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Abstract

In this paper, we study cliques and chromatic number in the random sub-
graph Gn of the complete graph Kn on n vertices, where each edge is inde-
pendently open with a probability pn. Associating Gn with the probability
measure Pn, we say that the sequence {Pn} is multiregime if the edge proba-
bility sequence {pn} is not convergent. Using a recursive method we obtain
uniform bounds on the maximum clique size and chromatic number for such
multiregime random graphs.
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1 Introduction

The study of cliques and chromatic numbers in random subgraphs of the
complete graph Kn on n vertices is of importance from both theoretical and
application perspectives. For the case where every edge of Kn is indepen-
dently open with probability pn with limn pn ∈ {0, p, 1} for some 0 < p < 1,
bounds on cliques and chromatic numbers have been obtained using a com-
bination of second moment method and martingale inequalities (see Alon
and Spencer (2003) & Bollobás (2001)) and references therein). For the in-
termediate regime where pn = p is a constant, Shamir and Spencer (1987)
studied the concentration of the chromatic number around its mean using
martingale techniques. Sharp bounds for the chromatic number was then
derived in Bollobás (1988) by exploring a maximal disjoint set of cliques.
Alex Scott (2008) uses a combinatorial argument to sharpen the interval of

concentration of the chromatic number to within an interval of length
√
n

logn
and Panagiotou and Steger (2009) use a counting argument to obtain sharp
lower bounds on the chromatic number.
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For the sparse regime where pn → 0 as n → ∞, Frieze (1990) uses
martingales to investigate the independence number of homogenous random
graphs and Luczak (1991) studies the chromatic number using a more deli-
cate second moment method. Alon and Krivelevich (1997) use k−choosable
graphs to study two point concentration of the chromatic number when the
edge probability pn = n−1/2−δ for δ > 0. More recently, Achlioptas and Naor
(2005) use an analytic approach combining sharp threshold results with sec-
ond moment methods to obtain the two possible values of the chromatic
number when pn = d

n and d > 0 is a constant.
In this paper, we consider random graphs where the edge probability {pn}

is not necessarily convergent and use a recursive method to obtain bounds
for the clique numbers and consequently the chromatic numbers. In the
rest of this subsection, we briefly describe the random graph model under
consideration and state our main results (Theorems 1 and 2) regarding the
cliques and chromatic number.

1.1. Clique Number For n ≥ 2, let Kn be the labelled complete graph
with vertex set {1, 2, . . . , n} and for 1 ≤ i < j ≤ n, let e(i, j) be the edge
between the vertices i and j. Let {X(i, j)}1≤i<j≤n be independent Bernoulli
random variables with

Pn(X(i, j) = 1) = 1− Pn(X(i, j) = 0) = pn.

We say that edge e(i, j) is open if X(i, j) = 1 and closed otherwise. The
resulting random graph G = G(n, pn) is an Erdős-Rényi (ER) random graph,
defined on the probability space (Ω,F ,Pn). We say that the sequence of
probability measures {Pn} is multiregime if {pn} is not convergent. For
notational simplicity we henceforth drop the subscript from the probability
measure Pn and denote it simply as P.

A subset U ⊆ {1, . . . , n} is said to be an open clique ofG if for all u, v ∈ U,
the edge e(u, v) is open. The clique number

ω(G) := max{#U : U ⊆ {1, 2, . . . , n} is an open clique}
is the size of the largest open clique in G, where #U denotes the cardinality
of a set U. To estimate ω(G), we let

Wn :=
log n

log
(

1
pn

) (1.1)

and define

α1 := lim sup
n

log
(

1
pn

)

log n
and α2 := lim sup

n

log
(

1
1−pn

)

log n
. (1.2)

510



Cliques and Chromatic Number...

Theorem 1. Suppose α1 < 2 and α2 < 1. There are positive constants η
and γ such that

η < 1− α2 and 2(α2 + η − γ) > max(α1, 2α2). (1.3)

For all ε > 0 and η, γ satisfying (1.3), there is a positive integer N ≥ 1 so
that

P ((1− η − α2)Wn ≤ ω(G(n, pn)) ≤ (2 + 2ε)Wn + 1)

≥ 1− 3 exp
(
−nθclq

)
− exp (−ε(2 + 2ε)Wn log n) (1.4)

≥ 1− 4n
− 2ε

α1+ε (1.5)

for all n ≥ N, where

θclq := 2(α2 + η − γ)−max(α1, α2) > 0. (1.6)

In words, the clique number ω(G) is of the order of Wn with high prob-
ability, i.e., with probability converging to one as n → ∞.

We briefly outline the proof of Theorem 1. To obtain the lower bound
in Eq. 1.4, we let 1−tL(n) denote the probability of finding a clique of size L
in the random graph G. We first obtain a recursive estimate roughly of the
form (see Eq. 2.12 of Lemma 6 for a more precise formulation)

tL(n) ≤ tL−1(βn) + e−θn2
(1.7)

where β = βn ∈ (0, 1) and θ = θn > 0. Using the recursion (1.7) we then
find an explicit upper bound of the form tL(n) ≤ e−A1 + 2e−A2 where A1 =
A1(L, n, pn) and A2 = A2(L, n, pn) (see Lemma 7 for explicit expressions
for A1 and A2). Choosing L = (1− η − α2)Wn, we then show that both A1

and A2 are at least nθclq (see proof of Theorem 1 in Section 3).
For the upper bound in Eq. 1.4, we use a union bound and estimate the

probability that there exists an open clique of size L for L = (2+2ε)Wn+1,
to be at most exp (−ε(2 + 2ε)Wn log n) . Combining with the lower bound
estimates described in the previous paragraph, we then get Eq. 1.4. To
obtain Eq. 1.5 from Eq. 1.4, we use the fact that pn ≥ 1

nα1+ε for all n large

(see Eq. 1.2) and so Wn = logn

log
(

1
pn

) ≥ 1
α1+ε for all n large. This implies that

ε(2 + 2ε)Wn log n ≥ 2ε

α1 + ε
log n

and so

max
(
exp

(
−nθclq

)
, exp (−ε(2 + 2ε)Wn logn)

)
≤ n

− 2ε
α1+ε

for all n large. This obtains Eq. 1.5.
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1.2. Chromatic Number Let G = G(n, pn) be the random graph ob-
tained in the previous subsection. The chromatic number χ(G) is defined as
follows. A k−colouring of G is a map h : {1, 2, . . . , n} → {1, 2, . . . , k}; i.e.,
each vertex in G is assigned one of k colours. The k−colouring h is said to
be proper if h(v1) �= h(v2) for v1, v2 that are endvertices of an open edge;
i.e., no two endvertices of an open edge have the same colour. Using a dis-
tinct colour for each of the n vertices of G, we obtain a proper n−colouring.
Define

χ(G) = min{k : 1 ≤ k ≤ n and G has a proper k − colouring}

to be the chromatic number of G.
Letting α1, α2 be as in Eq. 1.2 and Wn be as in Eq. 1.1, we have the

following result regarding the chromatic number of G.

Theorem 2. Suppose {pn} is such that α1 < 1, α2 < 1
2 and 1 − α2 >

max(α1, α2). There are positive constants η, γ and c such that

max(η, c) < 1−α2, α2 < c(α2+η) < 1, 2c(α2+η−γ) > max(α1, 2α2) (1.8)

and

θchr := 2(α2 + η − γ)− 1

c
max(α1, α2) > 1. (1.9)

For all ε > 0 and η, γ, c satisfying (1.8) and (1.9), there is a positive inte-
ger N ≥ 1 so that

P

(
n

(2 + 2ε)Wn + 1
≤ χ(G(n, 1− pn)) ≤

(1 + ε)n

c(1− η − α2)Wn

)

≥ 1− 3 exp

(
−1

2
ncθchr

)
− 2 exp (−ε(2 + 2ε)Wn logn) (1.10)

≥ 1− 4n
− 2ε

α1+ε (1.11)

for all n ≥ N.

Thus the chromatic number χ(G) is of the order of n
Wn

with high prob-
ability. As in Alon and Spencer (2003), weuse the estimates in Theorem 1
regarding the clique number and consider the complement graph G(n, 1−pn)
to find upper and lower bounds on the chromatic number (see Lemma 9 in
Section 4).

Remark : Because we use recursion (see Lemma 6) to estimate the prob-
ability of occurrence of cliques, the information regarding the graph G be-
comes coarser at each successive step and this reflects in the difference be-
tween the upper and lower bounds for the clique number in Theorem 1.
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Since we use the clique number estimates to bound the chromatic number
(see Lemma 9 in Section 4), the corresponding difference appears in the
chromatic number bounds (Theorem 2) as well.

1.3. Special Cases For completeness and illustration, we use our results
above to state and provide brief proofs for the special cases where the proba-
bility sequence {pn} belongs to one of the three regimes, sparse, intermediate
and dense. For stronger versions of below stated results, we refer to Alon
and Spencer (2003) and references therein.

Theorem 3. (i) Suppose pn = 1
nθ1

for some 0 < θ1 < 2. For every ξ > 0,
there is a positive integer N ≥ 1 so that

P

(
2− θ1
2θ1

− ξ ≤ ω(G(n, pn)) ≤
2 + θ1
θ1

+ ξ

)
≥ 1− 4n−ξ (1.12)

for all n ≥ N.

(ii) Suppose pn = p ∈ (0, 1) for all n. For every ξ > 0, there is a positive
integer N ≥ 1 so that

P

⎛
⎝(1− ξ) log n

log
(
1
p

) ≤ ω(G(n, pn)) ≤
(2 + ξ) log n

log
(
1
p

)
⎞
⎠

≥ 1− 4 exp

⎛
⎝ −ξ

log
(
1
p

)(log n)2
⎞
⎠ (1.13)

for all N ≥ N.

(iii) Suppose pn = 1− 1
nθ2

for some 0 < θ2 < 1. For every ξ > 0, there is a
positive integer N ≥ 1 so that

P

(
(1− θ2)(1− ξ)nθ2 log n ≤ ω(G(n, pn)) ≤ (2 + ξ)nθ2 log n

)

≥ 1− 4 exp

(
−ξ

4
nθ2(log n)2

)
(1.14)

for all n ≥ N.

Using the bounds for the clique number in Theorem 3, we derive bounds
for the chromatic number of ER graphs where each edge is independently
open with probability rn, belonging to one of the three regimes sparse, in-
termediate or dense. As before, we discuss separate cases depending on the
asymptotic behaviour of rn.
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Theorem 4. (i) Suppose rn = 1
nθ2

for some 0 < θ2 < 1
2 . For all ξ > 0,

there is a constant N ≥ 1 so that

P

(
(1− ξ)

n1−θ2

2 log n
≤ χ(G(n, rn)) ≤

2(1 + ξ)

1− 2θ2

n1−θ2

log n

)

≥ 1− 4 exp

(
−ξ

4
nθ2(log n)2

)
(1.15)

for all n ≥ N.

(ii) Suppose rn = p for some constant 0 < p < 1 and for all n. For
all ξ > 0, there is a constant N ≥ 1 so that

P

⎛
⎝(1− ξ)

n log
(

1
1−p

)

2 log n
≤ χ(G(n, rn)) ≤ 2(1 + ξ)

n log
(

1
1−p

)

logn

⎞
⎠

≥ 1− 4 exp

⎛
⎝− ξ

3 log
(

1
1−p

)(log n)2
⎞
⎠ (1.16)

for all n ≥ N.

(iii) Suppose rn = 1 − 1
nθ1

for some 0 < θ1 < 1. For all ξ > 0, there is a
constant N ≥ 1 so that

P

(
(1− ξ)

θ1n

2 + θ1
≤ χ(G(n, rn)) ≤ (1 + ξ)

2θ1n

1− θ1

)

≥ 1− 4n
− ξ2

3θ1 (1.17)

for all n ≥ N.

We remark here that Alon and Spencer (2003) consider the random
graph G as a whole and use the extended Janson’s inequality to obtain sharp
concentration type estimates for the clique number ω(G) for example, when
the edge probability is pn = 1

2 . Using the bounds for the chromatic number
in terms of the clique number (see Lemma 9 in Section 4) then results in
the property that χ(G) is concentrated around n

log2 n
with high probability.

Because we use recursion to estimate the probability of occurrence of cliques,
this inherently results in a “loss of information” at each successive step and
reflects in the differences between our upper and lower bounds for the clique
number and correspondingly the chromatic number. Indeed, we compute the
chromatic number using the clique number estimates (Lemma 9) analogous
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to Alon and Spencer (2003) (see Section 4 for more details). For additional
results regarding the chromatic number in the sparse regime, we also refer
to Bollobás (2001).

The paper is organized as follows. In Section 2, we obtain preliminary
estimates used for proving the main Theorems 1 and 2. In Section 3, we prove
Theorem 1 and in Section 4, we prove Theorem 1. Finally, in Appendix, we
prove Theorems 3 and 4.

2 Preliminary Estimates

We use the following estimates throughout.

Logarithm estimate: The following logarithmic estimate is used through-
out. For 0 < x < 1,

x < − log(1− x) =
∑
k≥1

xk

k
<

∑
k≥1

xk <
x

1− x
. (2.1)

Binomial Estimate: Let {Xj}1≤j≤m be independent Bernoulli random
variables with P(Xj = 1) = pj = 1 − P(Xj = 0) and fix 0 < ε < 1

6 .
If Tm =

∑m
j=1Xj and μm = ETm, then

P (|Tm − μm| ≥ μmε) ≤ 2 exp

(
−ε2

4
μm

)
(2.2)

for all m ≥ 1. For a proof of Eq. 2.2, we refer to Corollary A.1.14, pp.
312 of Alon and Spencer (2003).

The rest of the section is divided into three parts: The first part con-
cerns a technical Lemma (see Lemma 5) that estimates a number δn and a
decreasing sequence {qi}i≥0 both of which occur in the recursive estimate
of the second part. In the second part, we estimate the probability tL(qi)
of finding a L−open clique (i.e., an open clique formed by L vertices) from
among a total of qi vertices, in terms of tL−1(qi+1) (see estimate (2.12) in
Lemma 6). The final part uses the recursion estimate (2.12) to explicitly
compute tL(q0) for arbitrary q0 and L (see Lemma 7).

In Sections 3 and 4, we use the estimate for tL(q0) computed in Lemma 7
with appropriately chosen values of L = Ln and q0 = q0(n) to prove Theo-
rems 1 and 2, respectively.
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2.1. A Technical Lemma In this subsection, we define and estimate cer-
tain quantities that are used throughout in the proofs of the main theorems.
Let 0 < ε < 1

6 and let M = M(ε) ≥ 2 be large such that

1 + ε

1− 1+ε
M

< 1 + 2ε. (2.3)

Fixing such an M, we let ε1 = ε1(ε,M) ≤ ε be small so that

log
(

1
1−ε1

)

log
(

M
M−1

) ≤ ε. (2.4)

For n ≥ 1, we now set

δn :=

{
ε1pn if pn < 1− 1

M
ε(1− pn) if pn ≥ 1− 1

M .
(2.5)

For a positive integer q let q0 = q and for i ≥ 1, let

qi = qi(n) := 	(pn − δn)(qi−1 − 1)
 (2.6)

be the largest integer less than or equal to (pn − δn)(qi−1 − 1).
In the next subsection, we see that the number δn and the numbers {qi}

both occur in the main recursive estimate used in the proof of Theorem 1.
Indeed, the quantity δn occurs in the exponent of a term in Eq. 2.12 of
Lemma 6 below and is a part of an estimate that relates the probability tL(qi)
of finding an L−open clique among qi vertices, in terms of tL−1(qi+1). For
convenience, we therefore record properties of δn and the numbers of {qi}
for future use. We recall from Eq. 1.1 that Wn = logn

log
(

1
pn

) .

Lemma 5. For any n ≥ 2, the difference pn − δn > 0 and there is a con-
stant K ≥ 1 such that for all n ≥ K,

Wn ≤

⎧
⎪⎨
⎪⎩

log n

log( M
M−1)

if pn < 1− 1
M

nα2+ε logn if pn ≥ 1− 1
M ,

(2.7)

and

Rn :=
log

(
1

pn−δn

)

log
(

1
pn

) < 1 + 2ε. (2.8)
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The numbers {qi} satisfy the following properties. For i ≥ 1,

(pn − δn)(qi−1 − 1)− 1 ≤ qi ≤ (pn − δn)qi−1 ≤ qi−1 ≤ q (2.9)

and

vi := (pn − δn)
iq − 2

1− pn + δn
≤ qi ≤ (pn − δn)

iq. (2.10)

Proof of Eqs. 2.7 and 2.8 in Lemma 5. If pn < 1− 1
M then δn = ε1pn

and so pn − δn = (1− ε1)pn > 0. Also log
(

1
pn

)
≥ log

(
M

M−1

)
. Consequently

Wn =
log n

log
(

1
pn

) ≤ log n

log
(

M
M−1

) and Rn ≤ 1 +
log

(
1

1−ε1

)

log
(

M
M−1

) ≤ 1 + ε,

by the choice of ε1 in Eq. 2.4.
If pn ≥ 1− 1

M , then δn = ε(1− pn) and so

pn − δn = pn(1 + ε)− ε ≥
(
1− 1

M

)
(1 + ε)− ε ≥ 1 + ε

1 + 2ε
,

using Eq. 2.4. Moreover using the bound − log(1 − x) > x (see Eq. 2.1)
with x = 1− pn we get

log

(
1

pn

)
= − log(1− (1− pn)) > 1− pn ≥ 1

nα2+ε

for all n large, where α2 = lim supn
log

(
1

1−pn

)

log n is as defined in Eq. 1.2. This

means that Wn = logn

log
(

1
pn

) ≤ nα2+ε logn, giving Eq. 2.7.

To prove (2.8), we use the fact that (1+ ε)(1−pn) ≤ 1+ε
M < 1, since M ≥

2 and 0 < ε < 1. Therefore using the upper bound − log(1 − x) < x
1−x

from Eq. 2.1 with x = (1 + ε)(1− pn) = 1− (pn − δn), we have that

− log(pn − δn) ≤
(1 + ε)(1− pn)

1− (1 + ε)(1− pn)
≤ (1 + ε)(1− pn)

1− 1+ε
M

.

Similarly using the lower bound estimate − log(1− x) > x from Eq. 2.1, we
have − log pn = − log(1− (1− pn)) > 1− pn. Thus

Rn =
log

(
1

pn−δn

)

log
(

1
pn

) ≤ 1 + ε

1− 1+ε
M

≤ 1 + 2ε,
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by choice of M in Eq. 2.3. This proves (2.8).

Proof of Eqs. 2.9 and 2.10 in Lemma 5. The relation (2.9) is
obtained using the property x − 1 ≤ 	x
 ≤ x for any x > 0. Set Δ =
pn−δn ∈ (0, 1) and apply the upper bound in Eq. 2.9 recursively, to get qi ≤
Δiq0 = Δiq. This proves the upper bound in Eq. 2.10. For the lower bound
we again proceed iteratively and first obtain for i ≥ 2 that qi ≥ Δ(qi−1 −
1) − 1 = Δqi−1 − (1 + Δ). Continuing iteratively we obtain qi ≥ Δiq0 −
(1 + Δ)

∑i
j=0Δ

j−1. Since Δ < 1, the sum
∑i

j=0Δ
j ≤ 1

1−Δ and so qi ≥
Δiq0 − 1+Δ

1−Δ ≥ Δiq − 2
1−Δ , since Δ ∈ (0, 1). This proves (2.10).

2.2. Recursion Estimate Recall that the random graph G = G(n, pn) is
said to have an open L−clique if there exists a subset S ⊂ {1, 2, . . . , n} such
that #S = L and for any u, v ∈ S, the edge e(u, v) is open (see statement
prior to Eq. 1.1). For integer 2 ≤ q ≤ n, let Sq := {1, 2, . . . , q} and let G(Sq)
be the induced subgraph of G = G(n, pn), with vertex set Sq. For integer L ≥
2, let BL(Sq) denote the event that the random subgraph G(Sq) contains an
open L−clique and set

tL(q) := P(Bc
L(Sq)). (2.11)

By definition tL(q) = 0 if L > q.
In this subsection, we obtain a recursive estimate for the probability tL(q)

for arbitrary L and q in terms of tL−1(q1) where q1 is as defined in Eq. 2.6
with i = 1. In the next subsection, we use the recurrence relation obtained
below to obtain an explicit estimate for tL(q).

Lemma 6. Fix 0 < ε < 1
6 and let ε1 and δn be as defined in Eqs. 2.4

and 2.5, respectively. There exists a constant N0 = N0(ε) such that the
following holds for all n ≥ N0 : If q, L ≥ 2 are such that L− 1 ≥ 2 and q1 =
	(pn − δn)(q − 1)
 ≥ 2 (see Eq. 2.6) then

tL(q) ≤ qtL−1(q1) + exp

(
−ε1δn

16
q2
)
. (2.12)

In Lemma 7 stated below, we use recursion to estimate the first term
in Eq. 2.12 and obtain explicit estimates for tL(q) (see proof of Lemma 7).

Proof of Lemma 6. Recall from Eq. 2.5 that δn ∈ {ε1pn, (1 − ε)pn}.
For simplicity, we write p = pn, δ = δn and first prove that Eq. 2.12 is
satisfied with δ = pε1.

If Ne denotes the number of open edges in the random graph G(Sq),
then ENe = p

(
q
2

)
. Fixing 0 < ε < 1

6 , setting δ = pε1 and applying the
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binomial estimate (2.2) with Tm = Ne then gives

P

(
Ne ≥ p(1− ε1)

(
q

2

))
≥ 1− exp

(
−ε1δ

4

(
q

2

))
≥ 1− exp

(
−ε1δ

16
q2
)

(2.13)

since 1
4

(
q
2

)
≥ q2

16 for all q ≥ 2.
We now write P(Bc

L(Sq)) = I1 + I2, where

I1 := P

(
Bc

L(Sq)
⋂{

Ne ≥ (p− δ)

(
q

2

)})
(2.14)

and I2 := P
(
Bc

L(Sq)
⋂{

Ne < (p− δ)
(
q
2

)})
is bounded above as

I2 ≤ P

(
Ne < (p− δ)

(
q

2

))
≤ exp

(
−ε1δ

16
q2
)
, (2.15)

by Eq. 2.13.
It remains to estimate I1. Suppose that the event Ne ≥ (p−δ)

(
q
2

)
occurs.

If d(v) denotes the degree of vertex v ∈ Sq in the random graph G(Sq),
then

∑
1≤v≤q d(v) = 2Ne ≥ (p − δ)q(q − 1) and so there exists a vertex w

such that d(w) ≥ (p− δ)(q− 1) ≥ q1, where q1 is as defined in the statement
of the Lemma. Thus

I1 ≤ P

⎛
⎝Bc

L(Sq)
⋂

⎛
⎝ ⋃

1≤z≤q

{d(z) ≥ q1}

⎞
⎠
⎞
⎠

≤
∑

1≤z≤q

P

(
Bc

L(Sq)
⋂

{d(z) ≥ q1}
)
. (2.16)

IfN(z)=N(z,G(Sq)) is the set of neighbours of z in the random graphG(Sq),
then

P

(
Bc

L(Sq)
⋂

{d(z) ≥ q1}
)
=

∑
S⊆Sq

P

(
Bc

L(Sq)
⋂

{N(z) = S}
)
, (2.17)

where the summation is over all subsets S of Sq such that #S ≥ q1 and z /∈ S.
Suppose now that the event Bc

L(Sq)
⋂
{N(z) = S} occurs for some fixed

set S ⊆ Sq. We recall that since Bc
L(Sq) occurs, there is no open L−clique

in the random graph G(Sq) with vertex set Sq. This necessarily means
that there is no open (L − 1)−clique in the random induced subgraph
of G(Sq) formed by the vertices of S; i.e., the event Bc

L−1(S) occurs. This
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is because each vertex of S is connected to z by an open edge. There-
fore P (Bc

L(Sq)
⋂
{N(z) = S}) is bounded above by

P
(
Bc

L−1(S) ∩ {N(z) = S}
)
= P

(
Bc

L−1(S)
)
P (N(z) = S) , (2.18)

where the final equality is true since the event {N(z) = S} depends only
on the state of edges containing z as an endvertex. On the other hand,
the event Bc

L−1(S) depends only on the state of edges having both their
endvertices in S. Since the set S does not contain the vertex z (see Eq. 2.17),
the events {N(z) = S} and Bc

L−1(S) are independent.
To obtain the desired recursion (2.12) using Eq. 2.18, let T denote the

set of the q1 least indices in S, where q1 ≤ #S is as defined in the statement
of the Lemma. Since T ⊆ S, the events Bc

L−1(S) ⊆ Bc
L−1(T ); i.e., there is no

open (L−1)−clique in the random induced subgraph formed by the vertices
of T. From Eq. 2.18, we then get that P (Bc

L(Sq)
⋂
{N(z) = S}) is bounded

above by

P (N(z) = S)P
(
Bc

L−1(T )
)
= P (N(z) = S) tL−1(q1), (2.19)

since #T = q1 (see Eq. 2.11).
Substituting (2.19) into (2.17) we get that P (Bc

L(Sq)
⋂
{N(z) ≥ q1}) is

bounded above by

∑
S⊆Sq :#S≥q1, z /∈S

P (N(z) = S) tL−1(q1) = P (d(z) ≥ q1) tL−1(q1) ≤ tL−1(q1),

(2.20)
where the equality (2.20) is true since the events {N(z) = S} are disjoint
for distinct S. Substituting (2.20) into (2.16) gives

I1 ≤
∑

1≤z≤q

tL−1(q1) = qtL−1(q1).

Using this estimate for I1 and Eq. 2.15 we get

P(Bc
L(Sq)) ≤ qtL−1(q1) + exp

(
−ε1δ

16
q2
)
.

This proves (2.12) for δ = pε1.
Suppose now that δ = ε(1 − p). Recalling that Ne denotes the num-

ber of open edges in the random graph G(Sq) (see the first paragraph of
this proof), we let We =

(
q
2

)
− Ne denote the number of closed edges so

that EWe = (1 − p)
(
q
2

)
. If We ≤ (1 − p)(1 + ε)

(
q
2

)
, then We − EWe ≤
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εEWe. Applying the binomial estimate (2.2) with Tm = We therefore gives
that P

(
We ≤ (1− p)(1 + ε)

(
q
2

))
is bounded below by

1− exp

(
−ε2

4
EWe

)
= 1− exp

(
−ε2

4
(1− p)

(
q

2

))
= 1− exp

(
−εδ

4

(
q

2

))

(2.21)
for all q ≥ 2, since δ = ε(1− p). Moreover,

{
We ≤ (1− p)(1 + ε)

(
q

2

)}
=

{
Ne ≥ (p− δ)

(
q

2

)}

and so we again obtain (2.13) with ε instead of ε1. Arguing as before, we
then get P(Bc

L(Sq)) ≤ qtL−1(q1) + exp
(
− εδ

16q
2
)
. Since ε1 ≤ ε (see Eq. 2.4),

this proves (2.12).

2.3. Small Cliques Estimate We now use the recursion obtained in the
Lemma 6 iteratively, to obtain an explicit estimate for the probability tL(q).

Lemma 7. Fix 0 < ε < 1
6 and let ε1, δn be as defined in Eqs. 2.4 and 2.5,

respectively. There is a constant N0 = N0(ε) ≥ 1 so that the following holds
for all n ≥ N0 : If q = qn and L = Ln are such that

vL = (pn − δn)
Lq − 2

1− pn + δn
≥ 2, (2.22)

then tL(q) ≤ e−A1 + 2e−A2 where

A1 :=
pn
4
v2L − L log q and A2 :=

ε1δn
16

v2L − L log q.

We recall that vL is as defined in Eq. 2.10. In the proof of Theorem 1,
we use a auxiliary lemma (Lemma 8) to first check that the condition (2.22)
holds and then use Lemma 7 to obtain lower bounds on the clique number.

Proof of Lemma 7. For simplicity, let p = pn, δ = δn and r(q) :=

exp
(
− ε1δ

16 q
2
)
. Recalling the definition of {qi} in Eq. 2.6 and applying the

recursion (2.12) twice we get tL(q) ≤ qtL−1(q1) + r(q) ≤ q(q1tL−2(q2) +
r(q1))+r(q) provided L−2 and q2 are both at least 2. Since q2 ≤ q1 ≤ q0 = q,
(see Eq. 2.9), we further get tL(q) ≤ q2tL−2(q2) + qr(q1) + r(q). Proceeding
iteratively, we therefore get that

tL(q) ≤ qL−2t2(qL−2) +
L−3∑
j=0

qjr(qj), (2.23)

provided qL−2 ≥ 2.
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Since qL−2 ≥ qL ≥ vL (see Esqs. 2.9 and 2.10), it is enough to prove the
estimate for tL(q) in the Lemma from Eq. 2.23, assuming that vL ≥ 2. We
now show that if vL ≥ 2, then the first term in Eq. 2.23 is at most e−A1 and
the second summation in Eq. 2.23 is at most 2e−A2 , where A1 and A2 are
as in the statement of the Lemma. This proves the Lemma. To estimate
the summation term in Eq. 2.23, we use qj ≥ qL ≥ vL for 1 ≤ j ≤ L − 1
(see Eqs. 2.9 and 2.10) to get that r(qj) ≤ r(vL). Thus

L−3∑
j=0

qjr(qj) ≤

⎛
⎝

L−3∑
j=0

qj

⎞
⎠ r(vL) =

qL−2 − 1

q − 1
r(vL) ≤ 2qL−3r(vL) ≤ 2qLr(vL),

(2.24)

where the second inequality in Eq. 2.24 follows from the fact that qL−2−1
q−1 ≤

2qL−3 for all q ≥ 2. Since the final term of Eq. 2.24 is in fact 2e−A2 , we have
bounded the summation in Eq. 2.23.

To bound the first term in Eqs. 2.23, we use the estimate

t2(qL−2) = (1− p)(
qL−2

2 ) ≤ exp

(
−p

(
qL−2

2

))
≤ exp

(
−p

(
vL
2

))
, (2.25)

where the first equality in Eq. 2.25 is true since there is no open 2−clique
among a set of vertices if and only if all the edges between the vertices are
closed. The final inequality in Eq. 2.25 follows from the fact that qL−2 ≥
qL ≥ vL (see Eqas. 2.9 and 2.10). Since

(
vL
2

)
≥ v2L

4 for all vL ≥ 2, we get
from Eq. 2.25 that the first term in Eq. 2.23 is at most e−A1 , proving the
Lemma.

3 Proof of Theorem 1

We use the small cliques estimate in Lemma 7 with appropriately chosen
value of L = Ln, to obtain the lower bound on the clique number. For the
upper bound on the clique number, we use the union bound to estimate the
probability that there an open clique of size L, chosen sufficiently large.

We begin with the proof of the lower bound on the clique number. To
apply the small cliques estimate in Lemma 7, we first state and prove an aux-
iliary result (Lemma 8 below) that describes the feasibility of using Lemma 7.
Let η, γ > 0 and 0 < c ≤ 1 be constants such that

α2 < c(η + α2) < 1 and 2c(α2 + η − γ) > max(α1, 2α2). (3.1)

For c = 1, this corresponds to the conditions mentioned in Eq. 1.3 of the
statement of Theorem 1. To see that are constants η, γ and c satisfying (3.1),
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we recall that α1 < 2 and α2 < 1. Therefore 2 > max(α1, 2α2) and choos-
ing α2 + η0 and c0 close enough to one and γ0 close enough to zero, we get
that Eq. 3.1 is satisfied with γ0, η0 and c0. Arguing similarly, we also have
that there are constants η and γ such that Eq. 3.1 holds with c = 1.

For future use, we perform the analysis below for a general 0 < c ≤ 1. We
recall the definition of ε, ε1 and δn prior to Eq. 2.5 and the termWn = log n

log
(

1
pn

)

from Eq. 1.1. We now set

Ln = (1− η − α2)
log(nc)

log
(

1
pn

) = c(1− η − α2)Wn (3.2)

and show that the quantities vLn , A1 and A2 defined in Lemma 7 satisfy the
following estimates.

Lemma 8. There are constants ε > 0 small and K = K(ε) ≥ 1 large such
that for all n ≥ K

vLn ≥ nc(α2+η−3ε), A1 ≥ n2c(α2+η−γ)−α1 and A2 ≥ n2c(α2+η−γ)−max(α1,α2).
(3.3)

The first condition in Eq. 3.3 in the above Lemma implies that condi-
tion (2.22) holds for all large n and therefore ensures the feasibility of using
the small cliques estimate Lemma 7. Below, in the proof of Theorem 1, we
use the estimates in Eq. 3.3 with c = 1 together with Lemma 7, to get the
following lower bound for ω(G(n, pn)) :

P(ω(G(n, pn)) ≥ (1− η − α2)Wn) ≥ 1− exp(−nθclq), (3.4)

where θclq = 2(α2 + η − γ)−max(α1, α2) is as defined in Eq. 1.6.
Proof of Lemma 8. Let 0 < ε < 1

6 be arbitrary but fixed. We first
estimate vLn by writing

vLn = exp (Ln log(pn − δn) + c logn)− 2

1− pn + δn
(3.5)

(see Lemma 7 for the expression for vL) and use Eq. 2.8 (which states that
log(pn−δn)

log pn
< 1 + 2ε) and the fact that Ln log pn < 0 to get

Ln log(pn − δn) ≥ (1 + 2ε)Ln log pn = −(1 + 2ε)(1− η − α2)c log n, (3.6)

by the definition of Ln in Eq. 3.2. Thus

Ln log(pn − δn) + c log n ≥ (α2 + η − 2ε(1− η − α2)) c log n
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≥ (α2 + η − 3ε)c logn (3.7)

for all n large and so the exponent term in the expression for vLn in Eq. 3.5
is at least nc(α2+η−3ε).

To evaluate the term 1
1−pn+δn

in Eq. 3.5, we consider two cases depending
on whether δn = ε1pn or δn = ε(1− pn) (see Eq. 2.5). If δn = ε1pn, then

pn − δn = pn(1− ε1) ≤ 1− ε1

and so 1
1−pn+δn

≤ 1
ε1
. If δn = ε(1− pn), then

1− pn + δn = (1 + ε)(1− pn) ≥ (1 + ε)
1

nα2+ε

for all n large, by definition of α2 = lim supn
log

(
1

1−pn

)

logn in Eq. 1.2. In any

case, 1
1−pn+δn

≤ nα2+ε

1+ε for all n large and so combining with the estimate (3.7)
obtained in the previous paragraph we get that

vLn ≥ nc(α2+η−2ε) − 2nα2+ε

1 + ε

for all n large. Using the fact that c(α2+η) > α2 (see Eq. 3.1), we choose ε >
0 small so that

c(α2 + η − 2ε) > c(α2 + η − 3ε) > α2 + ε.

Fixing such an ε, we get vLn ≥ nc(α2+η−3ε) for all n large, proving the
estimate for vLn in Eq. 3.3.

To estimate A1 and A2, we consider two separate cases depending on
whether pn < 1 − 1

M and pn ≥ 1 − 1
M . If pn < 1 − 1

M , then δn = ε1pn (see
the definition of δn in Eq. 2.5). From the estimate for Wn in Eq. 2.7 we

have Ln ≤ Wn ≤ logn

log( M
M−1)

. Since α1 = lim supn
log

(
1
pn

)

logn < 1 (see Eq. 1.2),

we have that pn ≥ 1
nα1+ε for all n large. Together with the estimate for vLn

obtained above in Eq. 3.3, we therefore get that

A1 =
pn
4
v2Ln

− Ln logn ≥ 1

4nα1+ε
n2c(α2+η−3ε) − (log n)2

log
(

M
M−1

) , (3.8)

for all n large. Using the condition (3.1) and choosing ε > 0 smaller if
necessary, we have that 2c(α2+ η− 3ε)− (α1+ ε) > 2c(α2+ η− γ)−α1 > 0.
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Thus A1 ≥ n2c(α2+η−γ)−α1 and since δn = ε1pn, an analogous analysis holds
for A2.

Suppose now that pn ≥ 1 − 1
M . From Eq. 2.5 we have δn = ε(1 − pn)

and from Eq. 2.7 we have that Ln ≤ Wn ≤ nα2+ε logn. Substituting into the
expression for A1 (see Eq. 3.8) we get

A1 ≥
1

4

(
1− 1

M

)
n2c(α2+η−3ε) − nα2+ε(log n)2 ≥ n2c(α2+η−γ),

for all n large, provided we choose ε > 0 smaller if necessary so that

2c(α2 + η − 3ε) > 2c(α2 + η − γ) > α2 + ε.

This is possible by the conditions on α2, η and c in Eq. 3.1.

To estimate A2, we use α2 = lim supn
log

(
1

1−pn

)

logn < 1 (see Eq. 1.2) to get
that δn = ε(1− pn) ≥ ε

nα2+ε for all n large. Thus

A2 =
ε1
16

δnv
2
Ln

− Ln log n ≥ ε1
16

ε

nα2+ε
n2c(α2+η−3ε) − nα2+ε(log n)2.

As before, we use Eq. 3.1 and choose ε > 0 smaller if necessary to get that

2c(α2 + η − 3ε)− (α2 + ε) > 2c(α2 + η − γ)− α2 > α2 + ε.

This implies that A2 ≥ n2c(α2+η−γ)−α2 for all n large, proving the Lemma.

Proof of Theorem 1. To prove the lower bound for ω(G) in Eq. 3.4,
we set c = 1 in Eq. 3.1 and get from Lemma 8 that

min(A1, A2) ≥ n2(α2+η−γ)−max(α1,α2) = nθclq ,

where θclq is as defined in Eq. 1.6. Moreover, from Eq. 3.3 we get vLn ≥ 2
for all n large and so Lemma 7 is applicable. Thus tLn(n) ≤ e−A1 +2e−A2 ≤
3 exp

(
−nθclq

)
. In other words, with probability at least 1 − 3 exp

(
−nθclq

)
,

the random graph G contains an open clique of size Ln, proving the lower
bound (3.4) for ω(G(n, pn)).

To obtain the upper bound for ω(G(n, pn)), we prove below that for any
positive sequence {Hn}, the term

P (ω(G(n, pn)) ≤ Hn) ≥ 1− exp (−fnHn) (3.9)
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for all n ≥ 2, where fn := (Hn−1)
2 log

(
1
pn

)
− logn. Setting Hn = (2 +

2ε)Wn + 1 ≥ (2 + 2ε)Wn, where Wn = logn

log
(

1
pn

) as defined in Eq. 1.1, we get

that fn = ε log n. From Eq. 3.9, we then get the desired upper bound (1.4).
As argued in the discussion following Theorem 1, the estimate (1.5) follows
from Eq. 1.4.

To prove (3.9) we use the fact that if there is an open L−clique in G
with L = Hn, then some set T with #T = L has the property that every
vertex in T is connected to every other vertex in T by an open edge. The
number of edges with both endvertices in T is

(
L
2

)
and the number of possible

choices for T is
(
n
L

)
. Therefore,

P(ω(G(n, pn)) ≥ Hn) ≤
(
n

L

)
p
(L2)
n

≤ nLp
(L2)
n

= exp

(
−L

((
L− 1

2

)
log

(
1

pn

)
− logn

))

= e−fnHn ,

since L = Hn. This proves (3.9).

4 Proof of Theorem 2

We begin with the following definition:

Independence Number of a Graph We recall that the graph G =
G(n, pn) is the random subgraph of Kn obtained by allowing each edge to be
independently open with probability pn. Also ω(G) is the size of the largest
clique in G. The independence number α(G) is defined as follows: α(G) = h
if and only if there is a set of h vertices, none of which have an open edge
between them and every set of h + 1 vertices have an open edge between
them in G.

Let G = (V ,E) denote the complement of the graph G obtained by
flipping the states of all edges in G; i.e., all open edges in G are closed in G
and all closed edges in G are open in G. We use the following Lemma (Alon
and Spencer (2003)) in the proof of Theorem 2.

Lemma 9. (a1) The independence number α(G) = ω(G) and so the chro-
matic number

χ(G) ≥ n

α(G)
=

n

ω(G)
. (4.1)
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(a2) Suppose for some integer 1 ≤ m ≤ n, every set of m vertices in the
complement graph G contains an open clique of size L. We then have

χ(G) ≤ n

L
+m. (4.2)

Proof of Theorem 2. As in Section 1, let G = G(n, pn) be the
random subgraph of the complete graph Kn where each edge is open with
probability pn. We recall that ω(G) is the clique number of G as defined
prior to Theorem 1. The lower bound in Eq. 1.11 then follows from prop-
erty (a1) in Lemma 9 and the upper bound for the clique number ω(G(n, pn))
in Eq. 1.5, since the random graph G(n, 1 − pn) has the same distribution
as the random graph G(n, pn). Indeed, we recall from Eq. 3.9 that

P (ω(G(n, pn)) ≤ (2 + 2ε)Wn + 1) ≥ 1− exp (−(2 + 2ε)εWn log n) (4.3)

where Wn = log n

log
(

1
pn

) is as defined in Eq. 1.1. Using Eq. 4.3 in Eq. 4.1 we

therefore get

P

(
χ(G(n, 1− pn)) ≥

n

(2 + 2ε)Wn + 1

)
≥ 1− exp (−(2 + 2ε)εWn log n) .

For the upper bound in Eq. 1.11, we use property (a2) with m = nc,
where c satisfies the conditions in the statement of Theorem 2. For that we
first see that there are positive constants η, γ and c such that Eq. 1.8 holds;
i.e.,

max(η, c) < 1− α2, α2 < c(α2 + η) < 1 and 2c(α2 + η − γ) > max(α1, 2α2).
(4.4)

Indeed, recalling that α1 < 1 and α2 < 1
2 we have that 2(1 − α2) >

max(α1, 2α2). Therefore choosing c0, α2+ η0 and γ0, close enough to 1−α2,
one and zero, respectively, we get that Eq. 4.4 holds. To see that Eq. 1.9
also holds; i.e.,

θchr = 2(α2 + η − γ)− 1

c
max(α1, α2) > 1, (4.5)

we recall that 1 − α2 > max(α1, α2). Therefore 2 − 1
1−α2

max(α1, α2) > 1.
Choosing c0, α2 + η0 and γ0 closer to 1 − α2, one and zero, respectively, if
necessary, we get that Eq. 4.5 also holds.

We now let m = nc where c satisfies (4.4) and let Sm be the set of
subsets of size m in {1, 2, . . . , n}. For a set S ∈ Sm and integer L ≥ 2, we
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recall from Eq. 2.11 that BL(S) denotes the event that the random induced
subgraph of G(n, pn) with vertex set S contains an open L−clique. We set

L := (1− η − α2)
logm

log
(

1
pn

) = c(1− η − α2)Wn,

by Eq. 1.1 and the fact that m = nc. Also from our choices of c, γ and η
in Eqs. 4.4 and 4.5, the conditions in Eq. 3.1 hold. Therefore the estimates
for A1 and A2 Lemma 8 hold and we get

P(Bc
L(S)) ≤ e−A1 + 2e−A2 ≤ 3 exp

(
−n2c(α2+η−γ)−max(α1,α2)

)

= 3 exp
(
−mθchr

)
, (4.6)

where θchr > 1, by Eq. 4.5.
If Fn =

⋂
S∈Sm

BL(S) denotes the event that every set of m vertices in
the random graph G(n, pn) contains an open L−clique, then

P(F c
n) ≤

(
n

m

)
3 exp

(
−mθchr

)
≤ nm3 exp

(
−mθchr

)
= 3e−B, (4.7)

where B = mθchr−m log n ≥ 1
2m

θchr for all n large, since θchr > 1 by Eq. 4.5.
The first estimate in Eq. 4.7 is obtained from the fact that the number of
subsets of size m in the set {1, 2, . . . ,m} is

(
n
m

)
and the probability that any

subset of sizem does not contain an open L−clique is at most 3 exp
(
−mθchr

)
by Eq. 4.6. If the event Fn occurs, then using property (a2) in Lemma 9, we
have that

χ(G(n, 1− pn)) ≤
n

L
+m =

n

c(1− η − α2)Wn
+m. (4.8)

We now estimate n
Wn

and show that it is much larger than m = nc. Fix ε > 0

and recall from Eq. 1.1 that Wn = logn

log
(

1
pn

) . Using the bound − log(1−x) > x

in Eq. 2.1 with x = 1 − pn, we get log
(

1
pn

)
= − log(1 − (1 − pn)) > 1 −

pn ≥ 1
nα2+ε for all n large, by the definition of α2 in Eq. 1.2. Thus the

term Wn ≤ nα2+ε log n and so n
Wn

≥ n1−α2−ε

logn . Since c < 1−α2 (see Eq. 1.8),
we choose ε > 0 small so that c < 1 − α2 − ε. Fixing such an ε, we get
from Eq. 4.8 that χ(G(n, 1− pn)) ≤ n(1+ε)

c(1−η−α2)Wn
for all n large, proving the
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upper bound in Eq. 1.10. Arguing as in the discussion following Theorem 1,
the estimate (1.11) follows from Eq. 1.10.
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Appendix

Appendix: Proof of Theorems 3 and 4

Proof of Theorem 3

We use Theorem 1 with appropriate choices of η and γ.

(i) Here α1 = θ1 < 2, α2 = 0 and Wn = logn

log
(

1
pn

) = 1
θ1
. For 0 < ξ < 2−θ1

θ1
,

we set ε = ξθ1
2 , η = θ1

2 + ξθ1 and γ = ξθ1
2 so that Eq. 1.3 is satisfied

and θclq = ξ. Using ε(2+2ε)Wn log n ≥ 2εWn log n = ξ log n in Eq. 1.5,
we then get Eq. 1.12.
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(ii) Here α1 = α2 = 0 and Wn = logn

log
(

1
p

) . We let 0 < ξ < 1 and set ε =

ξ
2 , η = ξ and γ = ξ

2 and so that Eq. 1.3 is satisfied and θclq = ξ. As be-

fore, we use ε(2+2ε)Wn log n ≥ 2εWn log n = ξ (logn)2

log
(

1
p

) and get Eq. 1.13

from Eq. 1.5.

(iii) Here α1 = 0 and α2 = θ2 < 1 and letting 0 < ξ < 1 we set ε =
ξ
4 , η = ξ

2 − θ2ξ
2 and γ > 0 smaller than η. With these choices (1.3)

is satisfied and moreover θclq = θ2 + 2(η − γ) > θ2. To evaluate Wn,

use the log estimates (2.1) and (2.1) to get that
1

nθ2

1−n−θ2
> log

(
1
pn

)
=

− log
(
1− 1

nθ2

)
> 1

nθ2
and so

nθ2 log n

(
1− 1

nθ2

)
≤ Wn =

log n

log
(

1
pn

) ≤ nθ2 logn (A.1)

for all n large. Moreover

(1− η − α2)Wn = (1− θ2)

(
1− ξ

2

)
Wn ≥ (1− θ2)(1− ξ)nθ2 logn

for all n large and (2+2ε)Wn+1 ≤ (2+ξ)nθ2 log n and ε(2+2ε)Wn logn
≥ ξ

4n
θ2(log n)2 for all n large. Plugging the above into Eq. 1.5 we

get Eq. 1.14.

Proof of Theorem 4

We use Theorem 2 with pn = 1− rn and appropriate choices of η and γ.

(i) Here pn = 1− rn with α1 = 0 and α2 = θ2 < 1
2 . Thus η0 := 1

2(1−θ2)
−

θ2 < 1− θ2 and for 0 < ξ < 1 to be determined later, we set

ε =
ξ

6
, c = (1− θ2)

(
1− ξ3

6

)
, η = η0

(
1 +

ξ2

6

)
and γ =

η0ξ
2

12
. (A.2)

We need to ensure that conditions (1.8) and (1.9) hold with α1 = 0
and α2 = θ2. By definition c < 1−θ2 and η0 < 1−θ2 and so max(η, c) <
1 − θ2 provided ξ > 0 is small. We choose ξ > 0 smaller if necessary
so that

c(θ2+η) =
1

2
− ξ3

12
+
η0ξ

2

6
(1−θ2)

(
1− ξ3

6

)
≥ 1

2
+
η0ξ

2

12
(1−θ2)

(
1− ξ3

6

)
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and so θ2 <
1
2 < c(θ2+η) < 1. To ensure the third condition in Eq. 1.8,

we have

2c(θ2+η−γ)=1− ξ3

6
+
η0ξ

2

6
(1−θ2)

(
1− ξ3

6

)
≥1+

η0ξ
2

12
(1−θ2)

(
1− ξ3

6

)

provided ξ > 0 is small. Fixing such a ξ we get 2c(θ2+η−γ) > 1 > 2θ2,
since θ2 <

1
2 . Thus Eq. 1.8 holds.

To ensure (1.9), we write θchr =
1

1−θ2
+ η0ξ2

6 − θ2

(1−θ2)
(
1− ξ3

6

) and choose

ξ > 0 small so that
(
1− ξ3

6

)−1
≤ 1 + ξ3

4 and so θchr ≥ 1 + η0ξ2

6 −
θ2

(1−θ2)
ξ3

4 ≥ 1+ η0ξ2

12 . For future use we choose ξ > 0 smaller if necessary
so that

cθchr ≥ (1−θ2)

(
1− ξ3

6

)(
1 +

η0ξ
2

12

)
≥ (1−θ2)

(
1 +

η0ξ
2

24

)
> 1−θ2.

(A.3)

Thus the bounds in Eq. 1.11 is true. We now evaluate the upper and
lower bounds in Eq. 1.11. From Eq. A.1 and the fact that 0 < ξ < 1,

we get (2 + 2ε)Wn + 1 ≤ 2nθ2 logn
1−ξ . Similarly

1 + ε

c(1− η − θ2)
=

2
(
1 + ξ

6

)
(
1− ξ3

6

)(
1− 2θ2 − η0ξ2

3 (1− θ2)
) ≤ 2(1 + ξ)

1− 2θ2
,

provided ξ > 0 is small and these estimates obtain the bounds for χ(.)
in Eq. 1.15.

To evaluate the exponents in Eq. 1.11, we use Eq. A.1 to get that
ε(2 + ε)Wn logn ≥ ξ

4n
θ2(log n)2 for all n large. Similarly from Eq. A.3

we get cθchr > 1− θ2 and this obtains (1.15).

(ii) Here pn = 1− rn = 1− p and so α1 = α2 = 0. Letting ξ be small such
that

ε =
ξ

6
, η =

1

2
+ 2ξ2 < 1, γ = ξ2 and c = 1− ξ3 (A.4)

we get that the conditions in Eq. 1.8 are true. Also θchr = 1+2ξ2 > 1
and so Eq. 1.9 is also true. Thus the bounds in Eq. 1.11 hold. Recalling

that Wn = logn

log
(

1
pn

) we have that (2 + 2ε)Wn + 1 =
(
2 + ξ

3

)
logn

log
(

1
1−p

) +

1 ≤ 2
(1−ξ)

logn

log
(

1
1−p

) for all n large. Similarly, the scaling factor in the
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upper bound in Eq. 1.11 is 1+ε
c(1−η−α2)

=
1+ ξ

6

(1−ξ3)( 1
2
−2ξ2)

≤ (1+ ξ) if ξ > 0

is small. The exponents in Eq. 1.11 evaluate to cθchr = (1 − ξ3)(1 +
2ξ2) ≥ 1+ ξ2 for all ξ > 0 small and ε(2+2ε)Wn ≥ 2εWn = ξ

3
log n

log
(

1
1−p

) .

This obtains (1.16).

(iii) Here pn = 1− rn = 1
nθ1

and so α1 = θ1 < 1 and α2 = 0. Let ξ be small
such that

ε =
ξ2

6
, η =

1 + θ1
2

+ 2θ1ξ
2 < 1, γ = θ1ξ

2 and c = 1− ξ3. (A.5)

Recalling condition (1.8), we have max(η, c) < 1 = 1 − α2, 0 < cη =
c(α2 + η) < 1 and

2c(α2 + η − γ) = 2(1− ξ3)(η − γ) = 2(η − γ)− 2ξ3(η − γ)

= 1 + θ1 + 2θ1ξ
2 − 2ξ3(η − γ). (A.6)

which is greater than one if ξ > 0 small. Thus Eq. 1.8 is true.
Also θchr = 1+θ1+2θ1ξ

2− θ1
1−ξ3

and for all ξ > 0 small, we have 1
1−ξ3

≤
1 + ξ2 and for such ξ, we have θchr ≥ 1 + θ1 + 2θ1ξ

2 − θ1(1 + ξ2) =
1 + θ1ξ

2 > 1. For future use we set ξ > 0 smaller if necessary so that

cθchr ≥ (1− ξ3)(1 + θ1ξ
2) ≥ 1 +

θ1ξ
2

2
> 1. (A.7)

Thus Eq. 1.9 is also true and consequently, the bounds in Eq. 1.11
hold.

Recalling that Wn = logn

log
(

1
pn

) = 1
θ1

we have from Eq. A.5 that (2 +

2ε)Wn + 1 =
(
2 + ξ2

3

)
1
θ1

+ 1 ≤ 2+θ1
θ1(1−ξ) for all n large, provided ξ > 0 small.

Fixing such a ξ, the scaling factor in the upper bound in Eq. 1.11 is

1 + ε

c(1− η − α2)
=

1 + ξ2

6

(1− ξ3)
(
1− 1+θ1

2 − 2ξ2
) ≤ (1 + ξ)

2

1− θ1
(A.8)

provided we set ξ > 0 smaller if necessary.
Finally, regarding the exponents in Eq. 1.17, we have from Eq. A.7

that cθchr > 1 and moreover ε(2+2ε)Wn ≥ 2εWn = ξ2

3
1
θ1
. This obtains (1.17).
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