

1

= 1
2

Because ( )( ) is continuous in , it follows that there exists an element

( ) satisfying
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ΨA(T )(θA(T )) = A(T ) θA(T ) +
1

(A(T ))
A(T ) θA(T )

1

(A(T ))
= 0

and

( )
( ( ))

+
( ( ))

with probability greater than 1 2 .

Since ( )( ) is continuous and differentiable on 1

(A(T ))
+ 1

(A(T ))
,

applying Rolle’s theorem, there exists an element ( ) such that ( )( ( ))

= 0 and ( ) ( )
1

( ( ))
( ) +

1

( ( ))

From the above arguments, we have

( )
+ 1

( ( ))
+

+ 1

( ( ))
(3.15)

with probability greater than 1 .
From Eq. 3.15, we get that

( )
+ 1

( ( ))
1

For 0, let ( 0) =
+1

2
. When ( ) ( 0),

( )
+ 1

( ( ))
(3.16)

Then, it follows that

( ) ( )
+ 1

( ( ))

which implies that

( ) 1 (3.17)

Therefore, from Eq. 3.17 we have

( ) as (3.18)
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Next, we will show that ( )( ( )) 0 to verify ( ) is a maximum
likelihood estimator.

From the Taylor’s expansion of ( )( ( )) about , we have

( )( ( )) = ( )( ) + ( ) ( )( ( ))

where ( ) ( ) .

Using the facts ( )( ( )) = ( ) 1( ) 0 and ( ) , we get
that

( )( ( )) 0 as (3.19)

Hence, maximum likelihood estimator ( ) exists and ( ) as
.

Thus, we complete the proof.

Theorem 3.2. Under the stability condition, Eq. 2.14,

( ( )) ( ) 0
1

1( )

as .

Proof. From the Taylor’s expansion of ( )( ) about ( ) we get

( )( ) = ( )( ( )) + ( ) ( )( ( )) (3.20)

where ( ) ( ) .

Using the result ( )( ( )) = 0 from the Theorem 3.1, Eq. 3.20 becomes

( )( ) = ( ) ( )( ( )) (3.21)

From the proof of the Theorem 3.1, Eq. 3.10, we have

1

( ( ))
( )( ) 0 1( ) as (3.22)

And, Since ( )( ) = ( ) 1( ), Eq. 2.17, using condition, Eq. 2.14,
we get

1

( ( )) ( )( ) 1( ) as (3.23)
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Using Taylor’s expansion of 1
( ( )) ( ) ( ) about , we can write

1

(A(T )) A(T ) θA(T ) =
1

(A(T )) A(T )(θ) +
1

(A(T ))
θA(T ) θ A(T ) θA(T ) (3.24)

where ( ) ( ) .

Since ( ) ( ) , then using ( ) we have

( ) as (3.25)

Thus, using Eqs. 3.23 and 3.7 in 3.24 we get

1

( ( )) ( ) ( )
1

( ( )) ( )( )

1( ) as (3.26)

Now, multiplying 1

( ( ))
in the both sides of Eq. 3.21 we have

1

( ( ))
( )( ) =

1

( ( ))
( ) ( ) ( )

which implies that

( ( )) ( ) =

1

( ( )) ( )( )

1
( ( )) ( )( ( ))

(3.27)

Finally, by combining Eqs. 3.22, 3.26 and 3.27 we obtain

( ( )) ( )
1

1( )
0 1( ) = 0

1

1( )
as

Now, the proof is complete.

4 Example

4.1. 1 Queue Let us consider a single server Markovian queueing
system used in practice, that is, an 1 queue. The arrivals are assumed
to occur in a Poisson process with rate and the service time distribution
follows exponential distribution with mean 1 . Therefore, we have

( ) = and ( ) =
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The log-likelihood function, Eq. 2.11, becomes

log ( ) ( )( ) = ( ) log

( )

=1

+ ( ) log

( )

=1

Here,

( )( ) = ( ) log

( )

=1

and ( )( ) = ( ) log

( )

=1

Let ( ) 0 as . If we choose ( ) =
2
5 , then

A(T )

(A(T ))
1 ε(T )

[A(T ) (A(T ))]2

ε2(T ) [ (A(T ))]2

=
(A(T ))

ε2(T ) [ (A(T ))]2

=
Tθ

ε2(T )(Tθ)2
(since the arrival process is Poission)

=
T 1/5

θ
0 as T .

Thus, the stability condition, Eq. 2.14, holds for 1 queueing sys-
tem. Hence, the results of the Section 3 can be used for this queueing system.

4.2. 1 Queue Consider a single server queue with Erlang dis-
tributed interarrival times with probability density function

( ) =
( )

( ) 1 0

with mean 1 and is positive integer (known), service times being ex-
ponentially distributed with 1 . The Erlang arrival model may also be
thought of as a model with arrival in -exponential stages where arrival
at each stage is exponential at rate . In Kendall notation this queueing
system denoted as 1 queue (Wiper, 1998).

The log-likelihood function is

logLa
A(T ),D(T )(θ, φ) = A(T )[log(θr) log(Γ(r))] + (r 1) log(θr)

+(r 1)

A(T )

i=1

log ui θ

A(T )

i=1

ui +D(T ) log φ φ

D(T )

i=1

vi.
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Thus,

( )( ) = ( )[log( ) log( ( ))] + ( 1) log( )

+( 1)

( )

=1

log

( )

=1

and

( )( ) = ( ) log

( )

=1

As in the previous example, choosing ( ) =
2
5 , the condition in Eq. 2.14

( )

( ( ))
1 ( )

( ( ))
2( ) [ ( ( ))]2

=
1 5

0 as

holds. Therefore, the results we proved in this paper can be used for the
1 queueing system.

5 Concluding Remarks

This paper discussed the maximum likelihood estimator on which the
likelihood function gets a local maximum, the consistency in probability of
the maximum likelihood estimator and the limiting distribution of the error
of estimation for a single server 1 queueing system by observing the
system during a continuous time interval (0 ]. This queueing system has
been studied in Basawa and Prabhu (1988), in which they have proved the
consistency and asymptotic normality of maximum likelihood estimators un-
der stability condition, Eq. 2.14, on stopping time . To prove their results,
they have followed the random sum central limit theorem from Billingsley
(1961) and the Cramer-Wold argument. But, the methodology, we have ap-
plied here is different from their. We have used simple elementary analysis
and probability to prove our main theorems under the stability condition on
stopping time .
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