
Posterior Contraction Rates for Stochastic Block Models

Prasenjit Ghosh, Debdeep Pati and Anirban Bhattacharya
Texas A&M University, College Station, USA

Abstract

With the advent of structured data in the form of social networks, genetic
circuits and protein interaction networks, statistical analysis of networks has
gained popularity over recent years. The stochastic block model constitutes
a classical cluster-exhibiting random graph model for networks. There is a
substantial amount of literature devoted to proposing strategies for estimat-
ing and inferring parameters of the model, both from classical and Bayesian
viewpoints. Unlike the classical counterpart, there is a dearth of theoret-
ical results on the accuracy of estimation in the Bayesian setting. In this
article, we undertake a theoretical investigation of the posterior distribu-
tion of the parameters in a stochastic block model. In particular, we show
that one obtains near-optimal rates of posterior contraction with routinely
used multinomial-Dirichlet priors on cluster indicators and uniform or gen-
eral Beta priors on the probabilities of the random edge indicators. Our
theoretical results are corroborated through a small scale simulation study.

AMS (2000) subject classification. Primary 62G07, 62G20; secondary 60K35.
Keywords and phrases. Bayesian asymptotics, Stochastic block models, Clus-
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1 Introduction

Data available in the form of networks are increasingly becoming com-
mon in applications ranging from brain connectivity, protein interactions,
web applications and social networks to name a few, motivating an explosion
of activity in the statistical analysis of networks in recent years (Goldenberg
et al., 2010). Estimating large networks offers unique challenges in terms
of structured dimension reduction and estimation in stylized domains, ne-
cessitating new tools for inference. A rich variety of probabilistic models
have been studied for network estimation, ranging from the classical Erdos
and Renyi graphs (Erdős and Rényi, 1961), exponential random graph mod-
els (Holland and Leinhardt, 1981), stochastic block models (Holland et al.,
1983), Markov Graphs (Frank and Strauss, 1986) and latent space models
(Hoff et al., 2002) to name a few.

2020, Volume 82-A, Part 2, pp. 448-476
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In a network with n nodes, there are O(n2) possible connections between
pairs of nodes, the exact number depending on whether the network is di-
rected/undirected and whether self-loops are permitted. A common goal of
the parametric models mentioned previously is to parsimoniously represent
the O(n2) probabilities of connections between pairs of nodes in terms of
fewer parameters. The stochastic block model achieves this by clustering
the nodes into k � n groups, with the probability of an edge between two
nodes solely dependent on their cluster memberships. The block model orig-
inated in the mathematical sociology literature (Holland et al., 1983), with
subsequent widespread applications in statistics (Wang and Wong, 1987;
Snijders and Nowicki, 1997; Nowicki and Snijders, 2001). In particular, the
clustering property of block models offers a natural way to find communities
within networks, inspiring a large literature on community detection (Bickel
and Chen, 2009; Newman, 2012; Zhao et al., 2012; Karrer and Newman,
2011; Zhao et al., 2011; Amini et al., 2013). Various modifications of the
stochastic block model have also been proposed, including the mixed mem-
bership stochastic block model (Airoldi et al., 2009) and degree-corrected
stochastic block model (Dasgupta et al., 2004; Karrer and Newman, 2011).

Statistical accuracy of parameter estimates for inference in stochastic
block models is of growing interest, with one of the objects of interest being
the n× n matrix of probabilities of edges between pairs of nodes, which we
shall denote by θ = (θij). Using a singular-value thresholding approach,
Chatterjee (2014) obtained a

√
k/n rate for estimating θ with respect to

the squared �2 distance in a k-component stochastic block model. In a
recent technical report, Gao et al. (2015) obtained an improved k2/n2 +
log k/n rate by considering a least-squares type estimator. They also showed
that the resulting rate is minimax-optimal; interestingly the minimax rate
comprises of two parts which (Gao et al., 2015) refer to as the nonparametric
and clustering rates respectively. Among other related work, Bickel et al.
(2013) provided conditions for asymptotic normality of maximum likelihood
estimators in stochastic block models.

In this article, we consider a Bayesian formulation of a stochastic block
model where θ is equipped with a hierarchical prior and study the con-
traction of the posterior distribution assuming the data to be generated
from a stochastic block model. We show that one obtains the minimax
rate of posterior contraction with essentially automatic prior choices, such
as multinomial-Dirichlet priors on cluster indicators and uniform1 on the

1Our result continues to hold for general Beta priors on the edge-inclusion probabilities.
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probability of the random edge indicators. Such priors are commonly used
and there is a sizable literature (Snijders and Nowicki, 1997; Nowicki and
Snijders, 2001; Golightly and Wilkinson, 2005; McDaid et al., 2013) on pos-
terior sampling and inference in the stochastic block model. The theoretical
development of our present work assumes the knowledge of the number of
clusters a priori. In a different perspective, when such prior knowledge is
unavailable, Geng et al. (2018) proposed an efficient Markov Chain Monte
Carlo (MCMC) algorithm to simultaneously estimate the number of un-
known clusters and clustering structure. While preparing this manuscript,
we also came to know about some recent studies relating to various the-
oretical properties of such stochastic block models. For instance, Gao et
al. (2018) considers a general unified framework of structured linear models
that covers many complex statistical problems such as stochastic block mod-
els, bi-clustering, sparse linear regression, regression under group sparsity,
multi-task learning and dictionary learning. The authors of this paper study
the posterior contraction rate of their newly proposed elliptical Laplace dis-
tribution under this general set up. Refer also to Channarond et al. (2012),
Suwan et al. (2016), van der Pas and van der Vaart (2018), & Hayashi et
al. (2016), among others for recent works on the theoretical investigation of
various aspects of the SBM.

Theoretical investigation of the posterior distribution in block models
offers some unique challenges relative to the small but growing literature on
posterior contraction in high-dimensional sparse problems (Castillo and van
der Vaart 2012, 2015; Pati et al. 2014; Banerjee and Ghosal, 2014). When a
large subset of the parameters are exactly or approximately zero, the sparsity
assumption can be exploited to reduce the complexity of the model space to
derive tests for the true parameter versus the complement of a neighborhood
of the true parameter (Castillo and van der Vaart, 2012; Pati et al., 2014).
It is now well appreciated that constructing such tests plays a crucial role
in posterior asymptotics (Schwartz, 1965; Barron, 1988, 1999; Ghosal et al.,
2000). In the present setting, we exploit the parsimonious structure of the
parameter space as a result of clustering of n nodes into k << n communities
to derive such tests. This also enables us to reduce the “effective” number of
parameters (the edge probabilities) to be estimated from O(n2) to O(k2+n).
This dimension reduction is enabled by exploiting the structure of the model
unlike the traditional notion of sparsity in typical sparse high-dimensional
studies where a subset of the parameters are zero or negligible in magnitude.

The remainder of the paper is organized as follows. Some notations are
introduced in Section 2. We provide an overview of the stochastic block
models in Section 3. Our main theoretical results on posterior contraction
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are stated in Section 4. While the proof of Theorem 4.1 is given at the
end of Section 4.2, proof of other main theoretical results are deferred to the
Appendix. A small-scale simulation study is presented in Section 5 and some
additional simulation results are also given in the Appendix. We conclude
the paper with some discussions in Section 6.

2 Preliminaries

For S ⊂ R, we shall denote the set of all d× d matrices with entries in S
by Sd×d. For any B = (Bll′) ∈ R

d×d, we denote the Euclidean (equivalently

Frobenius) norm of B by ‖B‖ =
√∑d

l=1

∑d
l′=1B

2
ll′ . Given X∗ ∈ R

d×d,W ∈
R
d×d
+ , let ξd2(X

∗;W ) denote the unit ellipsoid with center X∗ and weight
W given by

ξd2(X
∗;W ) =

{

X ∈ R
d×d :

d∑

l=1

d∑

l′=1

Wll′(Xll′ −X∗
ll′)

2 ≤ 1

}

. (2.1)

Viewed as a subset of Rd2 , the Euclidean volume of ξd2(X
∗;W ), denoted by

|ξd2(X∗;W )|, is

|ξd2(X∗;W )| = πd2

Γ (d2/2 + 1)

d∏

l=1

d∏

l′=1

W
−1/2
ll′ . (2.2)

Given sequences {an}, {bn}, an � bn indicates there exists a constant
K > 0 such that an ≤ Kbn for all large n. We say an � bn when an � bn
and bn � an. Given any function f and some subset A in its domain, we
denote by f(A) the image of A under f . Throughout, C,C ′ denote positive
constants whose values might change from one line to the next.

3 Stochastic Block Models

Let A = (Aij) ∈ {0, 1}n×n denote the adjacency matrix of a network with
n nodes, with Aij = 1 indicating the presence of an edge from node i to node
j and Aij = 0 indicating a lack thereof. To keep the subsequent notation
clean, we shall consider directed networks with self-loops so that Aij and
Aji need not be the same and Aii can be both 0 and 1. Our theoretical
results can be modified to undirected networks with or without self-loops in
a straightforward fashion; refer to Section 4.1 for further discussion.

Let θij denote the probability of an edge from node i to j, with Aij ∼
Bernoulli(θij) independently for 1 ≤ i, j ≤ n. A stochastic block model pos-
tulates that the nodes are clustered into communities, with the probability
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of an edge between two nodes solely dependent on their community mem-
berships. Specifically, let zi ∈ {1, . . . , k} denote the cluster membership of
the ith node and Q = (Qrs) ∈ [0, 1]k×k be a matrix of probabilities, with
Qrs indicating the probability of an edge from any node i in cluster r to any
node j in cluster s. With these notations, a k-component stochastic block
model is given by

Aij ∼ Bernoulli(θij), θij = Qzizj . (3.1)

We use Eθ/Pθ to denote an expectation/probability under the sampling
mechanism (3.1).

The stochastic block model clearly imposes a parsimonious structure
on the node probabilities θ = (θij) when k � n, reducing the effective
number of parameters from O(n2) to O(k2 + n). To describe the param-
eter space for θ, we need to introduce some notations. For k ≤ n, let
Zn,k = {z = (z1, . . . , zn) : zi ∈ {1, . . . , k}, 1 ≤ i ≤ n} denote all possible clus-
terings of n nodes into k clusters.

For any 1 ≤ r ≤ k, z−1(r) is used as a shorthand for {1 ≤ i ≤ n : zi = r};
the nodes belonging to cluster r. When z is clear from the context, we
shall use nr = |z−1(r)| to denote the number of nodes in cluster r; clearly∑k

r=1 nr = n. For the theoretical development in this paper, it is assumed
that nr ≥ 1 for all r = 1, . . . , k, that is, each cluster is assumed to be
non-empty containing at least one observation.

With these notations, the parameter space Θk for θ is given by

Θk = {θ ∈ [0, 1]n×n : θij = Qzizj , z ∈ Zn,k, Q ∈ [0, 1]k×k}. (3.2)

For any z ∈ Zn,k and Q ∈ [0, 1]k×k, we denote the corresponding θ ∈ Θk by

θz,Q, so that θz,Qij = Qzizj . In fact, (z,Q) 
→ θz,Q is a surjective map from

Zn,k × [0, 1]k×k → Θk, though it is clearly not injective.
Given z ∈ Zn,k, let A[rs] denote the nr × ns sub matrix of A consisting

of entries Aij with zi = r and zj = s. The joint likelihood of A under model
(3.1) can be expressed as

P (A | z,Q) =

k∏

r=1

k∏

s=1

P (A[rs] | z,Q), P (A[rs] | z,Q) =
∏

i:zi=r

∏

j:zj=s

Q
Aij
rs (1−Qrs)

1−Aij . (3.3)

A Bayesian specification of the stochastic block model can be completed
by assigning independent priors to z and Q, which in turn induces a prior on
Θk via the mapping (z,Q) 
→ θz,Q. We generically use p(z,Q) = p(z)p(Q)
to denote the joint prior on z and Q. The induced prior on Θk will be
denoted by Π(θ) and the corresponding posterior given data A = (Aij) will
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be denoted by Πn(θ | A). The following fact is useful and heavily used in
the sequel: for any U ⊂ Θk,

Π(U) =
∑

z∈Zn,k

Π(U | z) p(z) =
∑

z∈Zn,k

p(Q : θz,Q ∈ U) p(z), (3.4)

where the second equality uses the independence of z and Q. Specific choices
of p(z) and p(Q) are discussed below.

We assume independent U(0, 1) prior on the Qrs’s. We consider a hierar-
chical prior on z where each node has probability πr of being allocated to the
rth cluster independently of the other nodes, and the vector of probabilities
π = (π1, . . . , πk) follows a Dirichlet(α1, . . . , αk) prior. Here α1, . . . , αk are
fixed hyper-parameters that do not depend on k or n; a default choice is
αr = 1/2 for all r = 1, . . . , k. We further assume the number of clusters k to
be known. Model (3.1) along with the prior specified above can be expressed
hierarchically as follows:

Qrs
ind∼ U(0, 1), r, s = 1, . . . , k, (3.5)

P (zi = r | π) = πr, r = 1, . . . , k, i = 1, . . . , n, (3.6)

π ∼ Dirichlet(α1, . . . , αk), (3.7)

Aij | z,Q ind∼ Bernoulli(θij), θij = Qzizj . (3.8)

A hierarchical specification as in (or very similar to) (3.5)–(3.8) has been
commonly used in the literature; see for example, Snijders and Nowicki
(1997), Nowicki and Snijders (2001), Golightly and Wilkinson (2005), &
McDaid et al. (2013). Analytic marginalizations can be carried out due to
the conjugate nature of the prior, facilitating posterior sampling (McDaid
et al., 2013). In particular, using standard multinomial-Dirichlet conjugacy,
the marginal prior of z can be written as

p(z) =
Γ (

∑k
r=1 αr)

Γ (n+
∑k

r=1 αr)

k∏

r=1

Γ (nr + αr)

Γ (αr)
, z ∈ Zn,k, (3.9)

where we recall that . The following lemma provides an
upper bound to the prior ratio {p(z)/p(z0)} which is used subsequently in
the proof of our main theorem.

Lemma 3.1. Assume z0 ∈ Zn,k with for all
r = 1, . . . k. Then, maxz∈Zn,k

p(z)/p(z0) ≤ eCn log k, where C is a positive
constant.
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Proof. Fix z ∈ Zn,k. From Eq. 3.9, p(z)/p(z0) =
∏k

r=1 Γ (nr + αr)/Γ
(n0r + αr). Then

log{p(z)/p(z0)} =
k∑

r=1

logΓ (nr + αr)−
k∑

r=1

logΓ (n0r + αr).

The first term is maximized over z ∈ Zn,k when nr = n for some r and ns = 0
for all s �= r. Further, replacing n0r by n/k for all r = 1, . . . , k only decreases
the second term in the above display. Hence, letting α(k) = max{α1, . . . , αk}
and α(1) = min{α1, . . . , αk},

log{p(z)/p(z0)} ≤ logΓ (n+ α(k))− k logΓ (n/k + α(1)).

Using the standard two sided bound (Abramowitz and Stegun, 1964), we
obtain logΓ (z) = log(2π)/2 + (z − 1/2) log(z) − z + R(z) with 0 < R(z) <
(12z)−1 for z > 0, the dominating term in the right hand side of the above
display being n log{(n+α(k))/(n/k+α(1))} � Cn log k, concluding the proof.

4 Posterior Contraction Rates in Stochastic Block Models

We are interested in contraction properties of the posterior Πn(· | A)
assuming the true data-generating parameter θ0 ∈ Θk. To measure the
discrepancy in the estimation of θ0 ∈ Θk, the mean squared error has been
used in the frequentist literature,

1

n2

n∑

i=1

n∑

j=1

(θ̂ij − θ0ij)
2 =

1

n2

∥
∥∥θ̂ − θ0

∥
∥∥
2
, (4.1)

where θ̂ is an estimator of θ0. Chatterjee (2014) proposed estimating θ0 using
a low rank decomposition of the adjacency matrix A followed by a singular
value decomposition to obtain a convergence rate of

√
k/n. More recently,

Gao et al. (2015) considered a least squares type approach which can be
related to maximum likelihood estimation where the Bernoulli likelihood is
replaced by a Gaussian likelihood. They obtained a rate of k2/n2 + log k/n,
which they additionally showed to be the minimax rate over Θk, i.e.,

inf
θ̂

sup
θ0∈Θk

Eθ0

1

n2

∥
∥∥θ̂ − θ0

∥
∥∥
2
� k2

n2
+

log k

n
. (4.2)

Interestingly, the minimax rate has two components, k2/n2 and log k/n. Gao
et al. (2015) refer to the k2/n2 term in the minimax rate as the nonparametric
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rate, since it arises from the need to estimate k2 unknown elements in Q
from n2 observations. The second part, log k/n, is termed as the clustering
rate, which appears since the clustering configuration z is unknown and
needs to be estimated from the data. Observe that the clustering rate grows
logarithmically in k. Parameterizing k = nζ with ζ ∈ [0, 1], the interplay
between the two components becomes clearer (refer to equation 2.6 of Gao
et al. 2015); in particular, the clustering rate dominates when k is small and
the nonparametric rate dominates when k is large.

To evaluate Bayesian procedures from a frequentist standpoint, one seeks
for the minimum possible sequence εn → 0 such that the posterior probability
assigned to the complement of an εn-neighborhood (blown up by a constant
factor) of θ0 receives vanishingly small probabilities. The smallest such εn
is called the posterior contraction rate (Ghosal et al., 2000). There is now
a growing body of literature showing that Bayesian procedures achieve the
frequentist minimax rate of posterior contraction (up to a logarithmic term)
in models where the parameter dimension grows with the sample size; see
Bontemps (2011), Castillo and van der Vaart (2012), Pati et al. (2014),
Banerjee and Ghosal (2014), van der Pas et al. (2014), & Castillo et al.
(2015) for some flavor of the recent literature.

We now state the main result of this article where we derive the con-
traction rate of the posterior arising from the hierarchical formulation (3.5)–
(3.8).

Theorem 4.1. Assume A = (Aij) is generated from a k-component stochas-
tic block model (3.1) with the true data-generating parameter θ0 = (θ0ij) ∈
Θk, where Θk is as in (3.2). Further assume that there exists a small
constant δ ∈ (0, 1/2) such that θ0ij ∈ (δ, 1 − δ) for all i, j = 1, . . . , n.
Suppose the hierarchical Bayesian model (3.5)–(3.8) is fitted. Then, with
ε2n = k2{log n + log(δ−1)}/n2 + log k/n, and a sufficiently large constant
M > 0,

Eθ0Πn

{
1

n2

∥
∥θ − θ0

∥
∥2 > M2ε2n | A

}
≤ exp{−M2n2ε2n}+

1

Cn2ε2n
, (4.3)

for some C > 0 and for all n ≥ 1.

Remark 4.2. Since θ0 ∈ Θk, following the discussion after (3.2), there
exists z0 ∈ Zn,k and Q0 ∈ [0, 1]k×k such that θ0 = θz

0,Q0
. The condition of

the theorem posits that all entries of Q0 lie in (δ, 1− δ). As long as δ ≥ n−a

for any a > 0, the posterior contraction rate is the same (up to a constant) as
in the case of fixed δ. The assumption θ0 ∈ Θk also implicitly implies that all
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the clusters have at least one observation, i.e.,
for all r = 1, . . . , k; otherwise there exists l < k such that θ0 ∈ Θl.

A proof of Theorem 4.1 can be found towards the end of Section 4.2
after some important auxiliary results which are instrumental in deriving
the main theoretical results of this paper. Theorem 4.1 shows that as long
as δ ≥ n−a for any a > 0, the posterior contracts at a (near) minimax rate of
k2 log n/n2 + log k/n. The nonparametric component of the rate is slightly
hurt by a logarithmic term; appearance of such an additional logarithmic
term is common in Bayesian nonparametrics.

It would be noteworthy that in Theorem 4.1 a uniform U(0, 1) prior is
assigned to the edge probabilities Qrs’s, while in a similar independent work,
van der Pas and van der Vaart (2018) considered a more general Beta(β1, β2)
distribution for Q’s that includes the uniform prior as a special case. While
our main goal of inference is the recovery of the edge probabilities, van
der Pas and van der Vaart (2018) focused on detection of the community
memberships. A pertinent question that would be natural to ask in this
context is whether our posterior contraction results can be extended further
for a more general Beta prior. The following result, namely, Corollary 4.3
provides an affirmative answer to the aforesaid question. In particular, it says
that, for recovery of the edge probabilities Qrs’, the posterior obtained from
a more general Beta(β1, β2) prior contracts at the same rate as obtained for
the uniform prior as in Theorem 4.1. As a matter of fact, it turns out that
our general scheme of arguments for deriving the contraction rates works
equally well even for this Beta prior.

Corollary 4.3. Consider the set up of Theorem 4.1, where Qrs
ind∼ Beta

(β1, β2), for r, s = 1, . . . , k, in Eq. 3.5 instead of an U(0, 1) prior. Then,
with ε2n = k2{log n+log(δ−1)}/n2+log k/n, and a sufficiently large constant
M > 0 (depending on (β1, β2))

Eθ0Πn

{
1

n2

∥∥θ − θ0
∥∥2 > M2ε2n | A

}
≤ exp{−M2n2ε2n}+

1

Cn2ε2n
,

for some C > 0 and for all n ≥ 1.

Proof of Corollary 4.3 above follows along exactly the same line of argu-
ments as that of Theorem 4.1 and is given in the Appendix. An inspection
of the proof of Theorem 4.1 reveals that the only technical difference be-
tween the proofs of the aforesaid results lies in a careful exploitation of a
volume argument used in the proof of Theorem 4.1 under the more gen-
eral Beta(β1, β2) prior for every possible choice of (β1, β2), while rest of the
arguments remain unaltered.
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4.1. Undirected Networks Theorem 4.1 can be extended to the case of
undirected networks with or without self-loops. For technical simplification,
we consider the case when there are no self-loops. We highlight the key
differences in the data generation and the prior specification below. Let
zi ∈ {1, . . . , k} denote the cluster membership of the ith node and Q =
(Qrs) ∈ [0, 1]k×k be a symmetric matrix of probabilities, with Qrs = Qsr

indicating the probability of an edge between node i in cluster r and any
node j in cluster s. Then an undirected version of Eq. 3.1 can be obtained
by letting

Aij ∼ Bernoulli(θij), θij = Qzizj , 1 ≤ i < j ≤ n, (4.4)

and Aii = θii = 0 for i = 1, . . . , n. The prior distributions are appropriately
modified as:

Qrs
ind∼ U(0, 1), 1 ≤ r ≤ s ≤ k (4.5)

P (zi = k | π) = πk, i = 1, . . . , n, (4.6)

π ∼ Dirichlet(α1, . . . , αk). (4.7)

We modify the discrepancy measure as

1

n2

∑∑

1≤i<j≤n

(θ̂ij − θ0ij)
2 (4.8)

where θ, θ0 are in the parameter space

Θu
k = {θ ∈ [0, 1]n×n : θij = Qzizj , 1 ≤ i �= j ≤ n; θii = 0, 1 ≤ i ≤ n, z ∈ Zn,k,

Q ∈ [0, 1]k×k, Qrs = Qsr, 1 ≤ r ≤ s ≤ k}.
(4.9)

Then the following version of Theorem 4.1 is true for undirected networks:

Theorem 4.4. Assume A = (Aij) is generated as in Eq. 4.4 with θ0 =
(θ0ij) ∈ Θu

k , where Θu
k is as in Eq. 4.9. Further assume that there exists a

small constant δ ∈ (0, 1/2) such that θ0ij ∈ (δ, 1 − δ) for all 1 ≤ i ≤ j ≤ n.
Suppose the hierarchical Bayesian model (4.5)–(4.7) is fitted. Then, with
ε2n = k2{log n + log(δ−1)}/n2 + log k/n, and a sufficiently large constant
M > 0, the conclusion (4.3) is true.

A sketch of the proof of Theorem 4.4 is given in the Appendix.
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4.2. Geometry of Θk In this section, we derive a number of auxiliary
results aimed at understanding the geometry of the parameter space Θk.
These results are useful in proving our main concentration result presented
in Theorem 4.1.

We first state a testing lemma which harnesses the ability of the likelihood
to separate points in the parameter space.

Lemma 4.5. Assume θ0 �= θ1 ∈ Θk and let E = {θ ∈ [0, 1]n×n :
∥
∥θ − θ1

∥
∥ ≤∥∥θ1 − θ0

∥∥ /2} be an Euclidean ball of radius ‖θ1 − θ0‖/2 around θ1 inside

[0, 1]n×n. Based on Aij
ind∼ Bernoulli(θij) for i, j = 1, . . . , n, consider testing

H0 : θ = θ0 versusH1 : θ ∈ E. There exists a test function Φ such that

Eθ0(Φ) ≤ exp{−C1

∥∥∥θ1 − θ0
∥∥∥
2

}, sup
θ∈E

Eθ(1− Φ) ≤ exp{−C2

∥∥∥θ1 − θ0
∥∥∥
2

}, (4.10)

for constants C1, C2 > 0 independent of n, θ1 and θ0.

Proof. Define the test function Φ as

where denotes the indicator of a set. We show below that this test has
the desired error rates (4.10).

We first bound the type-I error Eθ0(Φ). Noting that under Pθ0 , (Aij−θ0ij)

are independent zero mean random variables with |Aij − θ0ij | < 1, we use
a version of Hoeffding’s inequality (refer to Proposition 5.10 of Vershynin
2012) to conclude that,

Eθ0(Φ) = Pθ0

⎧
⎨

⎩

n∑

i=1

n∑

j=1

(θ1ij − θ0ij)(Aij − θ0ij) >
∥∥θ1 − θ0

∥∥2 /4

⎫
⎬

⎭

≤ exp

{

−C1

∥∥θ1 − θ0
∥∥4

‖θ1 − θ0‖2

}

= exp
{
−C1

∥∥θ1 − θ0
∥∥2

}

for a constant C1 > 0 independent of n, θ1 and θ0.
We next bound the type-II error supθ∈E Eθ(1−Φ). Fix θ ∈ E. We have,

Eθ(1− Φ) = Pθ

⎧
⎨

⎩

n∑

i=1

n∑

j=1

(θ1ij − θ0ij)(Aij − θ0ij) <
∥
∥θ1 − θ0

∥
∥2

/4

⎫
⎬

⎭

= Pθ

⎧
⎨

⎩

n∑

i=1

n∑

j=1

(θ1ij − θ0ij)(Aij− θij) <
∥
∥θ1−θ0

∥
∥2

/4−
〈
θ1−θ0, θ−θ0

〉

⎫
⎬

⎭
,(4.11)
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where we abbreviate 〈θ′, θ′′〉 =
∑n

i=1

∑n
j=1 θ

′
ijθ

′′
ij . Bound

〈
θ1 − θ0, θ − θ0

〉

=
〈
θ1 − θ0, θ1 − θ0

〉
−

〈
θ1 − θ0, θ1 − θ

〉

≥
∥∥θ1 − θ0

∥∥2 −
∥∥θ1 − θ0

∥∥2 /2 =
∥∥θ1 − θ0

∥∥2 /2,

where the penultimate step used the Cauchy–Schwarz inequality along with
the fact that

∥∥θ − θ1
∥∥ ≤

∥∥θ1 − θ0
∥∥ /2. Substituting in Eq. 4.11 and not-

ing that under Pθ, (Aij − θij) are independent zero mean bounded random
variables, another application of Hoeffding’s inequality yields

Eθ(1− Φ) ≤ Pθ

⎧
⎨

⎩

n∑

i=1

n∑

j=1

(θ1ij − θ0ij)(Aij − θij) < −
∥
∥θ1 − θ0

∥
∥2 /4

⎫
⎬

⎭

≤ exp

{

−C2

∥
∥θ1 − θ0

∥
∥4

‖θ1 − θ0‖2

}

= exp
{
−C2

∥
∥θ1 − θ0

∥
∥2

}

for some constant C2 > 0 independent of n and θ. Taking a supremum over
θ ∈ E yields the desired result.

Our next result is concerned with the structure of a specific type of
Euclidean balls inside Θk. Recall that θz,Q denotes the element of Θk with
θz,Qij = Qzizj . For z ∈ Zn,k, let

Θk(z) =
{
θz,Q : Q ∈ [0, 1]k×k

}
(4.12)

denote a slice of Θk along z. In other words, given z, Θk(z) is the image of
the map Q 
→ θz,Q in Θk. Suppose θ∗ = θz

∗,Q∗ ∈ Θk, and consider a ball
B(z) in Θk(z) centered at θ∗ of the form B(z) = {θ ∈ Θk(z) : ‖θ − θ∗‖ < t}
for some t > 0. If z∗ = z, then it is straightforward to observe that

∥
∥∥θz,Q − θz

∗,Q∗
∥
∥∥
2
=

k∑

r=1

k∑

s=1

nrns(Qrs −Q∗
rs)

2, (4.13)

where we recall that for r = 1, . . . , k. Therefore,
although a subset of [0, 1]n×n, B(z) can be identified with a k2-dimensional
ellipsoid in [0, 1]k×k. When z∗ �= z, one no longer has a nice identity as
above and the geometry of B(z) is more difficult to describe. However, we
show below in Lemma 4.6 that B(z) is always contained inside a set B̃(z)
in Θk(z) which can be identified with a k2-dimensional ellipsoid in [0, 1]k×k.
Recall our convention for describing ellipsoids from Eq. 2.1.
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Lemma 4.6. Fix z∗ ∈ Zn,k, Q
∗ ∈ [0, 1]k×k, and let θ∗ = θz

∗,Q∗
. For z ∈ Zn,k

and t > 0, let B(z) = {θ ∈ Θk(z) : ‖θ − θ∗‖ < t}. Set Wrs = nrns/t
2 and

W = (Wrs), where for r = 1, . . . , k. Then, B(z) ⊆
B̃(z), where

B̃(z) =
{
θz,Q : Q ∈ ξk2(Q̄

∗,W ) ∩ [0, 1]k×k
}

(4.14)

for some Q̄∗ ∈ [0, 1]k×k depending on Q∗, z∗ and z. In particular, if z∗ = z,
then Q̄∗ = Q∗ and the containment becomes equality, i.e., B(z) = B̃(z).

Proof. Define θ̄ = arg minθ∈Θk(z)
‖θ − θ∗‖2. According to the definition

of θ̄, we have from the Pythagorean identity

‖θ − θ∗‖2 =
∥∥θ − θ̄

∥∥2 +
∥∥θ̄ − θ∗

∥∥2 .

for θ ∈ Θk(z). Therefore,
∥∥θ − θ̄

∥∥ ≤ ‖θ − θ∗‖, which implies {θ ∈ Θk(z) :
‖θ − θ∗‖ ≤ t} ⊂ {θ ∈ Θk(z) :

∥∥θ − θ̄
∥∥ ≤ t}. Since θ̄ ∈ Θk(z), there exists

Q̄∗ ∈ [0, 1]k×k such that θ̄ij = Q̄∗
zizj . This completes the proof of the first

part. When z = z∗, the proof of the second part is completed by noting that

‖θ − θ∗‖2 =
k∑

r=1

k∑

s=1

nrns(Qrs −Q∗
rs)

2.

Remark 4.7. From Eq. 2.1, ξk2(Q̄
∗,W ) in Lemma 4.6 is the collection

of all Q satisfying
∑k

r=1

∑k
s=1 nrns(Qrs − Q̄∗

rs)
2 < t2. The last part of

Lemma 4.6 is consistent with the discussion preceding (4.13). When z∗ = z,
Eq. 4.13 implies that B(z) consists of all θz,Q with Q ∈ [0, 1]k×k satisfying∑k

r=1

∑k
s=1 nrns(Qrs −Q∗

rs)
2 < t2.

Corollary 4.8. Inspecting the proof of Lemma 4.6, the condition Q ∈
[0, 1]k×k is only used to show that Q̄∗ ∈ [0, 1]k×k. If we let Q to be unre-
stricted, then the containment relation continues to hold as subsets of Rk×k,
i.e.,

{
θz,Q : Q ∈ R

k×k,
∥∥∥θz,Q−θz

∗,Q∗
∥∥∥ < t

}
⊆

{
θz,Q : Q ∈ ξk2(Q̄

∗,W )
}
, (4.15)

with equality when z∗ = z.

Lemma 4.6 crucially exploits the lower dimensional structure underlying
the parameter space Θk and is used subsequently multiple times. First,
recall from Eq. 3.4 that one needs a handle on p(Q : θz,Q ∈ U) to bound
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the prior probability of U ⊂ Θk. In particular, if U = {‖θ − θ0‖ < t}, then
p(Q : θz,Q ∈ U) equals the volume of U ∩ Θk(z), which can be suitably
bounded by the volume of the bounding k2 dimensional ellipsoid. Second,
a handle on the size of balls in Θk facilitates calculating the complexity of
the model space (in terms of metric entropy) which is pivotal in proving the
posterior contraction; in particular, to extend the test function in Lemma
4.5 to construct test functions against more complex alternatives in Lemma
4.9 below. Once again, the dimensionality reduction is key to preventing the
metric entropy from growing too fast.

Lemma 4.9. Recall εn from Theorem 4.1. Assume θ0 ∈ Θk and for l ≥
1, let Ul,n =

{
θ ∈ Θk : lnεn ≤ ‖θ − θ0‖ < (l + 1)nεn

}
. Based on Aij

ind∼
Bernoulli(θij) for i, j = 1, . . . , n, consider testing H0 : θ = θ0 versusH1 :
θ ∈ Ul,n. There exists a test function Φl,n such that

Eθ0(Φl,n)≤ exp(−C1l
2n2ε2n), sup

θ∈Ul,n

Eθ(1− Φl,n)≤exp(−C2l
2n2ε2n), (4.16)

for constants C1, C2 > 0 independent of n.

Proof. Since θ0 ∈ Θk, there exists z0 ∈ Zn,k and Q0 ∈ [0, 1]k×k with

θ0 = θz
0,Q0

. For z ∈ Zn,k, define Ul,n(z) = Ul,n ∩ Θk(z), where Θk(z) is as
in Eq. 4.12. Clearly,

Ul,n(z)=
{
θz,Q : Q ∈ [0, 1]k×k, lnεn≤

∥∥
∥θz,Q−θz

0,Q0
∥∥
∥<(l + 1)nεn

}
, (4.17)

and Ul,n ⊂ ∪z∈Zn,k
Ul,n(z). We first use Lemma 4.5 to construct tests against

Ul,n(z) for fixed z. Our desired test is obtained by taking the maximum of
all such test functions.

Fix z ∈ Zn,k. Let Nl,n(z) = {θl,n,h ∈ Ul,n(z) : h ∈ Il,n(z)} be a
maximal lnεn/2-separated set inside Ul,n(z) for some index set Il,n(z); i.e.,
Nl,n(z) is such that ‖θ1 − θ2‖ ≥ lnεn/2 for all θ1 �= θ2 ∈ Nl,n(z), and
no subset of Ul,n(z) containing Nl,n(z) has this property. We provide a
volume argument to determine an upper bound for |Il,n(z)|, the cardinal-
ity of Nl,n(z). The separation property implies that Euclidean balls of ra-
dius lnεn/4 centered at the points in Nl,n(z) are disjoint. Since B+

h :={
θz,Q : Q ∈ R

k×k, |θz,Q − θl,n,h| < lnεn/4
}
is contained inside an Euclidean

ball of radius lnεn/4 centered at θl,n,h, the setsB
+
h are disjoint as h varies over

Il,n(z). By the triangle inequality, allB
+
h s lie insideB

+ =
{
θz,Q : Q ∈ R

k×k, ‖
θz,Q − θ0‖ ≤ (5l/4 + 1)nεn

}
, since ‖θz,Q − θ0‖ ≤ ‖θz,Q − θl,n,h‖ + ‖θl,n,h −

θ0‖ ≤ (l + 1)nεn + lnεn/4.
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It should be noted that the setsB+
h s andB+ are constructed in a way that

Q is not restricted to be inside [0, 1]k×k. This allows us to invoke Corollary
4.8 to identify B+

h and B+ with appropriate ellipsoids in R
k2 and simplify

volume calculations. First, since θl,n,h ∈ Θk(z) for each h, it follows from

(the equality part of) Corollary 4.8 that B+
h = {θz,Q : Q ∈ ξk2(Q̄h, W̃ )} with

Q̄h constructed as in the proof of Lemma 4.6 and W̃rs = nrns/{(lnεn)2}.
The equality is crucially used below; also note that W̃ does not depend on
h. Invoking Corollary 4.8 one more time, we obtain B+ ⊂ {θz,Q : Q ∈
ξk2(Q̄

0,W )}, with Wrs = nrns/[{(5l/4 + 1)nεn}2]. We conclude that the

Euclidean ellipsoids ξk2(Q̄h, W̃ ) are disjoint as h varies over Il,n(z) and all
of them are contained in ξk2(Q̄

0,W ). Comparing volumes,

|ξk2(Q̄h, W̃ )‖Il,n(z)| ≤ |ξk2(Q̄0,W )|.

Using the volume formula in Eq. 2.2 and canceling out common terms, we
finally have

|Il,n(z)| ≤
{
(5l/4 + 1)

l/2

}k2

≤ 9k
2
. (4.18)

We are now in a position to construct the test. The maximality of Nl,n(z)
implies that Nl,n(z) is an lnεn/2-net of Ul,n(z), i.e., the sets El,n,z,h = {θ ∈
[0, 1]n×n : ‖θ − θl,n,h‖ < lnεn/2} cover Ul,n(z) as h varies. For each θl,n,h ∈
Nl,n(z), consider testing H0 : θ = θ0 versus H1 : θ ∈ El,n,z,h using the test
function from Lemma 4.5. Lemma 4.5 is applicable since ‖θ0−θl,n,h‖ ≥ lnεn;
let Φl,n,z,h denote the corresponding test with type-I and II errors bounded

above by e−Cl2n2ε2n . Define Φl,n = maxz∈Zn,k
maxh∈Il,n(z) Φl,n,z,h. For any

θ ∈ Ul,n, there exists z ∈ Zn,k and h ∈ Il,n(z) such that θ ∈ El,n,z,h, so that

Eθ(1− Φl,n) ≤ Eθ(1− Φl,n,z,h) ≤ e−Cl2n2ε2n . Taking supremum over θ ∈ Ul,n

delivers the desired type-II error. Further, the type-I error of Φl,n can be
bounded as

Eθ0(Φl,n) ≤
∑

z∈Zn,k

∑

h∈Il,n(z)
Eθ0(Φl,n,z,h) ≤ kn9k

2
e−Cl2n2ε2n , (4.19)

since |Zn,k| = kn and by Eq. 4.18, |Il,n(z)| ≤ 9k
2
for all z. The conclusion

then follows since n2ε2n = k2{log n+ log(δ−1)}+ n log k � k2 + n log k.

As commented earlier, below we present the proof of Theorem 4.1 already
stated in Section 4 of this paper.

Proof of Theorem 4.1. Let E0/P0 denote an abbreviation of Eθ0/
Pθ0 . Since θ0 ∈ Θk, there exists some z0 ∈ Zn,k and Q0 ∈ [0, 1]k×k with
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θ0 = θz
0,Q0

. Recall ε2n = k2{log n + log(δ−1)}/n2+ log k/n and define
Un =

{
θ ∈ Θk : ‖θ − θ0‖2 > M2n2ε2n

}
for some large constant M > 0 to be

chosen later. Letting fθij (Aij) = θ
Aij

ij (1− θij)
1−Aij denote the Bernoulli(θij)

likelihood evaluated at Aij , the posterior probability assigned to Un can be
written as

Πn(Un | A) =

∫
Un

∏n
i=1

∏n
j=1

fθij (Aij)

f
θ0
ij
(Aij)

p(dz, dQ)

∫
Θk

∏n
i=1

∏n
j=1

fθij (Aij)

f
θ0
ij
(Aij)

p(dz, dQ)
=

Nn

Dn
, (4.20)

where Nn and Dn respectively denote the numerator and denominator of the
fraction in Eq. 4.20. Let Fn denote the σ-field generated by Ã = (Ãij), with
Ãij independently distributed as Bernoulli(θ0ij); the true data generating
distribution. We first claim that there exists a set An ∈ Fn where we can
bound Dn from below with large probability under P0 in Lemma 4.10. The
proof is adapted from Lemma 10 of Ghosal and van der Vaart (2007).

Lemma 4.10. Assume θ0 satisfies the conditions of Theorem 4.1. Then,
there exists a set An in the σ-field Fn with P0(An) ≥ 1−C/(n2ε2n) for some
C > 0, such that within An,

Dn ≥ e−Cn2ε2nΠ
(∥∥θ − θ0

∥∥2 < n2δ2ε2n

)
.

Proof. Let fθij (Aij) denote the likelihood for Bernoulli(θij) evaluated
at Aij . Letting Bl,n = {θ ∈ Θk : l2ε2n ≤ (1/n2)‖θ−θ0‖2 ≤ (l+1)2ε2n}. Define

Bn(θ
0; εn) :=

⎧
⎨

⎩
θ :

∑

1≤i,j≤n

Eθ0ij
log

fθ0ij
(Aij)

fθij (Aij)
≤ n2ε2n,

∑

1≤i,j≤n

Eθ0ij

{

log
fθ0ij

(Aij)

fθij (Aij)

}2

≤ n2ε2n

⎫
⎬

⎭

andAn={A :
∫ ∏

1≤i,j≤n fθij (Aij)/fθ0ij
(Aij)p(dz, dQ)≥e−n2ε2nΠ(Bn(θ

0; εn)}.
The following fact is a straightforward modification of Lemma 5 of Ghosal
and Roy (2006). Let 0 < δ < 1/2, δ < α, β < 1 − δ. Then there exists a
constant L such that

α

(
log

α

β

)m

+ (1− α)

(
log

1− α

1− β

)m

≤ L(α− β)2

δ2
, m = 1, 2.

Since δ < θ0ij ≤ 1 − δ for 1 ≤ i, j ≤ n, it follows from the above fact that

Bn(θ
0; εn) ⊃ {θ :

∥
∥θ − θ0

∥
∥2 ≤ n2δ2ε2n}. It now follows from Lemma 10 of
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Ghosal and van der Vaart (2007) that P0(An) ≥ 1 − C/(n2ε2n) for some
C > 0.

In view of Lemma 4.10, it is sufficient to provide an upper bound to

For l ≥ M , let Ul,n =
{
θ ∈ Θk : l2n2ε2n ≤

∥∥θ − θ0
∥∥2 < (l + 1)2n2ε2n

}
denote

an annulus in Θk centered at θ0 with inner and outer Euclidean radii lnεn
and (l + 1)nεn respectively. Using a standard testing argument (see, for
example, the proof of Proposition 5.1 in Castillo and van der Vaart (2012)
2012) in conjunction with Lemma 4.10, one arrives at

(4.21)

where Φl,n is the test function constructed in Lemma 4.9 for testing H0 :
θ = θ0 versus H1 : θ ∈ Ul,n with error rates as in Eq. 4.16. Recall Ul,n(z) =
Ul,n ∩ Θk(z) and its equivalent representation in Eq. 4.17 from the proof of
Lemma 4.9. Since Ul,n ⊆ ∪z∈Zn,k

Ul,n(z), from Eq. 3.4,

Π(Ul,n) ≤
∑

z∈Zn,k

Π {Ul,n(z)} ≤ |Zn,k| max
z∈Zn,k

p(z), (4.22)

where p(z) is the prior probability (3.9) of z under the Dirichlet-multinomial
prior.

Next, consider the term Π(
∥∥θ − θ0

∥∥2 < n2δ2ε2n) in the denominator of

the expression for βl,n. Bound Π(
∥∥θ − θ0

∥∥2 < n2δ2ε2n) ≥ Π(
∥∥θ − θ0

∥∥2 <
n2δ2ε2n | z = z0)p(z0) and using Lemma 4.6 once again,

Π
(∥∥θ − θ0

∥∥2
< n2δ2ε2n | z = z0

)
= p

{
Q :

k∑

r=1

k∑

s=1

n0rn0s(Qrs −Q0
rs)

2 < n2δ2ε2n

}
. (4.23)

The probability in the right hand side of the above display is the volume of
the intersection of an ellipsoid with [0, 1]k×k, and therefore we cannot simply
replace the probability by the volume of the ellipsoid. Instead, we embed
an appropriate rectangle inside the intersection of the ellipsoid and [0, 1]k×k.
We claim that

k∏

r=1

k∏

s=1

[Q0
rs−δεn/2, Q

0
rs+δεn/2] ⊂

{

Q ∈ [0, 1]k×k :
k∑

r=1

k∑

s=1

n0rn0s(Qrs −Q0
rs)

2<n2δ2ε2n

}

.(4.24)

First, based on our assumption that all entries of Q0 are bounded away
from 0 and 1 and the fact that εn → 0, it is immediate that the rectangle
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is contained in [0, 1]k×k for sufficiently large n. Second, for any Q with
|Qrs −Q0

rs| ≤ δεn/2 for all 1 ≤ r, s ≤ k, we have

k∑

r=1

k∑

s=1

n0rn0s(Qrs −Q0
rs)

2 ≤ δ2ε2n
4

k∑

r=1

k∑

s=1

n0rn0s =
n2δ2ε2n

4
,

thereby proving the claim in Eq. 4.24. Now we can bound Π(
∥
∥θ − θ0

∥
∥2 <

n2δ2ε2n | z = z0) from below by the volume of the rectangle, which equals
(εnδ)

k2 . Since n0r ≥ 1 for all r = 1, . . . , k, invoke Lemma 3.1 to bound
maxz∈Zn,k

p(z)/p(z0) ≤ eCn log k. Combining this with error rates (4.16) in
(4.21) we obtain,

(4.25)

For n2ε2n = k2{logn + log(δ−1)} + n log k, the right hand size of Eq. 4.25
converges to zero for all M larger than a suitable constant.

5 Simulation Studies

In this section, we consider a small-scale simulation study to examine the
accuracy in estimating θ as the number of nodes n in the network increases.
We simulate 100 replicates of an SBM network using k = 3, 4, 5 equi-sized
communities, with n = 120, 150, and 200. The off-diagonal entries ofQ are set
to 0.1 and all the diagonal entries are set to a constant ρ > 0.1. The smaller
the value of ρ is, the more vague the block structure is in the network.

For each n, we consider ρ = 0.3, 0.5, 0.8. The true community assignment
z0 is set to {(1)n/3, (2)n/3, (3)n/3}, where (x)k denotes the vector obtained
by replicated x, k times. We consider (i) an SBM with k = 3, (ii) an SBM
with k = 4 and (iii) an SBM with k = 5; note the number of communities
is mis-specified in (ii). The following Gibbs sampler is employed to sample
from the posterior distribution of the parameters.

5.1. Gibbs sampling for fixed k (directed networks) Define

nr =
n∑

i=1

I(zi = r), r = 1, . . . , k.

nrs =
∑∑

1≤i �=j≤n

I(zi = r, zj = s) = nrns − nrI(r = s).

A[rs] =
∑∑

(i,j):zi=r,zj=s

Aij , r = 1, . . . , k, s = 1, . . . , k.
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Then the full-conditional distributions of π and Q can be obtained as

π | − ∼ Dirichlet(α1 + n1, . . . , αk + nk)

Qrs | − ∼ Beta(1 +A[rs], 1 + nrs −A[rs]).

Observe that

P (zi = l | z−i, A, π,Q) ∝ P (A | z, π,Q)P (z | π)P (π)P (Q).

Keeping the terms involving zi,

P (A | z, π,Q) ∝

⎧
⎨

⎩

∏

j �=i

Q
Aij
zizj (1−Qzizj

)1−Aij

⎫
⎬

⎭
×

⎧
⎨

⎩

∏

k �=i

QAki
zkzi

(1−Qzkzi
)1−Aki

⎫
⎬

⎭
, P (z | π) ∝ πzi

.

Hence,

P (zi = l | z−i, A, π,Q) ∝ πzi×

⎧
⎨

⎩

∏

j �=i

Q
Aij
zizj (1−Qzizj )

1−Aij

⎫
⎬

⎭
×

⎧
⎨

⎩

∏

k �=i

Q
Aki
zkzi (1−Qzkzi )

1−Aki

⎫
⎬

⎭
.

The Gibbs sampler proceeds by cycling through π | −, Qrs | − and zi |
z−i, A, π,Q. We set αj = 1, j = 1, . . . , k and ran the MCMC for 3000

iterations with a burn-in of 1000. The posterior mean θ̂ of θ and the posterior
mode of z post burn-in are obtained as the Bayes estimates. As a measure
of discrepancy between θ and θ0, we compute mean squared error (MSE):
(1/n2)‖θ − θ0‖2 and for z and z0, we obtained the Rand-index (RI) where
RI = #mismatched pairs/

(
n
2

)
. The results are summarized in Tables 1 & 2.

It is evident that for a fixed ρ, MSE decreases and RI increases as n increases.
On the other hand, for a fixed n, as ρ increases, the clustering pattern is
more evident in the network leading to improved accuracy in estimating z0.

Interestingly, the results for known k are very similar with that of the mis-
specified k indicating the robustness of the Bayesian approach. It is possible
that a phenomenon similar to overfitted Gaussian mixtures (Rousseau and
Mengersen, 2011) is at work here.

6 Discussion

In this article, we presented a theoretical investigation of posterior con-
traction in stochastic block models. One crucial assumption in our current
results is that the true number of clusters k is known. Geng et al. (2018)
studied inference in a stochastic block model with an unknown number of
clusters within a Bayesian non-parametric framework. Their objective was
two-fold : (i) simultaneous estimation of the number of clusters and the
cluster structure and (ii) consistent cluster detection. Towards that, they
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employed a mixture of finite mixtures (MFM) as a prior distribution for
k. A natural and interesting extension of our present work would be to
theoretically explore the situation when k remains unknown and an MFM
or a mixture of Dirichlet processes prior is used to adaptively learn about
k. We leave this as an important research problem in future. In a very
recent technical report, Gao et al. (2018) provided general conditions for
optimal posterior contraction rates in stochastic block models adaptively for
all values of k ∈ {1, 2, . . . , n} using Laplace-type priors on Q and a com-
plexity prior on k. Their proposed elliptical Laplace prior distribution is
theoretically interesting and accommodates many statistical problems in a
unified way. Contrary to that, we worked with a more natural and easily
implementable uniform prior specification which is widely used in network
analysis problems. An interesting direction is to develop a fully Bayesian
approach with the more commonly used uniform prior on Q and a complex-
ity prior on k and to show that the corresponding procedure yields optimal
rates of posterior contraction adaptively for all values of k ∈ {1, 2, . . . , n}.
Such an approach can be connected to nonparametric estimation of networks
(Bickel and Chen, 2009) where one typically assumes a more flexible way of
data generation; Aij | ξi, ξj ∼ Bernoulli{f(ξi, ξj)}, where f is a function
from [0, 1]2 → [0, 1], called a graphon and ξis are i.i.d. random variables
on [0, 1]. It is well known (refer, for example, to Szemerédi 1975; Lovász
and Szegedy 2006; Airoldi et al. 2013; Gao et al. 2015) that one can ap-
proximate a sufficiently smooth graphon using elements of Θk. When the
smoothness of the graphon is unknown, the prior on k should facilitate the
posterior to concentrate in the appropriate region. Using such approxima-
tion results and modifying our Theorem 4.1, it may be possible to derive
posterior contraction rates for estimating a graphon.
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A. Appedix

A.1 Proof of Corollary 4.3
Following exactly the same set of arguments as in the proof of Theorem

4.1, we have for all sufficiently large n,

k∏

r=1

k∏

s=1

[Q0
rs − δεn/2, Q

0
rs + δεn/2] ⊂

{
Q :

k∑

r=1

k∑

s=1

n0rn0s(Qrs −Q0
rs)

2 < n2δ2ε2n

}
. (4.26)

Since for each (r, s), Q0
rs ∈ (δ, 1−δ), the prior probability of the embedded

rectangle
∏k

r=1

∏k
s=1[Q

0
rs − δεn/2, Q

0
rs + δεn/2] can be bounded below as

follows:

p

(
k∏

r=1

k∏

s=1

[Q0
rs − δεn/2, Q

0
rs + δεn/2]

)

≥ (δεn)
k2

k∏

r=1

k∏

s=1

inf p
(
[Q0

rs − δεn/2, Q
0
rs + δεn/2]

)

≥ (δεn)
k2

{inf p[δ(1− εn/2), 1− δ(1− εn/2)]}k
2

= (Beta(β1, β2))
−k2

(δεn)
k2

×
{

inf
q∈[δ(1−εn/2),1−δ(1−εn/2)]

qβ1−1(1− q)β2−1

}k2

(4.27)

where Beta(β1, β2) denotes the standard Beta function with parameters
(β1, β2). Next we observe that

inf
q∈[δ(1−εn/2),1−δ(1−εn/2)]

qβ1−1(1− q)β2−1 ≥ ψδ,εn(β1, β2), (4.28)

where for each fixed (δ, εn), the function ψδ,εn : (0,∞)2 → (0,∞) is defined
as

ψδ,εn(β1, β2) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

{δ(1− εn/2)}β1+β2−2 if β1 ≥ 1, β2 ≥ 1

{1− δ(1− εn/2)}β1−1{δ(1− εn/2)}β2−1 if β1 < 1, β2 ≥ 1

{δ(1− εn/2)}β1−1{1− δ(1− εn/2)}β2−1 if β1 ≥ 1, β2 < 1

{1− δ(1− εn/2)}β1+β2−2 if β1 < 1, β2 < 1.
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Using Eqs. 4.26–4.28, and following exactly the same line of arguments as
in the proof of Theorem 4.1, we obtain

E0

{
Πn(Un | A)1Ac

n

}
≤

∞∑

l=M

{

e−C2
1 l

2n2ε2n +
e−C2

2 l
2n2ε2neC3n log k

(δεn)k
2C(β1, β2, δ, εn)k

2

}

,

(4.29)

for some constant C(β1, β2, δ, εn) = (Beta(β1, β2))
−k2 (ψδ,εn(β1, β2))

k2 > 0.
Now, for every possible choice of the pair (β1, β2), we note that logC(β1, β2,
δ, εn) ∼ k2. For instance, suppose β1 ≥ 1, β2 ≥ 1. Then, as δ ∈ (0, 1/2)
is fixed and εn → 0 as n → ∞, logC(β1, β2, δ, εn) = −k2 log Beta(β1, β2) +
(β1 + β2 − 2)k2 log(δ(1 − εn/2)) ∼ k2. Therefore, for n2ε2n = k2{log n +
log(δ−1)}+ n log k, logC(β1, β2, δ, εn) = o(n2ε2n) as n → ∞. Thus, choosing
a large enough constant M > 0 (depending on (β1, β2)), it follows that the
above sum in Eq. 4.29 converges to zero for all large values of M which
concludes the argument.

A.2 Proof of Theorem 4.4

Observe that the posterior distribution in the case of directed networks
can be written as

Πn(Un | A) =

∫
Un

∏∏
1≤i<j≤n

fθij (Aij)

f
θ0
ij
(Aij)

p(dz, dQ)

∫
Θk

∏∏
1≤i<j≤n

fθij (Aij)

f
θ0
ij
(Aij)

p(dz, dQ)
. (4.30)

Observe that the discrepancy measure in Eq. 4.8 can also be written as

1

n2

∑∑

1≤i<j≤n

(θ̂ij − θ0ij)
2 =

1

2n2

∥∥∥θ̂ − θ0
∥∥∥
2
.

for θ, θ0 ∈ Θu
k , defined in Eq. 4.9. Hence, it is straightforward to obtain

versions of Lemmata 4.5, 4.6, 4.9 and 4.10 as well as Corollary 4.8 for pa-
rameters θ ∈ Θu

k . The conclusion then follows by replicating arguments
(4.21)-(4.25).

A.3 Additional Simulations Results

Below we present an additional small scale simulation study where we
simulate 100 replicates of an SBM network using k = 3 and 5 equi-sized
communities with n = 30, 60, and 90 and ρ = 0.3, 0.5. We summarize these
additional results into Tables 3 and 4 below.
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