
c© 2021, The Author(s)

Optimal Designs for Model Averaging in non-nested
Models

Kira Alhorn and Kirsten Schorning
Technische Universität Dortmund, Dortmund, Germany

Holger Dette
Ruhr-Universität Bochum, Bochum, Germany

Abstract

In this paper we construct optimal designs for frequentist model averaging
estimation. We derive the asymptotic distribution of the model averaging
estimate with fixed weights in the case where the competing models are
non-nested. A Bayesian optimal design minimizes an expectation of the
asymptotic mean squared error of the model averaging estimate calculated
with respect to a suitable prior distribution. We derive a necessary condi-
tion for the optimality of a given design with respect to this new criterion.
We demonstrate that Bayesian optimal designs can improve the accuracy of
model averaging substantially. Moreover, the derived designs also improve
the accuracy of estimation in a model selected by model selection and model
averaging estimates with random weights.
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1 Introduction

There exists an enormous amount of literature on selecting an adequate
model from a set of candidate models for statistical analysis. Numerous
model selection criteria have been developed for this purpose. These pro-
cedures are widely used in practice and have the advantage of delivering
a single model from a class of competing models, which makes them very
attractive for practitioners. Exemplarily, we mention Akaike’s information
criterion (AIC), the Bayesian information criterion (BIC) and its extensions,
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Mallow’s Cp, the generalized cross-validation and the minimum description
length (see the monographs of Burnham and Anderson (2002) & Konishi and
Kitagawa (2008) and Claeskens and Hjort (2008) for more details). Different
criteria have different properties, such as consistency, efficiency, minimax-
rate optimality, and parsimony (used in the sense of Claeskens and Hjort,
(2008, Chapter 4).

Yang (2005) proves that the different properties cannot be combined
and that there is no universally optimal model selection criterion in sense of
consistency and minimax-optimality. Consequently, different criteria might
be preferable in different situations depending on the particular application.

On the other hand, there exists a well known post-selection problem in
this approach because model selection introduces an additional variance that
is often ignored in statistical inference after model selection (see Pötscher
(1991) for one of the first contributions discussing this issue). This post-
selection problem is inter alia attributable to the fact, that estimates after
model selection behave like mixtures of potential estimates. For example,
ignoring the model selection step (and thus the additional variability) may
lead to confidence intervals with coverage probability smaller than the nom-
inal value, see for example Chapter 7 in Claeskens and Hjort (2008) for a
mathematical treatment of this phenomenon.

An alternative to model selection is model averaging, where estimates of a
target parameter are smoothed across several models, rather than restricting
inference on a single selected model.

This approach has been widely discussed in the Bayesian literature, where
it is known as “Bayesian model averaging” (see the tutorial of Hoeting et al.
(1999) among many others). For Bayesian model averaging prior probabil-
ities have to be specified. This might not always be possible and therefore
Buckland et al. (1997) proposed a “frequentist model averaging”, where
smoothing across several models is commonly based on information crite-
ria. Kapetanios et al. (2008) demonstrated that the frequentist approach
is a worthwhile alternative to Bayesian model averaging. Stock and Wat-
son (2003) observed that averaging predictions usually performs better than
forecasting in a single model. Hong and Preston (2012) substantiate these
observations with theoretical findings for Bayesian model averaging if the
competing models are “sufficiently close”. Further results pointing in this
direction can be found in Raftery and Zheng (2003) & Schorning et al. (2016)
and Buatois et al. (2018).

Independently of this discussion there exists a large amount of research
how to optimally design experiments under model uncertainty (see Box and
Hill (1967) & Atkinson and Fedorov (1975) for early contributions). This
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work is motivated by the fact that an optimal design can improve the ef-
ficiency of the statistical analysis substantially if the postulated model as-
sumptions are correct, but may be inefficient if the model is misspecified.
Many authors suggested to choose the design for model discrimination such
that the power of a test between competing regression models is maximized
(see Ucinski and Bogacka (2005), López-Fidalgo et al. (2007), & Tommasi
and López-Fidalgo (2010) or Dette et al. (2015) for some more recent refer-
ences). Other authors proposed to minimize an average of optimality criteria
from different models to obtain an efficient design for all models under con-
sideration (see Dette (1990), Zen and Tsai (2002), & Tommasi (2009) among
many others).

Although model selection or averaging are commonly used tools for sta-
tistical inference under model uncertainty most of the literature on designing
experiments under model uncertainty does not address the specific aspects
of these methods directly. Optimal designs are usually constructed to max-
imize the power of a test for discriminating between competing models or
to minimize a functional of the asymptotic variance of estimates in the dif-
ferent models. To the best of our knowledge (Alhorn et al., 2019) is the
first contribution, which addresses the specific challenges of designing exper-
iments for model selection or model averaging. These authors constructed
optimal designs minimizing the asymptotic mean squared error of the model
averaging estimate and showed that optimal designs can yield a reduction of
the mean squared error up to 45%. Moreover, they also showed that these
designs improve the performance of estimates in models chosen by model
selection criteria. However, their theory relies heavily on the assumption of
nested models embedded in a framework of local alternatives as developed
by Hjort and Claeskens (2003).

The goal of the present contribution is the construction of optimal designs
for model averaging in cases where the competing models are not nested
(note that in this case local alternatives cannot be formulated).

In order to derive an optimality criterion, which can be used for the deter-
mination of optimal designs in this context, we further develop the approach
of Hjort and Claeskens (2003) and derive an asymptotic theory for model av-
eraging estimates for classes of competing models which are non-nested. Op-
timal designs are then constructed minimizing the asymptotic mean squared
error of the model averaging estimate and it is demonstrated that these de-
signs yield substantially more precise model averaging estimates. Moreover,
these designs also improve the performance of estimates after model selec-
tion. Our work also contributes to the discussion of the superiority of model
averaging over model selection. Most of the results presented in literature
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indicate that model averaging has some advantages over model selection in
general. We demonstrate that conclusions of this type depend sensitively
on the class of models under consideration. In particular, we observe some
advantages of estimation after model selection if the competing models are
of rather different shape for small sample sizes. Nevertheless, the optimal
designs developed in this paper improve both estimation methods, where the
improvement can be substantial in many cases.

The remaining part of this paper is organized as follows. The pros and
cons of model averaging and model selection are briefly discussed in Section 2
where we introduce the basic methodology and investigate the impact of sim-
ilarity of the candidate models on the performance of the different estimates.
In Section 3 we develop asymptotic theory for model averaging estimation
in the case where the models are non-nested. Based on these results we
derive a criterion for the determination of optimal designs and establish a
necessary condition for optimality. In Section 4 we study the performance of
these designs by means of a simulation study. In Section 5 we discuss some
robustness properties of the optimal designs if either the true data generat-
ing model is not contained in the set of competing models or if they are used
to estimate other parameters. Finally, technical assumptions and proofs are
given Appendix.

2 Model Averaging Versus Model Selection

In this section we introduce the basic terminology and also illustrate
in a regression framework that the superiority of model averaging about
estimation in a model chosen by model selection depends sensitively on the
class of competing models.

2.1. Basic Terminology We consider data obtained at k different exper-
imental conditions, say x1, . . . , xk chosen in a design space X . At each experi-
mental condition xi one observes ni responses, say yi1, . . . , yini (i = 1, . . . , k),
and the total sample size is n =

∑k
i=1 ni. We also assume that the responses

yi1, . . . , yini are realizations of random variables of the form

Yij = ηs(xi, ϑs) + εij , i = 1, . . . , k, j = 1, . . . , ni, s = 1, . . . , r, (2.1)

where the regression function ηs is a differentiable function with respect to
the parameter ϑs and the random errors εij are independent normally dis-
tributed with mean 0 and common variance σ2. Furthermore, the index s in
ηs corresponds to different models (with parameters ϑs) and we assume that
there are r competing regression functions η1, . . . , ηr under consideration.

Having r different candidate models (differing by the regression functions
ηs) a classical approach for estimating a parameter of interest, say μ, is to
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calculate an information criterion for each model under consideration and
estimate this parameter in the model optimizing this criterion. For this
purpose, we denote the density of the normal distribution corresponding to
a regression model (2.1) by fs( · | xi, θs) with parameter θs = (σ2, ϑs)

� and
identify the different models by their densities f1, . . . , fr (note that in the
situation considered in this sections these only differ in the mean). Using the
observations yn = (y11, . . . , y1n1 , y21, . . . , yknk

)� we calculate in each model
the maximum likelihood estimate

θ̂n,s = arg max
θs∈Θs

�n,s(θs | yn) (2.2)

of the parameter θs, where

�n,s(θs | yn) =
k∑

i=1

ni∑

j=1

log fs(yij | xi, θs) (2.3)

is the log-likelihood in candidate model fs (s = 1, . . . r). Each estimate θ̂n,s
of the parameter θs yields an estimate μ̂s = μs(θ̂n,s) for the quantity of
interest, where μs is the target parameter in model s.

For example, regression models of the type (2.1) are frequently used in
dose finding studies (see MacDougall (2006) or Bretz et al., 2008). In this
case a typical target function μs of interest is the “quantile” defined by

μs(θs) = inf

{

x ∈ X
∣
∣
∣
ηs(x, ϑs)− ηs(a, ϑs)

ηs(b, ϑs)− ηs(a, ϑs)
≥ α

}

. (2.4)

The value defined in Eq. 2.4 is well-known as EDα, that is, the effective dose
at which 100 × α% of the maximum effect in the design space X = [a, b] is
achieved.

We now briefly discuss the principle of model selection and averaging to
estimate the target parameter μ. For model selection we choose the model
fs∗ from f1, . . . , fs, which maximizes Akaike’s information criterion (AIC)

AIC(fs | yn) =
2

n
�n,s(θ̂n,s | yn)− 2ps, (2.5)

where ps is the number of parameters in model fs (see Claeskens and Hjort,
2008, Chapter 2). The target parameter is finally estimated by μ̂ = μs∗(θ̂n,s∗).
Obviously, other model selection schemes, such as the Bayesian or focussed
information criterion can be used here as well, but we restrict ourselves to
the AIC for the sake of a transparent presentation.
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Roughly speaking, model averaging is a weighted average of the individ-
ual estimates in the competing models. It might be viewed from a Bayesian
(see for example Wassermann, 2000) or a frequentist point of view (see for
example Claeskens and Hjort, 2008) resulting in different choices of model
averaging weights. We will focus here on non-Bayesian methods. More ex-
plicitly, assigning nonnegative weights w1, . . . , wr to the candidate models
f1, . . . , fr, with

∑r
i=1wi = 1, the model averaging estimate for μ is given by

μ̂mav =
r∑

s=1

wsμs(θ̂n,s). (2.6)

Frequently used weights are uniform weights (see, for example Stock and
Watson (2004) & Kapetanios et al. (2008)). More elaborate model averaging
weights can be chosen depending on the data. For example, Buckland et al.
(1997) define smooth AIC-weights as

wsmAIC
s (yn) =

exp{1
2AIC(fs | yn)}∑r

s=1 exp{1
2AIC(fs | yn)}

. (2.7)

Alternative data dependent weights can be constructed using other infor-
mation criteria or model selection criteria. There also exists a vast amount
of literature on determining optimal data dependent weights such that the
resulting mean squared error of the model averaging estimate is minimal
(see Hjort and Claeskens (2003), Hansen (2007), & Zhang et al. (2016) and
Liang et al. (2011) among many others). For the sake of brevity, we will con-
centrate on smooth AIC-weights, which are frequently used in the context
of dose-finding studies (see Sébastien et al. (2016) & Verrier et al. (2014),
among others). Nevertheless, similar observations as presented in this paper
could be made for other data dependent weights which are constructed using
information criteria like the Bayesian information criterion.

2.2. The Class of Competing Models Matters In this section we illus-
trate the influence of the candidate set on the properties of model averaging
estimation and estimation after model selection by means of a brief simula-
tion study. For this purpose we consider four regression models of the form
(2.1), which are commonly used in dose-response modeling and specified in
Table 1 with corresponding parameters.

Here we adapt the setting of Pinheiro et al. (2006) who model the dose-
response relationship of an anti-anxiety drug, where the dose of the drug
may vary in the interval X = [0, 150]. In particular, we have k = 6 different
dose levels xi ∈ {0, 10, 25, 50, 100, 150} and patients are allocated to each
dose level most equally, where the total sample size is n ∈ {50, 100, 250}.
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Additionally, we present results for a larger sample size (n = 1000) in order
to investigate the asymptotic properties of the different estimation methods.

We consider the problem of estimating the ED0.4, as defined in Eq. 2.4.
To investigate the particular differences between both estimation meth-

ods we choose two different sets of competing models from Table 1. The first
set

S1 = {f1, f2, f4} (2.8)

contains the log-linear, the Emax and the quadratic model, while the second
set

S2 = {f1, f2, f3} (2.9)

contains the log-linear, the Emax and the exponential model. The set S1

serves as a prototype set of “similar” models while the set S2 contains models
of more “different” shape. This is illustrated in Fig. 1. In the left panel we
show the quadratic model f4 (for the parameters specified in Table 1) and
the best approximations of this function by a log-linear model (f1) and an
Emax model (f2) with respect to the Kullback-Leibler divergence

1

6

6∑

i=1

∫

f4(y | xi, θ4) log
(
f4(y | xi, θ4)
fs(y | xi, θs)

)

dy, s = 1, 2. (2.10)

In this case, all models have a very similar shape and we obtain for the ED0.4

the values 32.581, 32.261 and 33.810 for the log-linear (f1), Emax (f2) and
quadratic model (f4). Similarly the right panel shows the exponential model
(f3, solid line) and its corresponding best approximations by the log-linear
model (f1) and the Emax model (f2). Here we observe larger differences
between the models in the candidate set and we obtain for the ED0.4 the
values 58.116, 42.857 and 91.547 for the models f1, f2 and f3, respectively.

All results presented in this paper are based on 1000 simulation runs
generating in each run n observations of the form

y
(l)
ij = ηs(xi, ϑs) + ε

(l)
ij , i = 1, . . . , k, j = 1, . . . , ni, (2.11)

where the errors ε
(l)
ij are independent centered normal distributed random

variables with σ2 = 0.1 and ηs is one of the models η1, . . . , η4 (with param-
eters specified in Table 1). The parameter μ = ED0.4 is estimated by model
averaging with uniform weights, smooth AIC-weights given in Eq. 2.7 and
estimation after model selection by the AIC.

In Tables 2 and 3 we show the simulated mean squared errors of the model
averaging estimates with uniform weights (left column), smooth AIC-weights
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Figure 1: Left panel: quadratic model (solid line) and its best approxima-
tions by the log-linear (dashed line) and the Emax model (dotted line) with
respect to the Kullback-Leibler divergence (2.10). Right panel: exponential
model (solid line) and its best approximations by the log-linear (dashed line)
and the Emax model (dotted line)

(middle column) and estimation after model selection (right column). Here,
different rows correspond to different models. The numbers printed in bold
face indicate the estimation method with the smallest mean squared error.

Table 2: Simulated mean squared error of different estimates of the ED0.4

Model Sample
size

Uniform
weights

Smooth
AIC-
weights

Model
selection

n = 50 437.045 498.323 758.978
f1 n = 100 223.291 218.99 285.062

n = 250 111.973 82.713 78.371
n = 1000 58.183 9.488 9.022
n = 50 286.638 329.904 515.32

f2 n = 100 189.785 203.796 251.836
n = 250 62.792 64.854 66.54
n = 1000 23.150 13.922 14.651
n = 50 276.037 361.101 669.873

f4 n = 100 190.662 244.558 391.443
n = 250 92.653 109.852 139.859
n = 1000 26.370 26.166 26.244

The set of candidate models is S1 = {f1, f2, f4}. Left column: model averaging with
uniform weights; middle column: model averaging with smooth AIC-weights; right column:
estimation after model selection
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Table 3: Simulated mean squared error of different estimates of the ED0.4

Estimation method

Model Sample
size

Uniform
weights

Smooth
AIC-
weights

Model
selection

n = 50 834.295 553.427 776.311
f1 n = 100 712.404 340.254 353.707

n = 250 524.518 48.587 38.591
n = 1000 479.261 7.977 7.957
n = 50 640.706 505.054 669.285

f2 n = 100 517.963 267.967 286.272
n = 250 394.536 65.805 53.424
n = 1000 348.071 10.046 9.899
n = 50 1076.154 1141.476 1427.441

f3 n = 100 871.362 766.140 802.763
n = 250 802.196 480.641 399.839
n = 1000 758.983 99.948 85.171

The set of candidate models is S2 = {f1, f2, f3}. Left column: model averaging with
uniform weights; middle column: model averaging with smooth AIC-weights; right column:
estimation after model selection

2.2.1. Models of similar shape. We will first discuss the results for the
set of similar models in Eq. 2.8 (see Table 2). If the sample size is small,
model averaging with uniform weights performs very well. Model averaging
with smooth AIC-weights yields an about 10% -25% larger mean squared
error (except for two cases, where it performs better than model averag-
ing with uniform weights). On the other hand the mean squared error of
estimation after model selection is substantially larger than that of model
averaging, if the sample size is small. This is a consequence of the addi-
tional variability associated with data-dependent weights. For example, if
the sample size is n = 50 and the data generating model is given by f1,
the mean squared errors of the model averaging estimates with uniform and
smooth AIC-weights and the estimate after model selection are given by
437.0, 498.3 and 759.0, respectively. The corresponding variances are given
by 235.2, 337.6 and 599.7, respectively. For the squared bias the order is
exactly the opposite, that is 201.9, 160.7, 159.3, but the differences are not
so large. This means that the bias can be reduced by using random weights,
because these put more weight on the “correct” model.

If the sample size is n = 1000, the mean squared error of the model aver-
aging estimates with uniform weights is larger than the mean squared errors
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obtained by smooth AIC-weights and the estimate after model selection.
Exemplarily, if the data generating model is given by f1, the model averag-
ing estimator with uniform weights yields an about five times larger mean
squared error than the model averaging estimator with smooth AIC-weights
and the estimate after model selection. Thus, both AIC-based methods out-
perform the model averaging estimate with uniform weights if the sample
size is large. This behaviour can be explained by the fact that the AIC is
weakly consistent, i.e. in the setting under consideration, it selects the best
(true) model with probability converging to one with increasing sample size.
Consequently, for large sample size the model averaging estimator and the
estimator after model selection do not differ much and either often select or
put a high weight to the true data generating model.

Summarizing, for small sample sizes model averaging performs better
than estimation after model selection. These observations coincide with the
findings of Schorning et al. (2016) and Buatois et al. (2018) who compared
model averaging and model selection in the context of dose finding studies
(see also Chen et al. (2018) for similar results for the AIC in the context of
ordered probit and nested logit models). In particular, model averaging with
(fixed) uniform weights yields very reasonable results in our case. Note that
the phenomenon that model averaging with uniform weights can improve the
estimation accuracy in comparison to the estimation after model selection
and even outperforms other averaging methods can also be observed in other
situations (see, for example, Bates and Granger (1969) & Smith and Wallis
(2009) or Qian et al. (2019) and the references in these papers). Exemplarily,
Claeskens et al. (2016) proved for the situation of forecasting one value of
a time series that there is no guarentee that model averaging with random
weights (not only smooth AIC-weights, but also other random weights) will
be better than the model averaging estimator with fixed uniform weights.
However, we observe that for large sample sizes the estimator after model se-
lection and the model averaging estimator with smooth AIC-weights behave
similar and outperform the model averaging estimator with uniform weights
due to their asymptotic properties.

2.2.2. Models of more different shape. We will now consider the candi-
date set S2 in Eq. 2.9, which serves as an example of more different models
and includes the log-linear, the Emax and the exponential model. The sim-
ulated mean squared errors of the three estimates of the ED0.4 are given in
Table 3.

In contrast to Section 2.2.1 we observe only one scenario, where model
averaging with uniform weights gives the smallest mean squared error (but
in this case model averaging with smooth AIC-weights yields very similar
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results). If the sample size increases model averaging with smooth AIC-
weights and estimation after model selection yield a substantially smaller
mean squared error. An explanation of this observation consists in the fact
that for a candidate set containing models with a rather different shape
model averaging with uniform weights produces a large bias. On the other
hand model averaging with smooth AIC-weights and estimation after model
selection adapt to the data and put more weight on the “true” model, in
particular if the sample size is large. As estimation after model selection has
a larger variance and the variance is decreasing with increasing sample size,
the bias is dominating the mean squared error for large sample sizes and
thus estimation in the model selected by the AIC is more efficient for large
sample sizes.

The numerical study in Sections 2.2.1 and 2.2.2 can be summarized as
follows. The results observed in the literature have to be partially relativized.
If the candidate set is a subset of commonly used dose-response curves as in
Table 1, the superiority of model averaging with uniform weights can only be
observed for classes of “similar” competing models and a not too large signal
to noise ratio. On the other hand if the dose-response models in the candi-
date set are of rather different structure or the sample size is large (leading to
a small signal to noise ratio), model averaging with data dependent weights
(such as smooth AIC-weights) or estimation after model selection may show
a better performance. For these reasons we will investigate optimal/efficient
designs for all three estimation methods in the following sections. We will
demonstrate that a careful design of experiments can improve the accuracy
of all three estimates substantially.

3. Asymptotic Properties and Optimal Design

In this section we will derive the asymptotic properties of model averag-
ing estimates with fixed weights in the case where the competing models are
not nested. The results can be used for (at least) two purposes. On the one
hand they provide some understanding of the empirical findings in Section 2,
where we observed, that for increasing sample size the mean squared error of
model averaging estimates is dominated by its bias. On the other hand, we
will use these results to develop an asymptotic representation of the mean
squared error of the model averaging estimate, which can be used for the
construction of optimal designs.

3.1. Model Averaging for Non-Nested Models Hjort and Claeskens,
(2003) provide an asymptotic distribution of frequentist model averaging
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estimates making use of local alternatives which require the true data gen-
erating process to lie inside a wide parametric model. All candidate models
are sub-models of this wide model and the deviations in the parameters
are restricted to be of order n−1/2. Using this assumption results in conve-
nient approximations for the mean squared error as variance and bias are
both of order O(1/n). However, in the discussion of this paper Raftery and
Zheng (2003) pose the question if the framework of local alternatives is re-
alistic. More importantly, frequentist model averaging is also often used for
non-nested models (see for example Verrier et al., 2014). In this section we
will develop asymptotic theory for model averaging estimation in non-nested
models. In particular, we do not assume that the “true” model is among the
candidate models used in the model averaging estimate.

As we will apply our results for the construction of efficient designs for
model averaging estimation we use the common notation of this field. To
be precise, let Y denote a response variable and let x denote a vector of
explanatory variables defined on a given compact design space X . Suppose
that Y has a density g(y | x) with respect to a dominating measure. For
estimating a quantity of interest, say μ, from the distribution g we use r
different parametric candidate models with densities

f1(y | x, θ1), . . . , fr(y | x, θr) (3.1)

where θs denotes the parameter in the sth model, which varies in a compact
parameter space, say Θs ⊂ R

ps (s = 1, ..., r). Note, that in general we do
not assume that the density g is contained in the set of candidate models
in Eq. 3.1 and that the regression model (2.1) investigated in Section 2 is a
special case of this general notation.

We assume that k different experimental conditions, say x1, . . . , xk, can
be chosen in a design space X and that at each experimental condition xi
one can observe ni responses, say yi1, . . . , yini (thus the total sample size is
n =

∑k
i=1 ni), which are realizations of independent identically distributed

random variables Yi1, . . . , Yini with density g(· | xi). For example, if g coin-
cides with fs then the density of the random variables Yi1, . . . , Yini is given
by fs( · | xi, θs) (i = 1, . . . , k). To measure efficiency and to compare differ-
ent experimental designs we will use asymptotic arguments and consider the
case limn→∞

ni
n = ξi ∈ (0, 1) for i = 1, . . . , k. As common in optimal design

theory we collect this information in the form

ξ = {x1, . . . , xk; ξ1, . . . , ξk} , (3.2)

which is called approximate design in the following discussion (see, for exam-
ple, Kiefer, 1974). For an approximate design ξ of the form Eq. 3.2 and total
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sample size n a rounding procedure is applied to obtain integers ni taken at
each xi (i = 1, . . . , k) from the not necessarily integer valued quantities ξin
(see, for example Pukelsheim (2006), Chapter 12).

The asymptotic properties of the maximum likelihood estimate (calcu-
lated under the assumption that fs is the correct density) is derived un-
der certain assumptions of regularity (see the Assumptions (A1)-(A6) in
Appendix). In particular, we assume that the functions fs are twice con-
tinuously differentiable with respect to θs and that several expectations of
derivatives of the log-densities exist. For a given approximate design ξ and
a candidate density fs we denote by

KL(g : fs | θs, ξ) =
∫

g(y | x) log
(

g(y | x)
fs(y | x, θs)

)

dydξ(x), (3.3)

the Kullback-Leibler divergence between the models g and fs and assume
that

θ∗s,g(ξ) = arg min
θs∈Θs

KL(g : fs | θs, ξ) (3.4)

is unique for each s ∈ {1, . . . , r}. For notational simplicity we will omit
the dependency of the minimum on the density g, whenever it is clear from
the context and denote the minimizer by θ∗s(ξ). We also assume that the
matrices

As(θs, ξ) =
k∑

i=1

ξi Eg(·|xi)

(∂2 log fs(Yij | xi, θs)

∂θs∂θ�s

)
, (3.5)

Bst(θs, θt, ξ) =
k∑

i=1

ξi Eg(·|xi)

(∂ log fs(Yij | xi, θs)

∂θs

(∂ log ft(Yij | xi, θt)

∂θt

)�)
, (3.6)

exist, where expectations are taken with respect to the true distribution
g(· | xi).

Under standard assumptions White (1982) shows the existence of a mea-
surable maximum likelihood estimate θ̂n,s for all candidate models which is
strongly consistent for the (unique) minimizer θ∗s(ξ) in Eq. 3.4. Moreover,
the estimate is also asymptotically normal distributed, that is

√
n(θ̂n,s − θ∗s(ξ))

D−→ N
(
0, A−1

s (θ∗s(ξ))Bss(θ
∗
s(ξ), θ

∗
s(ξ))A

−1
s (θ∗s(ξ))

)
, (3.7)

where we assume the existence of the inverse matrices,
D−→ denotes conver-

gence in distribution and we use the notations

As(θ
∗
s(ξ)) = As(θ

∗
s(ξ), ξ) , Bst(θ

∗
s(ξ), θ

∗
t (ξ)) = Bst(θ

∗
s(ξ), θ

∗
t (ξ), ξ) (3.8)
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(s, t = 1, . . . r). The following result gives the asymptotic distribution of
model averaging estimates of the form Eq. 2.6.

Theorem 3.1. If Assumptions (A1) - (A7) in Appendix are satisfied, then
the model averaging estimate (2.6) satisfies

√
n
(
μ̂mav −

r∑

s=1

wsμs(θ
∗
s(ξ))

)
D−→ N

(
0, σ2

w(θ
∗(ξ))

)
, (3.9)

where the asymptotic variance is given by

σ2
w(θ∗(ξ)) =

r∑

s,t=1

wswt

(∂μs(θ∗
s (ξ))

∂θs

)�
A−1

s (θ∗
s (ξ))Bst (θ

∗
s (ξ), θ

∗
t (ξ))A

−1
t (θ∗

t (ξ))
∂μt(θ∗

t (ξ))

∂θt
.(3.10)

Theorem 3.1 shows, that the model averaging estimate is biased for the
true target parameter μtrue, unless we have

∑r
s=1wsμs(θ

∗
s(ξ)) = μtrue. Hence

we aim to minimize the asymptotic mean squared error of the model averag-
ing estimate. Note, that the bias does not depend on the sample size, while
the variance is of order O(1/n).

3.2. Optimal Designs for Model Averaging of Non-Nested Models Al-
horn et al. (2019) determined optimal designs for model averaging minimiz-
ing the asymptotic mean squared error of the estimate calculated in a class
of nested models under local alternatives and demonstrated that optimal
designs lead to substantially more precise model averaging estimates than
commonly used designs in dose finding studies. With the results of Sec-
tion 3.1 we can develop a more general concept of design of experiments for
model averaging estimation, which is applicable for non-nested models.

To be precise, we consider the criterion

Φmav(ξ, g, μtrue)=
1

n
σ2
w(θ

∗(ξ))+
( r∑

s=1

wsμs(θ
∗
s(ξ))− μtrue

)2
≈MSE(μ̂mav),

(3.11)

where μtrue is the target parameter in the “true” model with density g and
σ2
w(θ

∗(ξ)) and θ∗s(ξ) are defined in Eqs. 3.10 and 3.4, respectively. Note
that this criterion depends on the “true” distribution via μtrue and the best
approximating parameters θ∗s(ξ) = θ∗s,g(ξ).

For estimating the target parameter μ via a model averaging estimate
of the form (2.6) most precisely a “good” design ξ yields small values of
the criterion function Φmav(ξ, g, μtrue). Therefore, for a given finite set of
candidate models f1, . . . , fr and weights ws, s = 1, . . . , r, a design ξ∗ is called
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locally optimal design for model averaging estimation of the parameter μ, if
it minimizes the function Φmav(ξ, g, μtrue) in Eq. 3.11 in the class of all
approximate designs on X . Here the term “locally” refers to the seminal
paper of Chernoff (1953) on optimal designs for nonlinear regression models,
because the optimality criterion still depends the unkown density g(y | x).

A general approach to address this uncertainty problem is a Bayesian
approach based on a class of models for the density g. To be precise, let
G denote a finite set of potential densities and let π denote a probability
distribution on G, then we call a design Bayesian optimal design for model
averaging estimation of the parameter μ if it minimizes the function

Φπ
mav(ξ, μtrue) =

∫

G
Φmav(ξ, g, μtrue)dπ(g). (3.12)

In general, the set G can be constructed independently of the set of candidate
models. However, in the context of model averaging it is reasonable to
construct a class of potential models G from the candidate set as follows.
We denote the candidate set of models in Eq. 3.1 by S. Each of these
models depends on a unknown parameter θs and we denote by Ffs ⊂ Θs a
set of possible parameter values for the model fs. Now let π2 denote a prior
distribution on S and for each fs ∈ S let π1(· | fs) denote a prior distribution
on Ffs . Finally, we define G = {(g, θ) : g ∈ S, θ ∈ Fg} and a prior

dπ(g, θ) = dπ1(θ | g) dπ2(g), (3.13)

then the criterion (3.12) can be rewritten as

Φπ
mav(ξ, μtrue) =

∫

S

∫

Fg

Φmav(ξ, g, μtrue)dπ1(θ | g) dπ2(g), (3.14)

In the finite sample study of the following section the set S and the set Fg

(for any g ∈ S) are finite, which results in a finite set G.
Locally and Bayesian optimal designs for model averaging estimation

have to be calculated numerically in all cases of practical interest. We will
state now a necessary condition for the optimality of a given design with
respect to the criterion φπ

mav. Note, that this criterion is not convex and
therefore a sufficient condition cannot be derived. In the following discussion
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we denote by A∗
s = As(θ

∗
s,g(ξ

∗), ξ∗) and B∗
st = Bst(θ

∗
s,g(ξ

∗), θ∗t,g(ξ
∗), ξ∗) the

matrices defined in Eqs. 3.5 and 3.6, respectively, evaluated in ξ∗ and θs,g(ξ
∗).

Theorem 3.2. If a design ξ∗ is Bayesian optimal for model averaging esti-
mation of the parameter μ with respect to the prior π, then

dπ(x, ξ
∗
) = (3.15)

∫

G

1

n
σ
′
g(ξ

∗
, x) + 2

( r∑

s=1

wsμs(θ
∗
s,g(ξ

∗
)) − μtrue

) r∑

s=1

ws

(∂μs(θ
∗
s,g(ξ

∗))

∂θs

)�
θ
′
s,g(ξ

∗
, x)dπ(g) ≤ 0

holds for all x ∈ X , where the derivatives θ′s,g(ξ
∗, x) and σ′

g(ξ
∗, x) are given

by

θ
′
s,g(ξ

∗
, x) = −

(∫ ∫
g(y | t)

∂2

∂θs∂θ�
s

log fs(y | t, θ∗
s,g(ξ

∗
))dydξ

∗
(t)

)−1
·

∫
g(y | x)

∂

∂θs
log fs(y | x, θ∗

s,g(ξ
∗
))dy (3.16)

σ
′
g(ξ

∗
, x) =

∑

s,t

wswt ·
[(∂2μs(θ

∗
s,g(ξ

∗))

∂θs∂θ�
s

θ
′
s,g(ξ

∗
, x)

)�
(A

∗
s)

−1
B

∗
st(A

∗
t )

−1 ∂μt(θ
∗
t,g(ξ

∗))

∂θt
(3.17)

−
(∂μs(θ

∗
s,g(ξ

∗))

∂θs

)�(
(A

∗
s)

−1
h
′
s,g(ξ

∗
, x)(A

∗
s)

−1)
B

∗
st(A

∗
t )

−1 ∂μt(θ
∗
t,g(ξ

∗))

∂θt

+
(∂μs(θ

∗
s,g(ξ

∗))

∂θs

)�
(A

∗
s)

−1
h
′
st,g(ξ

∗
, x)(A

∗
t )

−1 ∂μt(θ
∗
t,g(ξ

∗))

∂θt

−
(∂μs(θ

∗
s,g(ξ

∗))

∂θs

)�
(A

∗
s)

−1
B

∗
st

(
(A

∗
t )

−1
h
′
t,g(ξ

∗
, x)(A

∗
t )

−1
) ∂μt(θ

∗
t,g(ξ

∗))

∂θt

+
(∂μs(θ

∗
s,g(ξ

∗))

∂θs

)�
(A

∗
s)

−1
B

∗
st(A

∗
t )

−1 ∂2μt(θ
∗
t,g(ξ

∗))

∂θt∂θ�
t

θ
′
t,g(ξ

∗
, x)

]
,

respectively. Here the matrices h′st,g(ξ
∗, x) and h′s,g(ξ

∗, x) are given by

h
′
st,g(ξ

∗
, x) =

∫ ∫
g(y | u)

[
∂2 log fs(y | u, θ∗

s,g(ξ
∗))

∂θs∂θ�
s

θ
′
s,g(ξ

∗
, x)

(
∂ log ft(y | u, θ∗

t,g(ξ
∗))

∂θt

)�

+
∂ log fs(y | u, θ∗

s,g(ξ
∗))

∂θs

(
θ
′
t,g(ξ

∗
, x)

)�
(

∂2 log ft(y | u, θ∗
t,g(ξ

∗))

∂θt∂θ�
t

)�]
dydξ

∗
(u)

+ Bst(θ
∗
s,g(ξ

∗
), θ

∗
t,g(ξ

∗
), ξx) − Bst(θ

∗
s,g(ξ

∗
), θ

∗
t,g(ξ

∗
), ξ

∗
) (3.18)

h
′
s,g(ξ

∗
, x) =

∫ ∫
g(y | u)Ds(θ

∗
s,g(ξ

∗
))(Ips ⊗ θ

′
s,g(ξ

∗
, x))dydξ

∗
(u)

+ As(θ
∗
s,g(ξ

∗
), ξx) − As(θ

∗
s,g(ξ

∗
), ξ

∗
) (3.19)
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where the matrix

Ds(θs)

=

⎛

⎜⎜⎜⎜⎜⎜⎝

∂3 log fs(y|x,θs)
∂θs,1∂θs,1∂θs,1

· · · ∂3 log fs(y|x,θs)
∂θs,1∂θs,1∂θs,ps

· · · ∂3 log fs(y|x,θs)
∂θs,1∂θs,ps∂θs,1

· · · ∂3 log fs(y|x,θs)
∂θs,1∂θs,ps∂θs,ps

∂3 log fs(y|x,θs)
∂θs,2∂θs,1∂θs,1

· · · ∂3 log fs(y|x,θs)
∂θs,2∂θs,1∂θs,ps

· · · ∂3 log fs(y|x,θs)
∂θs,2∂θs,ps∂θs,1

· · · ∂3 log fs(y|x,θs)
∂θs,2∂θs,ps∂θs,ps

.

.

.
.
.
.

.

.

.
.
.
.

∂3 log fs(y|x,θs)
∂θs,ps∂θs,1∂θs,1

· · · ∂3 log fs(y|x,θs)
∂θs,ps∂θs,1∂θs,ps

· · · ∂3 log fs(y|x,θs)
∂θs,ps∂θs,ps∂θs,1

· · · ∂3 log fs(y|x,θs)
∂θs,ps∂θs,ps∂θs,ps

⎞

⎟⎟⎟⎟⎟⎟⎠

contains the third derivatives of the log-likelihood with respect to the param-
eters θs = (θs,1, . . . , θs,ps)

�. Moreover, there is equality in Eq. 3.15 for all
support points of the optimal design.

Example 3.1. We illustrate the application of Theorem 3.2 for regression
models of the from Eq. 2.1 with centred normal distributed errors. As regres-
sion functions we use the log-linear and the Emax model and their parameter
specifications given in Table 1. Then, the locally optimal designs for estima-
tion of the ED0.4 in the log-linear model f1 and in the Emax model f2 are
given by

ξ2 = {0, 4.051, 150; 0.339, 0.5, 0.161} , (3.20)

and {0, 18.75, 150; 0.25, 0.5, 0.25} , respectively see Dette et al. (2010). For
sample size n = 100 we determine a Bayesian optimal design for model
averaging estimation of the ED0.4 (with uniform weights) with respect to
the criterion (3.12). The set of possible models is given by G = {f1, f2}
with parameters specified in Table 1, and we choose a uniform prior on this
set. The optimal design has been calculated numerically using the COBYLA
algorithm (see (Powell, 1994)) and is given by

ξ∗12 = {0, 13.026, 150; 0.281, 0.498, 0.220} . (3.21)

The necessary condition of Theorem 3.2 is satisfied as illustrated in Fig. 2.
Note that the design ξ∗12 can be considered as a compromise between the
locally optimal designs for the individual models and that ξ∗12 would not be
optimal if the inequality was not satisfied.

We conclude noting that the optimality criteria proposed in this section
have been derived for model averaging estimates with fixed weights. The
asymptotic theory presented here cannot be easily adapted to estimates using
data-dependent (random) weights (as considered in Section 2), because it is
difficult to get an explicit expression for the asymptotic distribution, which
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Figure 2: Necessary condition of Theorem 3.2 for the optimal design (3.21)

is not normal in general. Nevertheless, we will demonstrate in the following
section that designs minimizing the mean squared error of model averaging
estimates with fixed weights will also yield a substantial improvement in
model averaging estimation with smooth AIC-weights and in estimation after
model selection.

4 Bayesian Optimal Designs For Model Averaging

We will demonstrate by means of a simulation study that the performance
of all considered estimates can be improved substantially by the choice of
an appropriate design. For this purpose we consider the same situation as
in Section 2, that is regression models of the form (2.1) with centred normal
distributed errors. We also consider the two different candidate sets S1 and
S2 defined in Eq. 2.8 (log-linear, Emax and quadratic model) and Eq. 2.9
(log-linear, Emax and exponential model), respectively.

Using the criterion introduced in Section 3 we now determine a Bayesian
optimal design for model averaging estimation of the ED0.4 with uniform
weights from n = 100 observations. Note that we use the sample size n = 100
since this is a common available sample size in the context of dose finding
studies. We require a prior distribution for the unknown density g, and we
use a distribution of the form Eq. 3.13 for this purpose. To be precise, let
fs(y | x, θs) denote the density of a normal distribution with mean ηs(x, ϑs)
and variance σ2

s = 0.1 (s = 1, . . . , r), where the mean functions are given in
Table 1. As the criterion (3.14) does not depend on the intercept ϑs1, these
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are not varied and taken from Table 1. For each of the other parameters we
use three different values: the values specified in Table 1 and a 10% larger
and smaller value of this parameter.

Ff1 = {(0, ϑ12, ϑ13) : ϑ12 = 0.0797± 10%, ϑ13 = 1± 10%}, (4.1)

Ff2 = {(0, ϑ22, ϑ23) : ϑ22 = 0.467± 10%, ϑ23 = 25± 10%},
Ff3 = {(−0.08265, ϑ32, ϑ33) : ϑ32 = 0.08265± 10%, ϑ33 = 85± 10%},
Ff4 = {(0, ϑ42, ϑ43) : ϑ42 = 0.00533± 10%, ϑ43 = −0.00002± 10%}.

4.1. Models of similar shape We will first consider the candidate set
S1 = {f1, f2, f4} consisting of the log-linear, the Emax and the quadratic
model. For the definition of the prior distribution (3.13) in the criterion
(3.14) we consider a uniform distribution π2 on the set S1 and a uniform
prior π1(· | fs) on each set Ffs in Eq. 4.1 (s = 1, 2, 4). The Bayesian optimal
design for model averaging estimation of the ED0.4 minimizing the criterion
(3.14) is given by

ξ∗S1
= {0, 18.310, 67.102, 150; 0.205, 0.290, 0.281, 0.224} . (4.2)

We will compare this design with the design

ξ1 = {0, 10, 25, 50, 100, 150; 1/6, 1/6, 1/6, 1/6, 1/6, 1/6} , (4.3)

proposed in Pinheiro et al. (2006) for a a similar setting (this design has also
been used in Section 2) and the locally optimal design for the estimation of
the ED0.4 in the log-linear model given by Eq. 3.20.

Results for the locally optimal designs for estimation of the ED0.4 in the
Emax and exponential model are similar and omitted for the sake of brevity.
We use the same setup as in Section 2.

The corresponding results are given in Table 4, where we use the mod-
els f1, f2 and f4 from Table 1 to generate the data. The different columns
represent the different estimation methods (left column: model averaging
with uniform weights; middle column: smooth AIC-weights, right column:
model selection). The numbers printed in boldface indicate the minimal
mean squared error for each estimation method obtained from the differ-
ent experimental designs. Compared to the designs ξ1 and ξ2 the Bayesian
optimal design ξ∗S1

for model averaging with uniform weights improves the
efficiency of all estimation techniques. For example, when data is generated
using the log-linear model f1 the mean squared error of the model averag-
ing estimate with uniform weights is reduced by 20.5% and 4.2%, when the
optimal design is used instead of the designs ξ1 or ξ2, respectively. This
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Table 4: Simulated mean squared errors of different estimates of the ED0.4

for different experimental designs
Model Design Uniform weights Smooth AIC-weights Model selection

Eq. 4.2 177.472 165.981 173.548
f1 Eq. 4.3 223.291 218.990 285.062

Eq. 3.20 185.251 184.77 340.698
Eq. 4.2 142.085 153.745 170.059

f2 Eq. 4.3 189.785 203.796 251.836
Eq. 3.20 501.814 501.394 1162.654
Eq. 4.2 160.039 195.116 299.365

f4 Eq. 4.3 190.662 244.558 391.443
Eq. 3.20 404.716 427.548 1396.051

The set of candidate models is S1 = {f1, f2, f4}. Left column: model averaging estimate
with uniform weights; middle column: model averaging estimate with smooth AIC-weights;
right column: estimate after model selection

improvement is remarkable as the design ξ2 is locally optimal for estimat-
ing the ED0.4 in the model f1 and data is generated from this model. In
other cases the improvement is even more visible. For example, if data is
generated by the model f2 the improvement in model averaging estimation
with uniform weights is 25.1% and 71.7% compared to the designs ξ1 and ξ2
defined in Eqs. 4.3 and 3.20. Moreover, although the designs are constructed
for model averaging with uniform weights they also yield substantially more
accurate model averaging estimates with smooth AIC-weights and a more
precise estimate after model selection. For example, if the data is generated
from model f1 the mean squared error is reduced by 24.2% and by 10.2% for
estimation with smooth AIC-weights and by 39.1% and 49.1% for estimation
after model selection, respectively. Similar results can be observed for the
models f2 and f4.

Summarizing, our numerical results show that the Bayesian optimal de-
sign for model averaging estimation of the ED0.4 yields a substantial im-
provement of the mean squared error of the model averaging estimate with
uniform weights (4.2%-71.7%), smooth AIC-weights (10.2%-69.3%) and the
estimate after model selection (23.5%-85.4%) for all three models under con-
sideration.

4.2. Models of Different Shape We will now consider the second candi-
date set S2 consisting of the log-linear (f1) the Emax (f2) and the exponential
model (f3). For the definition of the prior distribution (3.13) in the criterion
(3.14) we use a uniform distribution π2 on the set S2 and a uniform prior
π1(· | fs) on each set Ffs (s = 1, 2, 3) in Eq. 4.1. For this choice the Bayesian
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optimal design for model averaging estimation of the ED0.4 is given by

ξ∗S2
= {0, 10.025, 77.746, 84.556, 150; 0.192, 0.212, 0.198, 0.189, 0.208} , (4.4)

and has (in comparison to the design ξ∗S1
in Section 4.1) five instead of four

support points.
The simulated mean squared errors of the three estimates under different

designs are given in Table 5. We observe again that compared to the designs
ξ1 and ξ2 in Eqs. 4.3 and 3.20 the Bayesian optimal design ξ∗S2

improves
most estimation techniques substantially. However, if model averaging with
uniform weights is used and data is generated by model f2 or f3, the mean
squared error of the model averaging estimate from the optimal design is
5.4% and 4.5% larger than the mean squared error obtained by the design
ξ1, respectively. For model averaging with smooth AIC-weights and data
being generated from model f2 this difference is 5.9%. Overall, the reported
results demonstrate a substantial improvement in efficiency by usage of the
Bayesian optimal design independently of the estimation method. If the
Bayesian optimal design is used, estimation after model selection yields the
smallest mean squared error if the data is generated from a model of the
candidate set S2.

Summarizing, our numerical results show that compared to the designs
ξ1 and ξ2 the design ξ∗S2

reduces the mean squared error of model averaging
estimates with uniform weights up to 50.3%. Furthermore, for smooth AIC-
weights and estimation after model selection the reduction can be even larger
and is up to 70.5% and 85.3%, respectively.

Table 5: Simulated mean squared errors of different estimates of the ED0.4

for different experimental designs
Model Design Uniform weights Smooth AIC-weights Model selection

Eq. 4.4 654.914 279.257 274.016
f1 Eq. 4.3 712.404 340.254 353.707

Eq. 3.20 770.705 410.715 413.676
Eq. 4.4 546.105 283.757 250.719

f2 Eq. 4.3 517.963 267.967 286.272
Eq. 3.20 1098.323 962.257 1701.569
Eq. 4.4 910.372 742.507 699.612

f3 Eq. 4.3 871.362 766.140 802.763
Eq. 3.20 1505.693 1774.895 2592.261

The set of candidate models is S2 = {f1, f2, f3}. Left column: model averaging estimate
with uniform weights; middle column: model averaging estimate with smooth AIC-weights;
right column: estimate after model selection
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5 Robustness of the Designs

The designs determined in Sections 4.1 and 4.2 are Bayesian optimal for
estimating the ED0.4 under the assumption that the true data generating
model is part of the set of candidate models S1 and S2, respectively.

In the following we will analyse the behavior of these designs if these
assumptions are not completely satisfied. More precisely, in Section 5.1 we
investigate the performance of the different estimators using the designs (4.2)
and (4.4) if the underlying true model is not part of the candidate sets. In
Section 5.2 we consider the performance of these designs if they are used to
estimate not only the ED0.4, but also the ED0.5 and ED0.8. In this context,
we also derive multi-objective designs which are recommended if more than
one parameter of interest has to be estimated.

5.1. Robustness with Respect to Data Generating Model In this section
we analyse the performance of the designs determined in Sections 4.1 and
4.2, if the true data generating model is not among the candidate models.
More precisely, we consider the same setup as in Section 4.1 with candidate
set S1 = {f1, f2, f4} and the corresponding design in Eq. 4.2 where we use the
model f3 to generate the data, and the setup as in Section 4.2 with candidate
set S2 = {f1, f2, f3} and the corresponding design in Eq. 4.4 where we use
the model f4 to generate the data, respectively.

The corresponding results are presented in Tables 6 and 7, respectively.
Compared to the designs ξ1 (see Eq. 4.3) and ξ2 (see Eq. 3.20) the Bayesian
optimal designs still improve substantially the efficiency of all estimation
techniques, although the true data generating models are not contained the
candidate sets used in the definition of the corresponding optimality crite-
rion.

In the setup of Section 4.1 where the candidate set S1 with corresponding
optimal design is used (see Table 6), the improvement is less pronounced for
model averaging with uniform weights (4.6% and 66.8% compared to the
designs ξ1 and ξ2 in Eqs. 4.3 and 3.20, respectively) than for smooth AIC-
weights (10.5% and 77.5%) and estimation after model selection (16.9% and
85.2%). Considering the setup of Section 4.2 where the candidate set S2 with
corresponding optimal design is used (see Table 7), the improvement of the
model averaging methods with uniform weights (23.4% and 69.4% compared
to the designs ξ1 and ξ2 in Eqs. 4.3 and 3.20, respectively) and estimation
after model selection (17.3% and 81.2%) are most obvious.

Moreover, we observe that the model averaging estimator with uniform
weights is outperformed by the model averaging estimator with smooth AIC
weights and the estimate after model selection in the setup of Section 4.1
(see Table 6), whereas it is the other way around in the setup of Section 4.2
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Table 6: Simulated mean squared errors of different estimates of the ED0.4

for different experimental designs
Model Design Uniform weights Smooth AIC-weights Model selection

Eq. 4.2 1058.655 766.408 606.752
f3 Eq. 4.3 1109.622 856.484 729.912

Eq. 3.20 3184.11 3413.566 4102.964

The set of candidate models is S1 = {f1, f2, f4}. Left column: model averaging estimate
with uniform weights; middle column: model averaging estimate with smooth AIC-weights;
right column: estimate after model selection

(see Table 7), where the model averaging estimator with uniform weights
performs best. The good performance of model averaging estimates with
uniform weights can also be observed in other settings where all candidate
models misspecify the true data generating model. As stated in Section 2.2.1,
several theoretical and heuristical results about this phenomenon were de-
duced especially in the context of forecasting of time series and we again
refer to Qian et al. (2019) for a good review on that issue.

Summarizing, the Bayesian optimal designs still improve the accurarcy
of all estimation techniques even if the true data generating model is not
among the candidate models.

5.2. Robustness with respect to parameter of interest In the previous
sections we assumed that there is one target parameter μ and the considered
Bayesian optimal designs were supposed to improve the performance of the
three estimation methods for μ. In the following, we briefly indicate how this
methodology can be further extended to adress the problem of estimating
several target parameters, say μ(1), . . . , μ(L). For this purpose we follow the
idea of Kao et al. (2009) and define a multi-objective criterion by an average
of the criteria resulting from the individual target parameters.

Table 7: Simulated mean squared errors of different estimates of the ED0.4

for different experimental designs
Model Design Uniform weights Smooth AIC-weights Model selection

Eq. 4.4 159.899 278.409 347.187
f4 Eq. 4.3 208.628 298.315 419.651

Eq. 3.20 522.652 610.198 1907.066

The set of candidate models is S2 = {f1, f2, f3}. Left column: model averaging estimate
with uniform weights; middle column: model averaging estimate with smooth AIC-weights;
right column: estimate after model selection
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More precisely, we consider a similar setup as in Section 3.2, that is, G
is a finite set of potential densities and π is a probability distribution on G.
We call a design multi-objective Bayesian optimal design for model averaging
estimation of the parameters μ(1), . . . , μ(L) if it minimizes the function

Φ̄π
mav(ξ) =

1

L

L∑

	=1

∫

G
Φmav(ξ, g, μ

(	))dπ(g), (5.1)

where Φmav(ξ, g, μ
(	)) denotes the Bayesian optimality criterion defined in

Eq. 3.12 depending on the individual target parameter μ(	) (� = 1, . . . , L).
We now demonstrate by means of a simulation study that the designs

based on the extended criterion defined in Eq. 5.1 can be useful to improve
the performance of all considered estimation methods if several parameters
are of interest. For the sake of brevity, we concentrate on the situation
of Section 4.1, where the candidate set is given by S1 = {f1, f2, f4} (log-
linear, Emax and quadratic model, cf. Table 1) with the corresponding
uniform prior distribution given by a uniform distribution π2 on the set S1

and by a uniform prior π1(· | fs) on each set Ffs in Eq. 4.1 (s = 1, 2, 4).
Results for the setup used in Section 4.2 are similar and omitted for the
sake of brevity. We will consider the problem of estimating the three target
parameters μ(1) = ED0.4, μ

(2) = ED0.5 and μ(3) = ED0.8 as defined in Eq. 2.4
using the designs given in Eqs. 4.2, 4.3, and 3.20 on the one hand. On the
other hand we will use the multi-objective Bayesian optimal design for model
averaging estimation of the ED0.4, ED0.5 and ED0.8 minimizing the criterion
(5.1) which is given by

ξ̄∗S1
= {0, 15.437, 60.887, 150; 0.214, 0.301, 0.242, 0.242} . (5.2)

The simulated averages of the mean squared errors

1

3

3∑

	=1

E
[
(μ̂(	) − μ(	))2

]

of the estimates for the three target parameters ED0.4, ED0.5 and ED0.8

under the different designs and different estimation methods are given in
Table 8. Again, we use the same simulation setup as in Section 4.1. We
observe that compared to the designs ξ1 and ξ2 in Eqs. 4.3 and 3.20 the multi-
objective Bayesian optimal design ξ̄∗S1

improves most estimation techniques.
However, if model averaging with smooth AIC weights is used and data is
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Table 8: The average of the simulated mean squared errors of the different
estimates of the ED0.4, ED0.5, ED0.8 for different experimental designs
Model Design Uniform weights Smooth AIC-weights Model selection

Eq. 5.2 278.958 330.105 355.499
f1 Eq. 4.2 298.454 354.495 384.584

Eq. 4.3 334.452 386.926 434.685
Eq. 3.20 304.829 308.245 578.353
Eq. 5.2 272.069 299.87 327.625

f2 Eq. 4.2 297.191 325.94 341.329
Eq. 4.3 309.732 339.03 365.93
Eq. 3.20 804.824 821.560 1522.018
Eq. 5.2 281.083 335.163 465.125

f4 Eq. 4.2 277.695 327.043 440.443
Eq. 4.3 282.828 338.638 482.282
Eq. 3.20 644.253 731.287 1674.672

The set of candidate models is S1 = {f1, f2, f4}. Left column: model averaging estimate
with uniform weights; middle column: model averaging estimate with smooth AIC-weights;
right column: estimate after model selection

generated by the log-linear model f1, the average of the mean squared errors
is 7.09% larger than the average of the mean squared errors obtained by
design ξ2 which is locally optimal for estimation of the ED0.4 in the log-linear
model. Moreover, we observe that the Bayesian optimal design for model
averaging estimation of ED0.4 in Eq. 4.2 yields similar results as the multi-
objective Bayesian design in Eq. 5.1. In the case where data is generated by
the quadratic model f4 the design ξ∗S1

even improves the mean squared error
of all three estimation techniques compared to the design ξ̄∗S1

. Consequently,
the design ξ∗S1

, which is supposed to result in a precise estimation of the
ED0.4, is robust with respect to variations of the target parameter and can
also be used for efficient estimation of other EDp values.

Nevertheless, the criterion defined in Eq. 5.1 can be useful if the focus
is widened to the estimation of more different parameters, for instance the
estimation of the ED0.4 and the prediction of an effect at a prespecified dose
level.

6 Conclusions

In this paper we derived the asymptotic distribution of the frequentist
model averaging estimate with fixed weights from a class of not necessarily
nested models.
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We use these results to determine Bayesian optimal designs for model
averaging, which can improve the estimation accuracy of the estimate sub-
stantially. Although these designs are constructed for model averaging with
fixed weights, they also yield a substantial improvement of accuracy for
model averaging with data dependent weights and for estimation after model
selection.

We also demonstrate that the superiority of model averaging against es-
timation after model selection in the context of dose finding studies depends
sensitively on the class of competing models, which is used in the model
averaging procedure. If the competing models are similar (which means
that a given model from the class can be well approximated by all other
models) and the signal to noise ratio is large, then model averaging should
be preferred. Otherwise, we observe advantages for estimation after model
selection, in particular, if the signal to noise ratio is small.

Although, the new designs show a very good performance for estimation
after model selection and for model averaging with data dependent weights,
it is of interest to develop optimal designs, which address the specific issues of
data dependent weights in the estimates. This is a very challenging problem
for future research as there is no simple expression of the asymptotic mean
squared error of these estimates. A first approach to solve this problem is
an adaptive one and a further interesting and very challenging question of
future research is to improve the accuracy of adaptive designs.

Moreover, in the present paper we only briefly discuss the situation where
the true data generating model is not among the candidate models. In this
situation different estimation strategies might be suitable, such as the use of
data-dependent weights for model combining which directly take the mini-
mization of the mean squared error into account (see Qian et al. (2019) &
Zhang et al. (2016) and Wang et al. (2009) among many others) or adaptive
approaches, which work both for the parametric candidate and for nonpara-
metric models (see Yang 2001, 2003). Consequently, another interesting
problem for future research will be the construction of optimal designs for
these estimators.

A further extremely challenging topic of future research is the construc-
tion of designs for different estimation techniques in big data analysis (such
as convolutional neural networks or random forests). In such applications
the focus is on (sub-)sampling and the construction of design strategies for a
fixed model and a given estimation technique is just at the beginning of its
development (see Ma et al. (2015) &Wang et al. (2019b) or Wang 2019a). An
extension of these (sub-)sampling techniques to the case of multiple models
and different estimation techniques is of particular practical importance.
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Appendix A: Technical Assumptions and Proofs

Assumptions

Following White (1982) we assume:

(A1) The random variables Yij , i = 1, . . . , k, j = 1, . . . , ni are independent.
Furthermore, Yi1, . . . , Yini have a common distribution function with a
measurable density g(· | xi) with respect to a dominating measure ν.

(A2) The distribution function of each candidate model s ∈ {1, . . . , r} has a
measurable density fs(· | x, θs) with respect to ν (for all θs ∈ Θs) that
is continuous in θs.

(A3) For all x ∈ X the expectation E(log(g(Y | x))) exists (where expecta-
tion is taken with respect to g( · | x)) and for each candidate model
the function y �→ | log fs(y | x, θs)| is dominated by a function that is
integrable with respect to g( · | x) and does not depend on θs. Fur-
thermore the Kullback-Leibler divergence (3.3) has a unique minimum
θ∗s,g(ξ) defined in Eq. 3.4 and θ∗s,g(ξ) is an interior point of Θs.

(A4) For all x ∈ X the function y �→ ∂ log fs(y|x,θs)
∂θs

is a measurable function
for all θs ∈ Θs and continuously differentiable with respect to θs for
all y ∈ R.

(A5) The entries of the (matrix valued) functions ∂2 log fs(y|x,θs)
∂θs∂θ�s

, ∂ log fs(y|x,θs)
∂θs(∂ log ft(y|x,θt)

∂θt

)�
are dominated by integrable functions with respect to

g( · | x) for all x ∈ X and θs ∈ Θs.

(A6) The matrices Bss(θ
∗
s(ξ), θ

∗
s(ξ), ξ) and As(θ

∗
s(ξ), ξ) in Eqs. 3.5 and 3.6

are nonsingular.

(A7) The functions θs �→ μs(θs) are once continuously differentiable.

Proof of Theorem 3.1..

By equation (A.2) in White (1982) we have

√
n(θ̂n,s − θ∗s(ξ)) +A−1

s (θ∗s(ξ))
1√
n

k∑

i=1

ni∑

j=1

∂ log fs(Yij | xi, θ∗s(ξ))
∂θs

p−→ 0,

(A.1)
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where
p−→ denotes convergence in probability (note that the matrix As(θ

∗
s) =

As(θ
∗
s , ξ) is nonsingular by assumption). An application of the multivariate

central limit theorem now leads to

1√
n

⎛

⎜
⎜
⎝

∑k
i=1

∑ni
j=1

∂ log f1(Yij |xi,θ
∗
1(ξ))

∂θ1
...

∑k
i=1

∑ni
j=1

∂ log fr(Yij |xi,θ
∗
r (ξ))

∂θr

⎞

⎟
⎟
⎠

D−→ N

⎛

⎜
⎝0,

⎛

⎜
⎝

B11 . . . B1r
...

. . .
...

Br1 . . . Brr

⎞

⎟
⎠

⎞

⎟
⎠ ,

(A.2)
where Bst = Bst(θ

∗
s(ξ), θ

∗
t (ξ), ξ) is defined in Eq. 3.6. Combining (A.1) and

(A.2) we obtain the weak convergence of the vector θ̂n = (θ̂�n,1, . . . , θ̂
�
n,r)

�,

that is
√
n(θ̂n−θ∗(ξ))

D−→ N (0,Σ), where Σ = (Σst)s,t=1,...,r is a block matrix
with entries Σst = A−1

s (θ∗s(ξ))Bst(θ
∗
s(ξ), θ

∗
t (ξ))A

−1
t (θ∗t (ξ)) (s, t = 1, . . . , r)

and the vector θ∗s(ξ) is given by θ∗s(ξ) = (θ∗1(ξ)
�, . . . , θ∗r(ξ)

�)�.

Next, we define for the parameter vector θ� = (θ�1 , ..., θ
�
r ) ∈ R

∑r
s=1 ps

the projection πs by πsθ := θs and the vector

μ̃(θ) =
(
μ1(π1θ), . . . , μr(πrθ)

)T
with derivative

μ′
θ =

⎛

⎜
⎜
⎜
⎜
⎝

(
∂μ1(θ1)
∂θ1

)�
0 . . . 0

0
(
∂μ2(θ2)
∂θ2

)�
0 . . . 0

0 . . . 0
(
∂μr(θr)
∂θr

)�

⎞

⎟
⎟
⎟
⎟
⎠

. (A.3)

An application of the Delta method shows that
√
n(μ̃(θ̂n) − μ̃(θ∗(ξ)))

D−→
N
(
0, μ′

θ∗(ξ)Σ(μ
′
θ∗(ξ))

�). The assertion finally follows from the continuous

mapping theorem observing the representation μ̂mav = (w1, . . . , wr) μ̃(θ̂n).

Proof of Theorem 3.2..

Throughout this proof we assume that integration and differentiation are
interchangeable. Following the arguments in Pukelsheim (2006), Chapter 11,
a Bayesian optimal design ξ∗ for model averaging estimation of the parameter
μ satisfies the inequality

−
∫

G
DΦπ

mav(ξ, μtrue)(ξx − ξ∗)dπ(g) ≤ 0 (A.4)

for all x ∈ X , where DΦπ
mav(ξ, μtrue)(ξx − ξ∗) denotes the directional deriva-

tive of the function Φmav evaluated in the optimal design ξ∗ in direction
ξx − ξ∗ and ξx denotes the Dirac measure at the point x ∈ X .
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To calculate the derivative we start with the derivative of the parameter
θ∗s,g(ξ) defined in Eq. 3.4 and define θs,g(α) := θ∗s,g(ξα) for ξα = αξx + (1 −
α)ξ∗. Note that θs,g(α) is the solution of the equation

Fs,g(α, θs) = −
∫ ∫

g(y | t) ∂

∂θs
log fs(y | t, θs)dydξα(t) = 0, (A.5)

and that the derivatives of the left hand side are given by

∂Fs,g

∂α
= −

∫ ∫

g(y | t) ∂

∂θs
log fs(y | t, θs)dyd(ξx − ξ∗)(t), (A.6)

∂Fs,g

∂θs
= −

∫ ∫

g(y | t) ∂2

∂θs∂θ�s
log fs(y | t, θs)dydξα(t). (A.7)

By the implicit function theorem we get
∂θs,g(α)

∂α = −
(∂Fs,g

∂θs

)−1 ∂Fs,g

∂α and hence

∂

∂α
θs,g(α)

∣∣∣∣
α=0

= −
( ∫ ∫

g(y | t) ∂2

∂θs∂θ�s
log fs(y | t, θ∗s,g(ξ∗))dydξ∗(t)

)−1

·
∫ ∫

g(y | t) ∂

∂θs
log fs(y | t, θ∗s,g(ξ∗))dyd(ξx − ξ∗)(t) = θ′s,g(ξ

∗, x),

where θ′s,g(ξ
∗, x) is defined in Eq. 3.16. Consider now the directional deriva-

tive of the matrix Bst defined in Eq. 3.6. An application of chain and product
rule gives

∂Bst(θ∗s,g(ξα), θ
∗
t,g(ξα), ξα)

∂α

∣∣∣
α=0

=
(∫ ∫

g(y | u) ∂

∂α

(∂ log fs(y | u, θ∗s,g(ξα))
∂θs

(∂ log ft(y | u, θ∗t,g(ξα))
∂θt

)�)
dydξα(u)

+

∫ ∫
g(y | u)

∂ log fs(y | u, θ∗s,g(ξα))
∂θs

(∂ log ft(y | u, θ∗t,g(ξα))
∂θt

)�
dyd(ξx − ξ∗)(u)

)∣∣∣
α=0

= h′
st,g(ξ

∗, x),

where h′st,g(ξ
∗, x) is defined in Eq. 3.18. In a similar way the derivative of

the matrix As defined in Eq. 3.5 can be determined. First, using the chain
rule, we observe that with θ′s,g(ξ

∗, x) = (θ′s,g,1(ξ
∗, x), · · · , θ′s,g,ps(ξ∗, x))�

∂

∂α

(
∂2 log fs(y | x, θ∗s,g(ξα))

∂θs∂θTs

)∣
∣
∣
∣
∣
α=0

= Ds(θ
∗
s,g(ξ

∗))(Ips ⊗ θ′s,g(ξ
∗, x)),

where Ds is defined in Theorem 3.2.

We now observe, that
∂As(θ∗s,g(ξα),ξα)

∂α

∣
∣
α=0

= h′s,g(ξ
∗, x), where h′s,g(ξ

∗, x)
is defined in Eq. 3.19.
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Noting, that

∂

∂α

∂μs(θ
∗
s,g(ξα))

∂θs

∣
∣
∣
∣
α=0

=
∂2μs(θ

∗
s,g(ξ

∗))

∂θs∂θ�s
θ′s,g(ξ

∗, x). (A.8)

Equation 3.16 results by an application of the product rule and combination
of the derivatives given above. Finally, we have

∂

∂α

( r∑

s=1

wsμs(θ
∗
s,g(ξ))− μtrue

)2∣∣∣
α=0

= 2
( r∑

s=1

wsμs(θ
∗
s,g(ξ

∗))− μtrue

) r∑

s=1

ws

(∂μs(θ
∗
s,g(ξ

∗))

∂θs

)�
θ′s,g(ξ

∗, x),

and Eq. 3.15 follows.

The proof that there is equality in Eq. 3.15 for all support points of the
optimal design ξ∗ follows by a standard argument and the details are omitted
for the sake of brevity.
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