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Abstract

Motivated by a (seemingly previously unnoticed) result stating that d−dimensional
distributions on (0,∞)d are characterized by the collection of their min-linear
projections, we introduce and study a notion of min-characteristic function
(min-CF) of a random vector with strictly positive components. Unlike the
related notion of max-characteristic function which has been studied recently,
the existence of the min-CF does not hinge on any integrability conditions. It
is itself a multivariate distribution function, which is continuous and concave,
no matter which properties the initial distribution function has. We show the
equivalence between convergence in distribution and pointwise convergence
of min-CFs, and we also study the functional convergence of the min-CF of
the empirical distribution function of a sample of independent and identi-
cally distributed random vectors. We provide some further insight into the
structure of the set of min-CFs, and we conclude by showing how transform-
ing the components of an arbitrary random vector by a suitable one-to-one
transformation such as the exponential function allows the construction of a
notion of min-CF for arbitrary random vectors.

AMS (2000) subject classification. Primary 60E10; Secondary 62H05.
Keywords and phrases. Characteristic function, Copula, D-norm, Max-linear
projections, Min-linear projections, Multivariate distribution.

1 Introduction and motivation

The well-known Cramér-Wold theorem (see Cramér and Wold 1936)
states that any distribution on R

d is determined by the collection of its
one-dimensional projections. In other words, if X = (X1, . . . , Xd) and
Y = (Y1, . . . , Yd) are two random vectors (rvs), we have

X
d
= Y ⇔ ∀t1, . . . , td ∈ R,

d∑

k=1

tkXk
d
=

d∑

k=1

tkYk.
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The Cramér-Wold theorem is well adapted to the case when the individual
components of X and Y behave nicely with respect to summation. There
are, however, important examples of situations in which this is not the case.
For instance, in multivariate extreme value theory, the individual compo-
nents ofX may represent marginal financial or actuarial risk variables, whose
distributions would typically be modeled by heavy-tailed distributions such
as the Pareto distribution (see e.g. Embrechts et al. 1997; Resnick 2007).
Another example is the class of multivariate max-stable distributions, where
usually the marginals are assumed to be unit Fréchet. Calculations involv-
ing sums of Pareto or Fréchet distributed rvs are typically very complicated,
even if these rvs are independent (see e.g. Blum 1970; Nadarajah and Pogány
2013; Nadarajah et al. 2018). The relevant operator in this kind of situation
is the maximum rather than the sum, leading one to consider instead the
collection of max-linear projections of X, that is:

d∨

k=1

tkXk := max
1≤k≤d

tkXk, t1, . . . , td > 0.

It turns out, somewhat surprisingly, that the distributions of such projec-
tions also characterize multivariate distributions, if they are assumed to be
nonnegative. This is the focus of our first result, which does not seem to
have been shown in the literature so far.

Proposition 1.1. We have, for arbitrary random vectorsX=(X1, . . . , Xd)
and Y = (Y1, . . . , Yd) with nonnegative components:

X
d
= Y ⇔ ∀t1, . . . , td > 0,

d∨

k=1

tkXk
d
=

d∨

k=1

tkYk.

Proof. Since, for any t1, . . . , td > 0,

P

(
d∨

k=1

tkXk ≤ 1

)
= P (X1 ≤ 1/t1, . . . , Xd ≤ 1/td) ,

the knowledge of the distribution of the max-linear projections of X is equiv-
alent to the knowledge of the distribution function (df) F of X at any point
x ∈ (0,∞)d. By right-continuity of F , this is equivalent to the knowledge of
F on [0,∞)d. Since X is concentrated on [0,∞)d, the result follows.

That the distribution of a componentwise nonnegative rv is characterized
by the collection of distributions of its max-linear projections is nicely linked
to the notion of max-characteristic function (max-CF), introduced by Falk
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and Stupfler (2017): if X = (X1, . . . , Xd) has nonnegative and integrable
components, then the knowledge of the mapping

ϕX(t) = E(max(1, t1X1, . . . , tdXd))

= E

(
max

(
1,

d∨

k=1

tkXk

))
, t1, . . . , td > 0,

characterizes the distribution of the rv X. This notion of max-characteristic
function is particularly interesting when considering standard extreme value
distributions such as the Generalized Pareto distribution, for which it has a
simple closed form, although the standard characteristic function based on
taking a Fourier transform does not (see Falk and Stupfler 2017). However,
this notion requires the integrability of the components of X; its general-
ization to random vectors without sign constraints, suggested by Falk and
Stupfler (2019), even requires an exponential moment. This is of course a
serious restriction.

The motivation for this work resides in combining this last remark with
the following observation. For d = 2 and any t1, t2 > 0, one clearly has

max(t1X1, t2X2) = t1X1 + t2X2 −min(t1X1, t2X2).

By Proposition 1.1, we know that the distribution of (X1, X2) is char-
acterized by the collection of distributions of the max-linear projections
max(t1X1, t2X2) when t1 and t2 vary. We also know, by the Cramér-Wold
theorem, that it is characterized by the collection of distributions of the
one-dimensional projections t1X1+ t2X2. We may therefore ask whether the
distribution of (X1, X2) is determined by the collection of distributions of
min(t1X1, t2X2), when t1, t2 range over (0,∞). More generally, we may ask
if the distribution of a d-dimensional rv X is characterized by the min-linear
projections

d∧

k=1

tkXk := min
1≤k≤d

tkXk, t1, . . . , td > 0.

By analogy with the notion of max-CF, this would then suggest to define
the following notion of min-characteristic function:

ψX(t) = E(min(1, t1X1, . . . , tdXd))

= E

(
min

(
1,

d∧

k=1

tkXk

))
, t1, . . . , td > 0,
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which, unlike the max-CF, does not require any integrability on the compo-
nents of X, since

∀t1, . . . , td > 0, 0 ≤ min(1, t1X1, . . . , tdXd) ≤ 1 almost surely.

If we require the distribution of X to be concentrated on (0,∞)d, then it is
indeed characterized by its min-linear projections, as our next result shows.
We denote throughout by Xd the set of all rvs X = (X1, . . . , Xd) on R

d with
almost surely positive components (i.e. Xi > 0 for any i).

Proposition 1.2. Let X = (X1, . . . , Xd) and Y = (Y1, . . . , Yd) be two
rvs in Xd. Then

X
d
= Y ⇔ ∀t1, . . . , td > 0,

d∧

k=1

tkXk
d
=

d∧

k=1

tkYk.

Proof. Note that, for any t1, . . . , td > 0,

P

(
d∧

k=1

tkXk > 1

)
= P (X1 > 1/t1, . . . , Xd > 1/td) .

By right-continuity of a multivariate df, the knowledge of the distribution of
the min-linear projections of X is therefore equivalent to the knowledge of
the probabilities P(X1 > x1, . . . , Xd > xd), for any x1, . . . , xd ≥ 0. Since all
components of X are assumed to be strictly positive, we obtain that, for any
k ∈ {1, . . . , d}, all indices i1 < . . . < ik in {1, . . . , d} and xi1 , . . . , xik ≥ 0, the
probabilities P(Xi1 > xi1 , . . . , Xik > xik) are also determined. The result
now follows by writing

P(X1 ≤ x1, . . . , Xd ≤ xd) = 1− P

(
d⋃

k=1

{Xk > xk}
)

and using the inclusion-exclusion principle.

In measure-theoretic terms, unlike max-linear projections, min-linear
projections cannot in general characterize a distribution which puts mass
on [0,∞)d \ (0,∞)d, because the class of quadrants

{
d∏

k=1

(ak,∞), a1, . . . , ad ≥ 0

}

is an intersection-stable system of open sets but only generates the Borel σ-
algebra on (0,∞)d. A simple illustrative example is the following: if X has a

The Min-characteristic... 257



Bernoulli distribution with parameter p ∈ (0, 1), then clearly min(t1X, t2(1−
X)) = 0 for all t1, t2 > 0, but (X, 1−X) does not have the same distribution
as the degenerate vector (0, 0).

The present work builds on Proposition 1.2. The paper is organized as
follows: in Section 2 we show that the function

ψX : t = (t1, . . . , td) ∈ [0,∞)d �→ E(min(1, t1X1, . . . , tdXd)) (1.1)

indeed characterizes the distribution of any rv X ∈ Xd. Referring to this
function as the min-characteristic function (min-CF) of X, we derive ba-
sic properties of the min-CF, including an inversion formula. One of the
most intriguing results we find is that the min-CF induces a continuous and
concave df. In Section 3.1 we examine the sequential behavior of min-CFs
with respect to convergence in distribution, and we consider the asymptotic
properties of the empirical min-CF (that is, the random min-CF generated
by the empirical df of a sample of independent and identically distributed
rvs) in Section 3.2. Some insight into the structure of the set of min-CFs,
such as its convexity, is provided in Section 4. Finally, in Section 5, we ini-
tiate the study of an extension of the min-CF to arbitrary, not necessarily
componentwise positive rvs X, by using transformations of the components
of X.

2 The Min-characteristic Function for Positive Random Vectors

The fundamental result of this paper, stated below, is that the map-
ping in Eq. 1.1 characterizes the distribution of any rv X ∈ Xd. Here and
throughout, any operation on vectors such as +,≥, >, . . . is meant compo-
nentwise.

Theorem 2.1. Let X = (X1, . . . , Xd) and Y = (Y1, . . . , Yd) be two rvs
in Xd. Then

X
d
= Y ⇔ ∀t = (t1, . . . , td) > 0, ψX(t) = ψY (t).

Proof. By 1-homogeneity of the min operator, we have

∀t1, . . . , td > 0, E(min(1, t1X1, . . . , tdXd)) = E(min(1, t1Y1, . . . , tdYd))

⇔ ∀x, t1, . . . , td > 0, E(min(x, t1X1, . . . , tdXd)) = E(min(x, t1Y1, . . . , tdYd)).

Now, for any positive rv Z and any x > 0,

E(min(x, Z)) =

∫ ∞

0
P(min(x, Z) > u) du =

∫ x

0
P(Z > u) du.
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Differentiating from the right with respect to x entails that the knowledge
of E(min(x, Z)), for any x > 0, entails that of P(Z > x) for any x > 0 and
thus of the distribution of the positive rv Z. Applying this to the rv Z =
min(t1X1, . . . , tdXd) for arbitrary t1, . . . , td > 0 and using Proposition 1.2
concludes the proof.

Definition 2.2. The min-characteristic function (min-CF) of X = (X1, . . . ,
Xd) ∈ Xd is the function ψX on [0,∞)d defined by

∀t = (t1, . . . , td) ∈ [0,∞)d, ψX(t) = E(min(1, t1X1, . . . , tdXd)).

One immediate benefit of using the min-CF rather than the max-CF is
that it does not require any integrability assumption on the components of
X. At the same time, it can be calculated in much the same way and thus
generally applies to the same kind of distributions the max-CF is well-suited
to, thanks to the following basic formula.

Lemma 2.3. We have, for X = (X1, . . . , Xd) ∈ Xd, the identity

ψX(t) =

∫ 1

0
P(X1 > u/t1, . . . , Xd > u/td) du, t = (t1, . . . , td) ∈ (0,∞)d.

This formula is indeed similar in spirit to the identity

E(max(1, t1X1, . . . , tdXd)) = 1 +

∫ ∞

1
[1− P(X1 ≤ u/t1, . . . , Xd ≤ u/td)] du

making it possible to calculate the max-CF of a componentwise nonnegative
and integrable rv (see Falk and Stupfler 2017).

Proof. Use the identity

E(min(1, Z)) =

∫ 1

0
P(Z > u) du

valid for any positive rv Z, with Z = min(t1X1, . . . , tdXd).

We give a short list of examples next.

Example 2.1 (Exponential distribution). The min-CF of a rv X having
the exponential distribution with mean 1/λ, λ > 0, is given by

∀t > 0, ψλ(t) =

∫ 1

0
e−λu/t du =

t

λ

[
1− e−λ/t

]
.

The Min-characteristic... 259



Example 2.2 (Pareto distribution). The min-CF of a rv X having the
Pareto distribution with tail index γ > 0, namely, with df P(X ≤ x) =
1− x−1/γ, x ≥ 1, is given by

Consequently,

ψ1(t) =

{
1 if t ≥ 1,
t(1− log t) if t ∈ (0, 1)

and

∀γ 
= 1, ψγ(t) =

⎧
⎨

⎩

1 if t ≥ 1,

t− γt1/γ

1− γ
if t ∈ (0, 1).

Example 2.3 (Generalized Pareto distribution). The min-CF of a rv X
having the Generalized Pareto distribution with location parameter μ ≥ 0,
scale parameter σ > 0 and tail index ξ > 0, namely, with df

P(X ≤ x) = 1−
(
1 + ξ

x− μ

σ

)−1/ξ

, x ≥ μ,

is given by

Consequently,

ψ(μ,σ,1)(t) =

⎧
⎨

⎩

1 if t ≥ 1/μ,

t

(
μ+ σ log

[
1 +

1− μt

σt

])
if t < 1/μ,

and for any ξ 
= 1,

ψ(μ,σ,ξ)(t) =

⎧
⎪⎨

⎪⎩

1 if t ≥ 1/μ,

t

(
μ+

σ

1− ξ
− σ

1− ξ

[
1 + ξ

1− μt

σt

]1−1/ξ
)

if t < 1/μ.

This is readily seen to agree with the max-CF calculation in Example 1.3
of Falk and Stupfler (2017), for the case ξ ∈ (0, 1), thanks to the identity

ψ(μ,σ,ξ)(t) = E(min(1, tX)) = 1 + tE(X)− E(max(1, tX))

valid in this case where E(X) = μ+ σ/(1− ξ) < ∞.
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Example 2.4 (Unit Fréchet distribution). The min-CF of a rv X having
a unit Fréchet distribution, namely, with df P(X ≤ x) = e−1/x, x > 0, is
given by

∀t > 0, ψ(t) =

∫ 1

0

[
1− e−t/u

]
du = 1−

∫ ∞

1

e−tv

v2
dv =: 1− E2(t)

in the notation of Abramovitz and Stegun (1972, Formula 5.1.4 p.228).

Example 2.5 (Independent unit Fréchet variables). The min-CF of a
rv X = (X1, . . . , Xd), whose components are independent unit Fréchet dis-
tributed, is

ψ(t) =

∫ 1

0

d∏

k=1

[
1− e−tk/u

]
du

= 1−
∫ 1

0

d∑

k=1

(−1)k−1
∑

1≤i1<···<ik≤d

exp

(
−1

u
[ti1 + · · ·+ tik ]

)
du

= 1−
d∑

k=1

(−1)k−1
∑

1≤i1<···<ik≤d

E2(ti1 + · · ·+ tik),

for any t = (t1, . . . , td) ∈ (0,∞)d, with the notation of Example 2.4.

It is already apparent from the definition of a min-CF that it is a com-
ponentwise nondecreasing function on [0,∞)d. A further list of elementary
properties of the min-CF is given in our next result.

Proposition 2.4. Choose X = (X1, . . . , Xd) ∈ Xd and let ψX be its
min-CF. We have, for t = (t1, . . . , td) ∈ [0,∞)d:

(i) 0 ≤ ψX(t) ≤ 1.

(ii) ψX(t) = 0 if and only if ti = 0 for some i ∈ {1, . . . , d}.

(iii) ψX(t) → 1 as min(t1, . . . , td) → ∞.

(iv) X ≥ c > 0 almost surely if and only if ψX(t) = 1 for t ≥ 1/c.

(v) If Y is another rv in Xd, then

sup
t≥0

|ψX(t)− ψY (t)| ≤ sup
t≥0

|P(X > t)− P(Y > t)|.

(vi) The function ψX is a continuous and concave df on [0,∞)d.
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(vii) The function t �→ ψX(1/t), t > 0 ∈ R
d, is a (continuous) survival

function, in the sense that there exists a rv Y ∈ Xd with ψX(1/t) =
P(Y > t).

The most interesting result here is probably Proposition 2.4(vi): com-
bined with Theorem 2.1, it shows that any df on Xd, no matter how irreg-
ular, is characterized by an associated continuous and concave df, which is
its min-CF.

Proof. Assertions (i)–(iv) are elementary. Assertion (v) is a straightfor-
ward consequence of Lemma 2.3. We prove (vi). The function ψX is clearly
continuous. Its concavity follows from that of the function (x1, . . . , xd) �→
min(1, x1, . . . , xd) on [0,∞)d. It only remains to prove that ψX is a df. Since
ψX(0) = 0 and ψX(t) → 1 as min(t1, . . . , td) → ∞, it is sufficient to prove
that ψX is Δ-monotone (see Reiss 1989, Equation (2.2.19)), i.e., for any
0 ≤ a ≤ b ∈ R

d,

To show this it suffices to establish that the integrand in the above expec-
tation is always nonnegative. Let U be a random variable which follows the
uniform distribution on [0, 1]. Using repeatedly the identity

P(U ∈ (s, t], U ≤ u) = P(U ≤ t, U ≤ u)− P(U ≤ s, U ≤ u)

valid for any s ≤ t and u, we find that for any 0 ≤ c ≤ d ∈ R
d, we have,

0 ≤ P(U ∈ (min(1, ci),min(1, di)], 1 ≤ i ≤ d)

=
∑

T⊂{1,...,d}
(−1)d−|T |

P (U ≤ min(1, di), i ∈ T ; U ≤ min(1, cj), j /∈ T )

=
∑

T⊂{1,...,d}
(−1)d−|T |min {1; di, i ∈ T ; cj , j /∈ T} .

With c = (a1X1, . . . , adXd) and d = (b1X1, . . . , bdXd) this yields the desired
inequality. Finally, part (vii) is an immediate consequence of (vi): ψX is a
(continuous) df of some rv Z ∈ Xd, i.e. ψX(t) = P(Z ≤ t), t > 0 ∈ R

d.
Then ψX(1/t) = P(Z ≤ 1/t) = P(Y ≥ t) = P(Y > t), with Y := 1/Z.

Of course, since the min-CF identifies distributions concentrated in the
positive orthant of Rd, it is important to find the inversion formula making
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it possible to go from a min-CF to its pertaining distribution. Since, by
Lemma 2.3, computing the min-CF essentially consists in integrating the
survival function, it makes sense to expect that a survival function can be
recovered by differentiating the pertaining min-CF in a suitable way. Making
this intuition rigorous is the focus of the next result.

Theorem 2.5. For X = (X1, . . . , Xd) ∈ Xd with min-CF ψX , we have

∀x = (x1, . . . , xd) ∈ (0,∞)d,

P(X1 > x1, . . . , Xd > xd) =
∂+
∂t

{
tψX

(
1

tx

)}
|t=1

where ∂+/∂t denotes differentiation from the right with respect to t.

Proof. By Lemma 2.3, we find, for any t > 0 and (x1, . . . , xd) ∈ (0,∞)d,

tψX

(
1

tx

)
= t

∫ 1

0
P(X1 > utx1, . . . , Xd > utxd) du

=

∫ t

0
P(X1 > vx1, . . . , Xd > vxd) dv.

Conclude by differentiating from the right with respect to t and taking t = 1.

It should be apparent from this result that, while a max-CF is adapted
to working with the joint df (see Falk and Stupfler 2017, Proposition 2.15),
the min-CF is rather adapted to working with the joint survival function.
The next example illustrates this point nicely.

Example 2.6 (Exponential distribution in several dimensions). Let X be
a rv in R

d which follows a min-stable distribution with standard exponential
margins P(Xi > x) = exp(−x), x ≥ 0. This is equivalent to assuming that
there exists a D-norm || · ||D on R

d such that

P(X > x) = exp (−‖x‖D) , x ≥ 0 ∈ R
d;

see Falk (2019, Equation (2.27)). Then we have, for t > 0 ∈ R
d,

ψX(t) =

∫ 1

0
P

(
X >

u

t

)
du =

∫ 1

0
exp

(
−u

∥∥∥∥
1

x

∥∥∥∥
D

)
du

=
1

‖1/x‖D

[
1− exp

(
−

∥∥∥∥
1

x

∥∥∥∥
D

)]
.

This generalizes Example 2.1 to an arbitrary dimension d ≥ 1.
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We may now provide an application of our results to the theory of
D−norms. Recall that a D-norm on R

d, d ≥ 2, is a norm of the form

‖x‖D := E(max(|x1|Z1, . . . , |xd|Zd))

whereZ = (Z1, . . . , Zd) is a componentwise nonnegative rv such that E(Zi) =
1, 1 ≤ i ≤ d, called the generator of ‖·‖D. The concept of D-norms has come
to prominence recently for its importance in multivariate extreme value the-
ory, not least because it allows for a simple characterization of max-stable
dfs (see Theorem 2.3.3 in Falk 2019). Attached to a D-norm ||·||D is the
concept of dual D-norm function

�� x ��D := E(min(|x1|Z1, . . . , |xd|Zd))

which has recently found applications in the analysis of multivariate records
(Dombry et al., 2019; Dombry and Zott, 2018). It is known that the mapping

‖·‖D �→ �� · ��D

is indeed well-defined, in the sense that two generators Z of the same D-
norm also generate the same dual D-norm function, but this mapping is not
one-to-one (see Section 1.6 of Falk 2019). The next result shows that if we
actually restrict this mapping to componentwise positive generators Z, it
becomes one-to-one.

Proposition 2.6. Let Z(1),Z(2) be componentwise positive generators
of two D-norms ‖·‖D1

and ‖·‖D2
. Then

‖·‖D1
= ‖·‖D2

⇔ �� · ��D1 = �� · ��D2 .

The proof rests on the following lemma.

Lemma 2.7. Any D-norm with a generator Z ∈ Xd also has a generator
Z∗ ∈ Xd with Z∗

1 = 1.

Proof. That there is a generator Z∗ with Z∗
1 = 1 follows from Lemma

2.10 in Falk and Stupfler (2019). We need only show that Z∗ ∈ Xd, translat-
ing into P(Z∗

i > 0)=1 for any i ∈ {2, . . . , d}. For any x > 0, E(max(Z1, xZi))
= E(max(1, xZ∗

i )), and thus E(min(Z1, xZi)) = E(min(1, xZ∗
i )) by the iden-

tity max(a, b) + min(a, b) = a + b and the fact that all the Zj and Z∗
j have

expectation 1. Letting x ↑ ∞ and using the dominated convergence theorem
entails 1 = P(Z∗

i > 0), as required.

Proof of Proposition 2.6. We only need to show that the equality
of the dual D-norm functions implies that of the original D-norms. By
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Lemma 2.7, we may assume that the first element of each generator is equal
to 1: in particular,

E(min(|x1| , |x2|Z(1)
2 , . . . , |xd|Z(1)

d )) = E(min(|x1| , |x2|Z(2)
2 , . . . , |xd|Z(2)

d ))

for any x ∈ R
d. The random vectors (Z

(1)
2 , . . . , Z

(1)
d ) and (Z

(2)
2 , . . . , Z

(2)
d )

then have the same distribution, by Theorem 2.1. The result follows.

We conclude this section by discussing an interesting example of interplay
between max-stability, min-stability and the notion of min-CF. Recall that
a copula C is said to be in the domain of attraction of a standard max-stable
df G if

lim
n→∞

Cn
(
1 +

x

n

)
= G(x), x ∈ R

d.

In this context, it is a consequence of Falk (2019, Theorem 2.3.3) thatG(x) =
exp(−‖x‖D), x ≤ 0 ∈ R

d, for some D-norm || · ||D which, in this case,
describes the extremal dependence within the copula C. We then have the
following result.

Proposition 2.8. Let X = (X1, . . . , Xd) be a rv that follows a cop-
ula C in the domain of attraction of the standard max-stable df G(x) =
exp(−‖x‖D), x ≤ 0 ∈ R

d. Let (by Proposition 2.4(vii)) Y ∈ Xd be a rv
with survival function t �→ ψ− logX(1/t), t > 0 ∈ R

d. Then Y is asymptoti-
cally min-stable, in the sense that

lim
n→∞

P

(
n

2
min
1≤i≤n

Y (i) > x

)
= exp(−‖x‖D), x > 0 ∈ R

d,

where Y (1),Y (2), . . . are independent copies of Y .

Proof. The domain of attraction assumption on C is equivalent with
the expansion

C(u) = 1− ‖1− u‖D + o(‖1− u‖) (2.1)

as u → 1, uniformly for u ∈ [0, 1] (see Proposition 3.1.5 in Falk 2019), in
the sense that

∀ε > 0, ∃δ > 0, u ∈ [1− δ, 1]d ⇒ C(u)− (1− ‖1− u‖D)
‖1− u‖ ≤ ε.

Note then that, from Lemma 2.3,

ψ− logX

(
1

sx

)
=

∫ 1

0
C(exp(−stx)) dt
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and thus, combining a Taylor expansion of the exponential function around
0 and Eq. 2.1, the min-CF of − log(X) satisfies, for x > 0 ∈ R

d,

lim
s↓0

2

s

(
1− ψ− logX

(
1

sx

))
= ‖x‖D . (2.2)

In other words, since Y ∈ Xd has survival function t �→ ψ− logX(1/t), t >
0 ∈ R

d, we have

P

(
1

2
Y > sx

)
= 1− s ‖x‖D + o(s)

as s ↓ 0 for x > 0 ∈ R
d. For independent copies Y (1),Y (2), . . . of Y , this

yields

P

(
n

2
min
1≤i≤n

Y (i) > x

)
=

[
P

(
1

2
Y >

1

n
x

)]n
→ exp(−‖x‖D), x > 0 ∈ R

d,

completing the proof.

We highlight the following consequence of Proposition 2.8, which follows
from Eqs. 2.1 and 2.2 in its proof. It can be used to suggest estimators of a
D-norm as done in Example 3.1 below.

Proposition 2.9. Let X = (X1, . . . , Xd) follow a copula C. If C is in
the domain of attraction of a standard max-stable df G(x) = exp(−‖x‖D),
x ≤ 0 ∈ R

d, then, for all x ≥ 0 ∈ R
d, the limit

�(x) := lim
s↓0

2

s

(
1− E

(
min

(
1,

− log(X1)

sx1
, . . . ,

− log(Xd)

sxd

)))

exists, and �(x) = ‖x‖D.
When considering notions of characteristic functions, such as the Fourier

transform, the Laplace transform, the moment-generating function, or the
max-CF, it is important to examine the connection between convergence of
a sequence of characteristic functions and convergence in distribution of the
associated rvs. This is the focus of the next section.

3 Sequential Behavior of the Min-characteristic Function

3.1. With Respect to Convergence in Distribution An important result
regarding the max-CF is that the pointwise convergence of a sequence of
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max-CFs to a max-CF is equivalent to the convergence of the pertaining
distributions in the Wasserstein metric

dW (P,Q) := inf{E(‖X − Y ‖1) : X has distribution P, Y has distribution Q}.

Convergence in this metric is nothing but convergence in distribution plus
convergence of first moments, according to Villani (2009, Definition 6.8 and
Theorem 6.9). Of course, the use of min-CFs does not require any inte-
grability assumption, so one cannot hope that a similar theorem would link
pointwise convergence of min-CFs to convergence in the metric dW , but we
could still anticipate a convergence in distribution of the pertaining dfs. This
is precisely the content of our next result.

Theorem 3.1. Let X(n), X be rvs in Xd. Then

X(n) d−→ X ⇔ ψX(n) → ψX pointwise.

Proof of Theorem 3.1. Suppose that X(n) d→ X. For any t =
(t1, . . . , td) ∈ (0,∞)d, the function h on R

d defined by

h(x1, . . . , xd) := min(1, t1x1, . . . , tdxd) if x1, . . . , xd > 0 and 0 otherwise

is continuous and bounded. Consequently

ψX(n)(t) = E(h(X(n))) → E(h(X)) = ψX(t)

as required. Suppose conversely that ψX(n) → ψX pointwise. We show that

−X(n) d−→ −X, or equivalently that

G(n)(x) := P(−X(n) ≤ x) → P(−X ≤ x) =: G(x)

at every point of continuity x ≤ 0 of G. Let

G
(n)

(x) := P(X(n) ≥ x) and G(x) := P(X ≥ x)

so that G
(n)

(x) = G(n)(−x) and G(x) = G(−x). From the proof of Theo-
rem 2.5 we know that, for any x > 0 and s, t > 0,

tψX(n)

(
1

tx

)
− sψX(n)

(
1

sx

)
=

∫ t

s
P(X

(n)
1 > vx1, . . . , X

(n)
d > vxd) dv.
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Using the fact that the distributions of X
(n)
1 , . . . , X

(n)
d have at most count-

ably many atoms, we get

∫ t

s
G

(n)
(vx) dv = tψX(n)

(
1

tx

)
− sψX(n)

(
1

sx

)

→ tψX

(
1

tx

)
− sψX

(
1

sx

)

=

∫ t

s
G(vx) dv. (3.1)

Let x > 0 be a point of continuity of G. If

lim sup
n→∞

G
(n)

(x) > G(x) or lim inf
n→∞

G
(n)

(x) < G(x)

then, by exploiting the monotonicity properties of G
(n)

and the continuity
of G at x, Eq. 3.1 readily produces a contradiction by putting s = 1 and

t = 1+ε or t = 1 and s = 1−ε with a small ε > 0. This givesG
(n)

(x) → G(x)
at any point of continuity x > 0 of G, or equivalently

G(n)(x) → G(x) (3.2)

at every point of continuity x < 0 of G. To show that this convergence
also holds at the points of continuity x of G with one or several components
equal to zero, we fix one such point, and we note that it is enough to prove
that every subsequence G(m(n))(x) of G(n)(x) has itself got a subsequence
that converges to G(x) (a result known as Cantor’s lemma). From Helly’s
selection theorem, we can take a subsequence G(k(m(n))) of the sequence
G(m(n)) which converges to some finite measure-generating function G∗ on
R
d, at all points of continuity of G∗: in other words, we can find a measure μ∗

on R
d with G(k(m(n)))(t) → G∗(t) := μ∗((−∞, t]) at every point of continuity

t of the limit.
We claim that actually G∗ = G on (−∞, 0]d irrespective of the choice

of the subsequence, which will obviously imply G(k(m(n)))(x) → G∗(x) =
G(x) as required. We prove this claim as follows. Clearly G∗ = G on
(−∞, 0)d wherever G and G∗ are both continuous, by Eq. 3.2. The set
of such points is dense in (−∞, 0)d, since G and G∗ are finite measure-
generating functions. Right-continuity ofG andG∗ then implies thatG∗ = G
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everywhere on (−∞, 0)d. Besides, the monotonicity of G∗ together with the
fact that P(−X < 0) = 1 implies that

1 = G(0) = lim
ε↓0

G(0− ε) = lim
ε↓0

G∗(0− ε) = μ∗((−∞, 0)d)

≤ μ∗((−∞, 0]d) = G∗(0) ≤ 1.

Thus each of the Ej := {y ∈ (−∞, 0]d | yj = 0} satisfies μ∗(Ej) = 0. Con-
clude by letting T be the set of indices for which xi < 0 and by writing

G∗(x) = μ∗((−∞,x]) = μ∗({y ∈ R
d | yi ≤ xi, i ∈ T, yj ≤ 0, j /∈ T})

= μ∗({y ∈ R
d | yi ≤ xi, i ∈ T, yj < 0, j /∈ T})

= lim
ε↓0

μ∗({y ∈ R
d | yi≤ xi, i ∈ T, yj ≤ −ε, j /∈ T})

= lim
ε↓0

P(Xi ≤ xi, i ∈ T, Xj ≤ −ε, j /∈ T )

= P(Xi ≤ xi, i ∈ T, Xj < 0, j /∈ T )

= P(Xi ≤ xi, i ∈ T, Xj ≤ 0, j /∈ T ) = G(x).

Complete the proof by noting that G(0) = 1 = G∗(0) and thus G∗ = G.

Remark 3.1. The pointwise convergence in Theorem 3.1 can be strength-
ened to uniform convergence on [0,∞)d. Note that ψX(n) , n ∈ N, is a se-
quence of df, which converges pointwise to the continuous df ψX . But this
means weak convergence of a sequence of rvs Y (n), having df ψX(n) , to a
rv Y having df ψX . Since the limiting df ψX is continuous, this implies
uniform convergence of ψX(n) to ψX , see, e.g., Billingsley (1968, Problem 3,
Section 3). We thus have

X(n) d−→ X ⇔ sup
t≥0

∣∣ψX(n)(t)− ψX(t)
∣∣ → 0.

3.2. The Empirical min-CF The fact that the min-CF identifies con-
vergence in distribution suggests that it may also be used in estimation
settings. We briefly explore this context here from the asymptotic point
of view. Let X(1), . . . ,X(n) be independent copies of a rv X ∈ Xd. The
(random) min-CF induced by the empirical measure P̂n := n−1

∑n
i=1 δX(i) is

ψ̂
(n)
X (t) =

1

n

n∑

i=1

min
(
1, t1X

(i)
1 , . . . , tdX

(i)
d

)
.

By the law of large numbers, we have, for any t = (t1, . . . , td) ∈ [0,∞)d, that
almost surely:

ψ̂
(n)
X (t) → E(min(1, t1X1, . . . , tdXd)) = ψX(t) as n → ∞.
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Since ψ̂
(n)
X is a df with probability 1, we also have uniform almost sure

convergence of this estimator, by the same argument as in Remark 3.1:

sup
t≥0

∣∣∣ψ̂(n)
X (t)− ψX(t)

∣∣∣ → 0 almost surely.

Example 3.1. Our results so far open a way to estimate a D-norm by
using the empirical min-CF. LetX(1), . . . ,X(n) be independent copies of a rv
X ∈ Xd following a copula C in the domain of attraction of a standard max-
stable df G. From Proposition 2.9 we obtain that the min-CF of − log(X)
satisfies

lim
s↓0

2

s

(
1− ψ− logX

(
1

sx

))
= ‖x‖D .

This suggests to estimate ‖x‖D by

‖̂x‖D =
2

sn

(
1− ψ̂

(n)
− logX

(
1

snx

))

=
2

sn

(
1− 1

n

n∑

i=1

min

(
1,

− log(X
(i)
1 )

snx1
, . . . ,

− log(X
(i)
d )

snxd

))

where (sn) is a positive sequence converging to 0. Although the study of this
estimator is outside the scope of this paper, it offers a potentially interesting
alternative to existing techniques for the estimation of an extremal depen-
dence structure, such as the classical tail dependence estimators developed
by Drees and Huang (1998), Schmidt and Stadtmüller (2006) and Einmahl
et al. (2008), among others.

Turning to rates of convergence, the central limit theorem implies that

ψ̂
(n)
X (t) is a

√
n−consistent estimator of ψX(t). The above local uniform

convergence then naturally raises the question of the weak convergence of
the process

Sn = (Sn(t))t≥0 :=
√
n
(
ψ̂
(n)
X (t)− ψX(t)

)

t≥0

on [0,∞)d. This stochastic process has continuous sample paths and satisfies
Sn(0) = 0. For ease of exposition, we state a result on the weak convergence
of this process in the case d = 1.

Theorem 3.2. Let X(1), . . . , X(n) be independent copies of a univariate
rv X > 0 with df F . For any t0 > 0, we have

Sn(t) :=
√
n
(
ψ̂
(n)
X (t)− ψX(t)

)
→ S(t) := t

∫ 1/t

0
W ◦ F (u) du
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weakly in the space C[0, t0] of continuous functions over [0, t0], where W is
a standard Brownian bridge on [0, 1]. The limiting process S, which should
be read as 0 when t = 0, is a Gaussian process with covariance structure

Cov(S(t1), S(t2)) =

∫∫

[0,1]2

[
F

(
min

{
x

t1
,
y

t2

})
− F

(
x

t1

)
F

(
y

t2

)]
dx dy.

Proof. We adapt the proof of Theorem 3.4 in Falk and Stupfler (2019).
By Theorem 1, p.93 of Shorack and Wellner (1986), we can construct, on
a common probability space, a triangular array of rowwise independent,
standard uniform rvs (U (n,1), . . . , U (n,n))n≥1, and a Brownian bridge W̃ such
that

Furthermore, if we denote by q the quantile function of X (i.e. the left-
continuous inverse of F ) and by X̃(n,i) := q(U (n,i)), we have, for any n ≥ 1,

Sn(t)
d
= S̃n(t) :=

1√
n

n∑

i=1

[
min

(
1, t X̃(n,i)

)
− E(min(1, tX))

]
,

as processes in C[0, t0]. Besides, we have for any t > 0:

Since X̃(n,i) ≤ u ⇔ U (n,i) ≤ F (u), this yields

S̃n(0) = 0 and ∀t > 0, S̃n(t) = −t

∫ 1/t

0
Wn ◦ F (u) du.

Defining a process S̃ by S̃(0) = 0 and S̃(t) = −t
∫ 1/t
0 W̃ ◦ F (u) du for t > 0,

we get

sup
0≤t≤t0

∣∣∣S̃n(t)− S̃(t)
∣∣∣ ≤ sup

0≤t≤1

∣∣∣Wn(t)− W̃ (t)
∣∣∣ → 0

almost surely. The process S̃ is then almost surely continuous, as it is the
almost sure uniform limit of the sequence of continuous processes (S̃n). By
symmetry of the standard Brownian bridge, we conclude that, as processes
in C[0, t0],

Sn(t)
d
= S̃n(t)

a.s.−→ S̃(t)
d
= S(t).
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This shows the desired weak convergence; the assertion on the covariance
structure of the limiting process follows from a simple calculation using the
well-known covariance properties of the Brownian bridge.

In the case d > 1, and under regularity conditions (e.g. those of Massart
1989), a similar proof can be written to show an analogue of Theorem 3.2,
giving the convergence of the process Sn, in a space of continuous functions
over compact subsets of [0,∞)d, to a d−dimensional Gaussian process S
with covariance structure

Cov(S(t1), S(t2)) =

∫∫

[0,1]2d

[
F

(
min

{
x

t1
,
y

t2

})
−F

(
x

t1

)
F

(
y

t2

)]
dx dy.

Note that the asymptotic distribution in Theorem 3.2 bears some similarity
to the asymptotic distribution of the empirical max-CF process

√
n
(
ϕ̂
(n)
X (t)− ϕX(t)

)
=

1√
n

n∑

i=1

[
max

(
1, tX(i)

)
− E (max (1, tX))

]

when E(X2) < ∞, which is obtained as a particular case of Theorem 3.4
of Falk and Stupfler (2019).

4 On the Structure of the Set of Min-characteristic Functions

Theorem 3.1 shows that the convergence of a sequence of min-CFs to
a min-CF is equivalent to the convergence of the pertaining distribution
functions. The requirement that the limit be a min-CF is necessary: if
Xn = n almost surely (n ∈ N), then the corresponding sequence of min-CFs
satisfies

∀x > 0, ψXn(x) = E(min(1, nx)) → 1 as n → ∞,

but the function ψ(x) = 1, if x > 0, and ψ(0) = 0, is not a min-CF because
it is not continuous at zero. In other words, the set of min-CFs is not closed
in the topology of pointwise convergence. This is certainly not specific to the
notion of min-CF; the set of Fourier transforms is not closed either (think for
example of the sequence of normal distributions with mean 0 and variance
n2). It is nonetheless interesting to get some further understanding of the
structure of the set of min-CFs and the elements it contains: this is the focus
of the present section. We start by noting that the set of min-CFs is convex.

Lemma 4.1. The convex combination of two min-CFs is again a min-CF.
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Proof. Let X(1),X(2) be two rvs in Xd and λ ∈ (0, 1). Let Z ∈ {1, 2} be
a rv that is independent of X(1),X(2), with P(Z = 1) = λ = 1− P(Z = 2).
Then X = X(Z) is a rv in Xd with

ψX(t) = E

(
min

(
1, t1X

(Z)
1 , . . . , tdX

(Z)
d

))

= λE
(
min

(
1, t1X

(1)
1 , . . . , tdX

(1)
d

))

+(1− λ)E
(
min

(
1, t1X

(2)
1 , . . . , tdX

(2)
d

))

= λψX(1)(t) + (1− λ)ψX(2)(t).

This shows that the convex combination λψX(1)+(1−λ)ψX(2) of the min-CFs
ψX(1) and ψX(2) is a min-CF again.

Our next result informally states that the set of min-CFs is relatively
compact in the space of concave pseudo-distribution functions on [0,∞)d.

Proposition 4.2. Any sequence of min-CFs (ψn) on R
d has a subse-

quence that converges pointwise to a concave function ψ (at each of its points
of continuity) such that ψ = 0 outside of [0,∞)d and ψ(t) → ψ∞ ∈ [0, 1] as
min(t1, . . . , td) → ∞.

Proof. Use jointly Proposition 2.4(vi) with Helly’s theorem.

We now give some examples of functions which are (or not) min-CFs.
Our first example focuses on copula functions. Recall that a copula on R

d

is a d−dimensional df with standard uniform marginal distributions.

Proposition 4.3. The only copula which is also a min-CF is the com-
pletely dependent copula

C(u) = min(u1, . . . , ud), u = (u1, . . . , ud) ∈ [0, 1]d,

corresponding to the constant rv X = (1, . . . , 1) ∈ R
d.

Proof. Let C be a copula function which is also a min-CF. In other
words, there is a vector U with df C (and in particular, standard uniform
marginals) and X ∈ Xd such that

∀(t1, . . . , td) ∈ [0,∞)d, P(U1 ≤ t1, . . . , Ud ≤ td) = E(min(1, t1X1, . . . , tdXd)).

Letting, for any i, all tj except ti tend to infinity, we obtain, by the dominated
convergence theorem,

∀t ≥ 0, E(min(1, t)) = min(1, t) = P(Ui ≤ t) = E(min(1, tXi)).
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This implies that Xi and the constant 1 have the same min-CF, and thus,
by Theorem 2.1, Xi = 1 almost surely. Then

C(u) = P(U1 ≤ u1, . . . , Ud ≤ ud) = E(min(1, u1, . . . , ud)) = min(u1, . . . , ud)

for any u = (u1, . . . , ud) ∈ [0, 1]d, completing the proof.

This result implies that the df of the uniform distribution on [0, 1] is
also a min-CF. It is straightforward to show (using Proposition 2.4) that
actually, a necessary and sufficient condition for the uniform df on [a, b] to
be a min-CF is that a = 0, corresponding to the min-CF of the constant rv
X = 1/b.

Proposition 4.3 shows that, although a min-CF is always a df by Propo-
sition 2.4(vi), it can have a rather different structure from the df of its
generating rv. We elaborate on this observation in our next result, which
shows that the min-CF transformation has no fixed point.

Proposition 4.4. There is no rv X ∈ Xd such that its df F satisfies
ψX = F .

Proof. Suppose indeed that there were such a rv X = (X1, . . . , Xd) ∈
Xd. Writing ψX(t) = F (t) for any t = (t1, . . . , td) ≥ 0 and letting t2, . . . , td →
∞, we find

∀t1 ≥ 0, ψX1(t1) = E(min(1, t1X1)) = P(X1 ≤ t1).

It is thus enough to show that no univariate positive rv X = X1 can satisfy
this identity. If this were the case then, by Proposition 2.4(vi), F would be
continuous on [0,∞). Using the identity

∀t > 0, tF

(
1

t

)
= tψX

(
1

t

)
=

∫ t

0
P(X1 > v) dv =

∫ t

0
[1− F (v)] dv

shows that F is actually continuously (and even infinitely) differentiable on
(0,∞). By Theorem 2.5, we get

∀x > 0, 1− F

(
1

x

)
=

∂

∂t

{
tF

(x
t

)} ∣∣
t=1 = F (x)− xF ′(x) . (4.1)

Replacing x with 1/x in this identity immediately entails

∀x > 0,
1

x
F ′

(
1

x

)
= xF ′(x)

and therefore

d

dx

[
F (x) + F

(
1

x

)]
= F ′(x)− 1

x2
F ′

(
1

x

)
= 0 on (0,∞).
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There is then a constant c such that F (x) + F (1/x) = c on (0,∞). Letting
x → ∞ gives F (x) + F (1/x) = 1 on (0,∞). Plugging this back in Eq. 4.1
entails

∀x > 0, xF ′(x) = F (x) + F

(
1

x

)
− 1 = 0

and therefore F ′ ≡ 0 on (0,∞), which finally yields that F is constant on
(0,∞) and thus necessarily equal to 1 on this interval. But F is also right-
continuous at 0 with F (0) = 0, which is an obvious contradiction.

The above result raises the following question: can we compare the df F
of a rv X ∈ Xd and its min-CF ψX? In other words, although we know that
ψX 
= F , can we write that F is in general greater or less than ψX? Our
next result examines this question if F is a copula.

Lemma 4.5. Let X follow a copula. Then the copula Cψ corresponding
to the df ψX satisfies

Cψ(u) ≥ ψX(u), u ∈ [0, 1]d.

Proof. First of all, the univariate margins ψi of ψX are identical and
given by

ψ(t) = ψi(t)=E (min(1, tXi))=

∫ 1

0
P

(
Xi >

s

t

)
ds=

{
t/2, t ∈ [0, 1],
1− 1/(2t), t ≥ 1.

The corresponding quantile function is

ψ−1(u) = ψ−1
i (u) =

{
2u, u ∈ [0, 1/2],
1/[2(1− u)], u ∈ [1/2, 1).

Note that ψ−1(u) ≥ u, u ∈ [0, 1). The copula Cψ is then given by

Cψ(u) = ψX

(
ψ−1(u1), . . . , ψ

−1(ud)
)

= E
(
min

(
1, ψ−1(u1)X1, . . . , ψ

−1(ud)Xd

))

≥ E (min (1, u1X1, . . . , udXd))

= ψX(u), u ∈ [0, 1)d,

which is the result.

The above proof shows that Lemma 4.5 is actually true for each rv X
whose min-CF satisfies ψ−1

i (u) ≥ u, which is equivalent to ψi(u) ≤ u, for
each u ∈ (0, 1) and 1 ≤ i ≤ d. This is for instance the case if E(Xi) ≤ 1,
1 ≤ i ≤ d, since then

∀t ≥ 0, ψi(t) = E (min(1, tXi)) ≤ E(tXi) = t.
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5 Min-characteristic Functions for Arbitrary Random Vectors

The concept of min-CF as we defined it can be extended to a rv X =
(X1, . . . , Xd) with not necessarily strictly positive components by applying
a continuous one-to-one transformation T mapping R onto (0,∞), and con-
sidering

(t1, . . . , td) �→ E(min(1, t1T (X1), . . . , tdT (Xd))).

The assumptions on T ensure that, by Theorem 2.1, such a mapping identi-
fies the distribution of X. The purpose of this section is to show an example
of such a construction and explore some of its properties.

A particularly simple and convenient transformation T is the exponential
function T (x) = exp(x), x ∈ R. For an arbitrary rv X, this leads us to
consider the mapping

ψexp(X)(t) :=E(min(1, t1 exp(X1), . . . , td exp(Xd))), t=(t1, . . . , td) ∈ [0,∞)d.

Example 5.1. Let (U, V ) be a bivariate rv which follows a copula, say
C. Then the corresponding Kendall df is

K(s) := P(C(U, V ) ≤ s), s ∈ [0, 1].

This function was introduced in Genest and Rivest (1993) in the context of
the class of Archimedean copulas

C(u, v) = ϕ[−1](ϕ(u) + ϕ(v)),

where ϕ : [0, 1] → [0,∞] is a convex, continuous and strictly decreasing
function with ϕ(1) = 0, and

ϕ[−1](t) =

{
ϕ−1(t), 0 ≤ t ≤ ϕ(0),
0, ϕ(0) < t ≤ ∞;

see Theorem 4.1.4 in Nelsen (2006). Such an Archimedean copula has
Kendall df

K(s) = s− ϕ(s)

ϕ′(s)
, s ∈ [0, 1],

and the Kendall df characterizes the generator ϕ; see Genest and Rivest
(1993).

Choose for example ϕp(s) = (1 − s)p, s ∈ [0, 1], with p ∈ [1,∞). The
pertaining Archimedean copula is given by

Cp(u, v) = max
(
0, 1− ‖(1− u, 1− v)‖p

)
, u, v ∈ [0, 1],
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and Kendall’s df is

K(s) =
1

p
+ s

(
1− 1

p

)
, s ∈ [0, 1].

Thus K(0) = 1/p > 0, which means that K has an atom at 0 and therefore
we cannot use the ordinary min-CF for the Kendall df. We then transform
the rv Cp(U, V ) by the exponential function and obtain, for t ∈ (0, 1] and
p ≥ 1,

ψexp(K)(t) = E (min (1, t exp(Cp(U, V ))))

=

∫ 1

0
P

(
exp(Cp(U, V )) >

u

t

)
du

=

⎧
⎪⎪⎨

⎪⎪⎩

t

(
1 +

(
1− 1

p

)
(exp(1)− 2)

)
, 0 < t ≤ exp(−1),

2

(
1− 1

p

)
+

(
2

p
−1

)
t+

(
1− 1

p

)
log(t), exp(−1) ≤ t ≤ 1.

This is itself a df having density

ψ′
exp(K)(t) =

⎧
⎪⎪⎨

⎪⎪⎩

1 +

(
1− 1

p

)
(exp(1)− 2), 0 < t ≤ exp(−1),

2

p
− 1 +

(
1− 1

p

)
1

t
, exp(−1) < t ≤ 1.

The particular case p = 1 yields ψexp(K)(t) = t, 0 ≤ t ≤ 1, i.e., the df of the
uniform distribution on [0, 1].

In general, we clearly have, by monotonicity of the exponential function,
that for t1, . . . , td > 0:

ψexp(X)(t) = E(exp(min(0, X1 + log(t1), . . . , Xd + log(td)))).

Replacing log(ti) in the above formula by xi ∈ R, 1 ≤ i ≤ d, leads to the
following definition.

Definition 5.1. The log-min-CF of X = (X1, . . . , Xd) is the function
ψexp
X on R

d defined by

∀x = (x1, . . . , xd) ∈ R
d, ψexp

X (t) = E(exp(min(0, X1 + x1, . . . , Xd + xd))).

Note that obviously ψexp
X+a(x) = ψexp

X (x + a), for any a,x ∈ R
d. The

following two results are immediate consequences of Theorems 2.1 and 3.1.
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Corollary 5.2. Let X = (X1, . . . , Xd) and Y = (Y1, . . . , Yd) be two
rvs. Then

X
d
= Y ⇔ ∀x ∈ R

d, ψexp
X (x) = ψexp

Y (x).

Corollary 5.3. Let X(n), X be rvs. Then

X(n) d−→ X ⇔ ψexp

X(n) → ψexp
X pointwise.

We now show two examples of calculation of a log-min-CF.

Example 5.2. Let B = (Bt)t≥0 be a standard Brownian motion, choose
t > 0 and put

X := Bt −
t

2
.

Then exp(X) follows a log-normal distribution with mean one. From Falk
(2019, Lemma 1.10.6) we find that, for any x,

E(max(1, exp(X + x))) = Φ

(√
t

2
− x√

t

)
+ exp(x)Φ

(√
t

2
+

x√
t

)

where Φ denotes the df of the univariate standard normal distribution. From
the identity min(a, b) = a+b−max(a, b), a, b ∈ R, we obtain the log-min-CF
of X = Bt − t/2 as:

ψexp
X (x) = E(min(1, exp(X + x)))

= 1− Φ

(√
t

2
− x√

t

)
+ exp(x)

(
1− Φ

(√
t

2
+

x√
t

))
, x ∈ R,

and, thus, that of Bt:

ψexp
Bt

(x) = ψexp
X (x+t/2) = 1−Φ

(
− x√

t

)
+exp

(
x+

t

2

)(
1−Φ

(√
t+

x√
t

))
.

Example 5.3. Let η = (η1, . . . , ηd) follow a max-stable distribution with
standard negative exponential margins, i.e. there exists a D-norm || · ||D on
R
d such that P(η ≤ x) = exp(−||x||D), x ≤ 0 ∈ R

d. The df of each ηi is
P(ηi ≤ x) = exp(x), x ≤ 0. The log-min-CF of η is

ψexp
η (x) = E (1,min (exp(η1 + x1), . . . , exp(ηd + xd)))

=: E (min (1, exp(x1)U1, . . . , exp(xd)Ud)) ,

where U = (U1, . . . , Ud) follows an extreme value copula on [0, 1]d:

P(U ≤ u) = exp (−‖(log(u1), . . . , log(ud))‖D) , u = (u1, . . . , ud) ∈ (0, 1]d.

Every extreme value copula has this representation; see Falk (2019, Equa-
tion (3.10)).
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We conclude this section and the paper by an observation regarding
the log-min-CF of a sum of independent rvs. Let then X and Y be two
independent rv in R

d. The distribution of the sum X + Y is characterized
by the product of the corresponding log-min-CFs, defined for s ∈ R

d by the
product rule

(
ψexp
X ∗ ψexp

Y

)
(s) := ψexp

X+Y (s)

= E (min (1, exp(X1+Y1+s1), . . . , exp(Xd+Yd + sd))) .

This multiplication operation can be extended to finitely many rvs in an
obvious way. In particular, we can establish a lower bound on the product
of the log-min-CFs of univariate rvs. This is the content of the next lemma.

Proposition 5.4. Let X1, X2, . . . , Xn be independent rvs in R. Then we
have for s ∈ R and λ1, . . . , λn ≥ 0,

∑n
i=1 λi = 1,

(
ψexp
X1

∗ · · · ∗ ψexp
Xn

)
(s) ≥

n∏

i=1

ψexp
Xi

(λis).

Proof. We show the case n = 2 first. We have, for arbitrary numbers
a, b ≥ 0,

min(1, ab) ≥ min(1, a)min(1, b).

Suppose that X and Y are independent. This yields

(
ψexp
X ∗ ψexp

Y

)
(s) = E (min (1, exp(X + Y + s)))

= E (min (1, exp(X + λs) exp(Y + (1− λ)s))))

≥ E (min (1, exp(X + λs))min (1, exp(Y + (1− λ)s)))

= E (min (1, exp(X+λs)))E (min (1, exp(Y + (1−λs))))

= ψexp
X (λs)ψexp

Y ((1− λ)s), λ ∈ [0, 1], s ∈ R.

The result is then shown for n = 2. The general case follows from a straight-
forward proof by induction.

In particular we obtain for identical copies X1, X2, . . . , Xn of X the lower
bound (

ψexp
X

)∗n
(s) ≥

(
ψexp
X

( s

n

))n
.

6 Conclusion and Perspectives

This paper introduces the concept of min-CF, as a way to identify prob-
ability distributions concentrated on (0,∞)d. This min-CF is in fact a con-
tinuous and concave df. We have worked here on a variety of aspects of this
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notion, such as a theorem linking convergence in distribution to pointwise
convergence of min-CFs, the functional convergence of the sample min-CF
for independent and identically distributed random variables, and a con-
struction of the min-CF for arbitrary rvs.

It is natural to think about the probabilistic and statistical applications of
the notion of min-CF. In this paper, we use this concept to provide a develop-
ment of the theory of D-norms by showing that the canonical mapping from
the set ofD-norms to the set of dualD-norms is one-to-one when restricted to
D-norms generated by componentwise positive generators (Proposition 2.6).
We further suggest an estimator of a D-norm by using the empirical min-CF,
based on our Proposition 2.9, in Example 3.1. D-norms are the skeleton of
multivariate extreme value theory (Falk, 2019) which, being the framework
adapted to the simultaneous analysis of extremal events, is part of the tool-
box for risk management. This estimator suggested by the min-CF provides
an alternative to existing methods in multivariate extreme value theory; the
investigation of its theoretical and numerical properties appears to be an
interesting avenue of research.

Another potential application of the notion of min-CF is goodness-of-
fit testing. Theorem 3.2 provides the functional convergence of the sample
min-CF to its population counterpart. Paired with examples of explicit cal-
culations of min-CFs for parametric families, such as in Examples 2.1–2.5,
it is not hard to see how one may define goodness-of-fit testing procedures
by comparing the gap between the empirical min-CF and the min-CF of
the hypothesized distribution. Of course, such procedures already exist us-
ing standard CFs such as the Fourier or Laplace transforms; however, a
goodness-of-fit procedure based on the min-CF is likely to be most interest-
ing in cases such as that of the Generalized Pareto distribution, for which
the Fourier transform does not have a simple closed form, although the min-
CF does (see Example 2.3). An even more relevant development would be
the assessment of the performance of such a goodness-of-fit procedure in the
context of Peaks-Over-Threshold modeling, which is a major part of uni-
variate extreme value analysis. In this framework, the Generalized Pareto
distribution naturally arises as an approximation of the distribution of ex-
ceedances over a high threshold (see Beirlant et al. 2004), and examining
the performance of a goodness-of-fit testing procedure based on the min-CF
in this context appears to be a stimulating problem, not least because stan-
dard post-inference model checking largely seems to be based on the use of
graphical tools such as QQ-plots.
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