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Abstract

Debiased estimation has long been an area of research in the group testing
literature. This has led to the development of several estimators with the goal
of bias minimization and, recently, an unbiased estimator based on sequential
binomial sampling. Previous research, however, has focused heavily on the
simple case where no misclassification is assumed and only one trait is to
be tested. In this paper, we consider the problem of unbiased estimation
in these broader areas, giving constructions of such estimators for several
cases. We show that, outside of the standard case addressed previously in
the literature, it is impossible to find any proper unbiased estimator, that
is, an estimator giving only values in the parameter space. This is shown to
hold generally under any binomial or multinomial sampling plans.
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1 Introduction

Group testing, which includes generally any situation in which specimens
are tested in groups instead of individually, has been an ongoing area of
research in the statistical literature for over 70 years. First introduced in
Dorfman (1943) as a means of screening U.S. Army inductees for syphilis,
subsequent research has led to the development of two overarching fields,
case identification (as in Dorfman’s original work) and estimation.

The estimation problem, which is the focus of the current work, has as
its prototypical case the prevalence estimation of a single binary trait from
an assumed infinite population when testing is done error free. Typically
the trait of interest will be rare, so that grouping can lead to a significant
reduction in the number of tests required or an increase in efficiency (in
terms of mean square error) for a fixed number of trials.
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While the above scenario is important theoretically, in many applications
tests will be subject to misclassification error which must be accounted for
when analyzing group testing data. Research in this area has been broad,
covering an array of cases (see, as a few examples, Tu et al. (1995), Hung
and Swallow (1999), Liu et al. (2012), McMahan et al. (2013), Zhang et al.
(2014), Huang et al. (2017), & Li et al. (2017)).

An additional area which is becoming increasingly important for appli-
cations due to the growing development of multiplex screening tools is the
estimation of prevalences for several traits simultaneously. Such assays can
be modelled naturally using multinomial sampling and extensions of group
testing methods to such designs can be found in Hughes-Oliver and Rosen-
berger (2000), Pfeiffer et al. (2002), Tebbs et al. (2013), Ding and Xiong
(2015), & Warasi et al. (2016).

In all cases, one of the major difficulties in carrying out estimation using
group testing is that the standard maximum likelihood estimator (MLE)
is biased, often quite significantly depending on the true underlying preva-
lence and group sizes (see, for example, Gibbs and Gower (1960), Thompson
(1962), & Swallow (1985)). This has led to the development of several al-
ternative debiased estimators, that is, estimators with significantly reduced
bias relative to the MLE (see Burrows (1987), Tebbs et al. (2003), Hep-
worth and Watson (2009), Ding and Xiong (2016), & Santos and Dorgman
(2016)). Perhaps most importantly, such estimators generally yield large
reductions in the mean square error (MSE) when compared with the MLE,
indicating the importance of developing such tools for group testing data.
While the bias and MSE can be controlled to a degree with good design
(i.e. appropriate choices of the group sizes), this usually requires the use
of prior knowledge regarding the prevalence parameter or adaptive designs
which may not be feasible in many cases (see, for example, Chiang and
Reeves (1962), Hughes-Oliver and Swallow (1994), & Haber and Malinovsky
(2017)).

It should be noted that, if fixed binomial sampling is used, it is impossible
to find any unbiased estimator for the underlying parameter when group
testing is used. This fact was mentioned in Hall (1963) and follows from
a general result concerning the estimation of the function of a binomial
parameter given in Lehmann and Casella (1998), p. 100. This result can be
easily extended to the cases when misclassification is present and/or multiple
traits are screened simultaneously, so that an unbiased estimator cannot
exist in such cases when fixed sampling (either binomial or multinomial, as
appropriate) is used.
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To consider unbiased estimation for the prevalence in the group test-
ing problem, then, it is necessary to consider the broader class of binomial
and multinomial sampling plans (defined in the following section), of which
the fixed binomial and multinomial designs are members. In a recent work,
Haber et al. (2018) took this approach and showed, based on results from De-
Groot (1959), that under a certain class of inverse binomial sampling models
it is possible to construct an unbiased estimator. Their work, however, was
restricted to the simple case outlined above where only a single trait is to
be estimated without misclassification.

In this paper, we extend the question of unbiased estimation for group
testing to the above generalizations, misclassification and multiple-trait screen-
ing. In particular, we focus on the case when misclassification errors are as-
sumed known and on the simultaneous estimation of two correlated diseases.

We show that, in both cases, unbiased estimation is possible using inverse
sampling and constructions are provided under the appropriate models. It is
shown, however, that these estimators are improper, that is, they lie outside
of the parameter space for some sample values. The core theoretical result
of this work is to show that this will be true for any unbiased estimator
under any binomial sampling plan with misclassification or any multinomial
sampling plan (with at least three elements), even with perfect testing.

2 Binomial and Multinomial Sampling Plans

In this section, we define the general classes of binomial and multinomial
(of which binomial is a special case) sampling plans. A more detailed treat-
ment of binomial sampling plans can be found in, among others, Girshick et
al. (1946) & DeGroot (1959). Similar results for multinomial sampling plans
can be found in Kremers (1990) & Koike (1993).

In general, a binomial sampling plan S is a set of points on the non-
negative xy-plane determined by a set of boundary points BS . For all plans,
sampling begins at the origin and increases the x or y coordinate with prob-
abilities θ and 1− θ, respectively, iteratively until a point in BS is reached.
This class is very broad, and includes both the fixed binomial and inverse
binomial sampling plans, as well as many variations of bounded or fully
sequential sampling designs.

The class of multinomial sampling plans is a direct generalization of the
above idea. We say St is a multinomial sampling plan in t+ 1 dimensions if
St is a set of points on the non-negative orthant lying in t + 1 dimensional
space. The plan is similarly determined by a set of boundary points BSt .
Sampling begins at the origin and increases the xi coordinate, i = 0, 1, . . . t,
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at each step with probability θi, i = 0, 1, . . . t where θ = (θ1, θ2, . . . , θt) is a
multinomial parameter and θ0 = 1− 1′θ.

3 Unbiased Estimation Under Inverse Multinomial Sampling

In this section a theorem with necessary and sufficient conditions for un-
biased estimation of a function of the parameter vector of an inverse multi-
nomial model is given. This is a generalization of Theorem 4.1 found in
DeGroot (1959), which applies only for two class problems, and will be used
in subsequent sections to construct unbiased estimators under group testing
models for one and two traits. While the results presented here are appli-
cable in many situations, for convenience we refer to testing for single or
multiple diseases throughout.

Let μ = (μ1, . . . , μt)
′ with μ0 = 1 − 1′μ and let IMNt(c,μ) denote the

t-class inverse multinomial model with parameter μ which samples until c
observations from the class corresponding to μ0 are observed . Then, the
random variable X ∼ IMNt(c,μ) with parameter space Ψ = {μ : 1′μ <
1, 0 ≺ μ ≺ 1} where ≺ denotes element-wise inequality, if

P (X = x) =

(
c+

∑t
i=1 xi − 1

c− 1, x1, . . . , xt

)
μc
0

t∏
i=1

μxi
i .

Let Ψ ⊂ Ψ with int(Ψ) the interior of Ψ. Then, we say that X has an inverse
multinomial distribution with restricted parameter space if X has the same
pdf as above but with parameter space Ψ. A special case of this distribution
with t = 1 is the inverse binomial, which corresponds to the classical group
testing problem when screening for one disease.

Theorem 1. Let X ∼ IMNt(c,μ) with restricted parameter space Ψ. A
function h(μ) is estimable unbiasedly for all μ ∈ int(Ψ) if and only if h is
an analytic function on a region containing an open-ball about 0 ∈ R

t and
int(Ψ). The estimator is given by

f(x) =
(c− 1)!

(c+
∑t

i=1 xi − 1)!

∂
∑t

i=1 xig(μ)

∂μx1
1 · · · ∂μxt

t

∣∣∣∣∣
μ=0

,

where g(μ) =
h(μ)
μc
0

.

Remark 1. It should be noted that the restriction to values in int(Ψ) is not
absolute, and values from the boundary such as μ0 = 1 may be estimable
unbiasedly, while others such as values in the plane μ0 = 0 can not. The
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latter point can be seen by noting that the function g(μ) above is undefined
when μ0 = 0. In general, there is little interest in estimating any points on
the boundary, hence the restriction to the interior is sufficient.

While we will be interested here in applying this theorem only in the
context of group testing, other possibilities include the unbiased estimation
of the relative risk or odds ratio of two diseases estimated simultaneously.

4 One Disease Case with Misclassification

For the single disease group testing problem, we assume an infinite pop-
ulation of individuals whose binary status can be represented by indepen-
dent random variables ϕ ∼ Ber(p). In what follows, p is the quantity
we seek to estimate. If, instead of as individuals, members of this pop-
ulation are tested in groups of size k, we have the new random variable
ϑ = max{ϕ1, . . . , ϕk} ∼ Ber(1− qk), where q = 1− p.

To incorporate testing error, let ϑ̃ be the true, latent value of the observed
ϑ. Then, we define the specificity and sensitivity, respectively, as π0 = P (ϑ =
0|ϑ̃ = 0) and π1 = P (ϑ = 1|ϑ̃ = 1). This yields the distribution ϑ ∼ Ber(θ)
where θ = π1 − νqk with ν = π1 + π0 − 1. It should be noted that this
model is identifiable if and only if ν �= 0. A standard assumption to address
this, which is made here as well, is that both π0 and π1 are greater than
0.5. This is reasonable as it merely assumes the test performs better than
random guessing.

To find an unbiased estimator using Theorem 1, we consider Y ∼ IMN1

(c, θ) which is the number of positives until c groups testing negative for the
disease are observed. Note that the parameter space here is restricted as a
function of θ when either π0 < 1 or π1 < 1 since, for 0 < p < 1, 1−π0 < θ <

π1. Then, we seek an unbiased estimator of q = h(θ) =
(π1 − θ)1/k

ν1/k
, which

is analytic on the interval |θ| < π1.

Result 1. For the one disease case with misclassification, with Y ∼ IMN1

(c, π1 − νqk), the unique unbiased estimator of p is given by

p̂UB(y)=1−
(π1
ν

)1/k
y∑

i=0

(
y

i

)
1

πy−i
1

(c+i−1)!

(c+y−1)!

y∏
j=i

(y−j−1/k)

(y−i−1/k)
, y=0, 1, 2, . . . .

This result can be used to derive an unbiased estimator for the perfect
testing case (π0 = π1 = 1) as given in the following corollary and Haber et
al. (2018).
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Corollary 1. For the one disease case with no misclassification, an unbiased
estimator of p is given by

p̂UB(y) = 1− 1(
1− 1

k(c+y)

)
y∏

i=0

(
1− 1

k(c+ i)

)
, y = 0, 1, 2, . . .

4.1. Non-Properness of Unbiased Estimator While the estimator given
in Result 1 is unbiased, for either π0 < 1 or π1 < 1 it is an improper
estimator, that is it yields values lying outside the parameter space.

To see this, note that if π0 < 1 then, for any π1, we have p̂UB(0) =

1−
(

π1
π1+π0−1

)1/k
< 0. Likewise, If π0 = 1, then, for π1 < 1 and y ≥ 1,

p̂UB(y) =
1

k

y−1∑
i=0

(
y

i

)
1

πy−i
1

(c+ i− 1)!

(c+ y − 1)!

y−1∏
j=i

(y − j − 1/k)

(y − i− 1/k)
.

Now, each term of the sum in this expression is positive, so it is sufficient to
show that for some y at least one term is greater than 1, resulting in a total es-

timate larger than 1. For the i = 0 term, we have
1

kc

y−1∏
j=1

1

π1

(
1− c+ 1/k

c+ y − j

)

which diverges since π1 < 1.
While these results, combined with the necessity clause of Theorem 1,

mean that there exist no proper unbiased estimators under the inverse bino-
mial model, in the following result we extend this idea to show that no such
estimator exists under any binomial sampling plan when misclassification is
present.

Theorem 2. Let S be a binomial sampling plan with set of boundary points
BS for which, at a given step, the x and y coordinates are increased with
probability θ = π1 − νqk and 1− θ, respectively. Then, if π0 < 1 or π1 < 1,
there exists no proper unbiased estimator of p under S.

It should be noted that, while the explicit construction of the unbiased
estimator in Result 1 required the assumption that the misclassification pa-
rameters were known, the result of Theorem 2 holds more generally, even
when this assumption does not hold.

From the proof of Theorem 2 we get the following corollary, which is also
given in Haber et al. (2018), showing that the above inverse binomial model
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which counts until c negatives is the only one yielding an unbiased estimator
of p.

Corollary 2. Let Y ∼ IMN1(c, 1− θ) where θ = π1 − νqk, so that Y is the
number of negative groups drawn until c positive results are observed. Then,
there exists no unbiased estimator of p for any values of π0 and π1.

We end this section with a numerical illustration of the impact of the
improperness property for the specific estimator given in Result 1. Figure 1
shows the relative bias, defined as E[p̂−p]

p for an estimator p̂, for the unbiased
estimator in Result 1, the same estimator truncated to be in the parameter
space (so that it is a proper estimator), and the MLE for the model consid-
ered at the beginning of the section. The plot is given in two parts, dividing
the range of p into small and medium/large due to the steep increase in bias
for some estimators as p nears zero. The large difference in scale should be
noted when interpreting the plot.
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Figure 1: Relative bias, E[p̂−p]
p , for the maximum likelihood estimator (MLE),

unbiased estimator (UB), and the unbiased estimator truncated to be in the
parameter space (UB Truncated). Here, c = 5, k = 10, π0 = 0.9, π1 = 0.95.
Note the difference in scale for both parts of the figure
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From the figure, we see that truncating the unbiased estimator has caused
the bias to be increased away from zero, in some cases with a larger mag-
nitude than that of the MLE. This shows, at least for the specfic scenario
considered here, that the problem of improperness is non-trivial.

5 Two Disease Case with no Misclassification

For the case of two diseases, let ϕ1 and ϕ2 be marginally binomial
random variables with parameters 0 < p1 < 1 and 0 < p2 < 1 respec-
tively. Then, (ϕ1, ϕ2) has a one-to-one correspondence to the vector ϕ =
(ϕ00, ϕ10, ϕ01, ϕ11) with joint multinomial distribution ϕ ∼ MN3(1,p) and
sample space Ψp = {p : 1′p < 1, 0 ≺ p ≺ 1}, where p = (p10, p01, p11)
and p00 = 1− 1′p. Note that the marginal parameters can be expressed as
p1 = p10 + p11 and p2 = p01 + p11.

If we assume no misclassification, we have the ith grouped sample (ϑ
(k)
1i ,

ϑ
(k)
2i ) = (max{ϕ1i1 , · · · , ϕ1ik},max{ϕ2i1 , · · · , ϕ2ik}) which corresponds to

ϑ
(k)
i = (ϑ00, ϑ10, ϑ01, ϑ11) ∼ MN3(1,θ),

where

θ = (θ10, θ01, θ11)

= ((p00 + p10)
k − pk00, (p00 + p01)

k − pk00, 1− (p00 + p10)
k

−(p00 + p01)
k + pk00) (5.1)

and
θ00 = 1− 1′θ = pk00. (5.2)

If we sample until c groups are found without either disease, and set Z =

(z10, z01, z11) to be the sum of the observed ϑ
(k)
i s, we have Z ∼ IMN3(c,θ).

Note that the parameter space of Z, ΨZ = {θ(p) : 1′p < 1, 0 ≺ p ≺ 1}, is
a proper subset of the full parameter space Ψθ = {θ : 1′θ < 1, 0 ≺ θ ≺ 1}.
This fact will play a crucial role below in showing that there exists no proper
unbiased estimator of p.

To find an unbiased estimator, the following lemma will be needed, which
is simply the result of inverting (5.1) and (5.2).

Lemma 1. The unique function h : θ �→ p is given by

p00 = h00(θ) = (1− θ10 − θ01 − θ11)
1/k,

p10 = h10(θ) = (1− θ01 − θ11)
1/k − h00(θ),

p01 = h01(θ) = (1− θ10 − θ11)
1/k − h00(θ),

p11 = h11(θ) = 1− p00 − p10 − p01.
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The function h(θ) given in Lemma 1 is analytic on an open region con-
taining 0 ∪ int(ΨZ), so the conditions of Theorem 1 hold and an unbiased
estimator exists.

Result 2. The unique unbiased estimator of p where Z ∼ IMN3(c,θ), with
θ as in Eq. 5.1, is given by

p̂00 =
1(

1− 1
k(c+z10+z01+z11)

) z10+z01+z11∏
j=0

(
1− 1

k(c+ j)

)
,

p̂10 =
1(

1− 1
k(c+z10+z01+z11)

) z01+z11∏
j=0

(
1− 1

k(c+ z10 + j)

)
− p̂00,

p̂01 =
1(

1− 1
k(c+z10+z01+z11)

) z10+z11∏
j=0

(
1− 1

k(c+ z01 + j)

)
− p̂00,

p̂11 = 1− p̂00 − p̂10 − p̂01.

The unbiased estimator given in Result 2 is an improper estimator. This
can be shown by counterexample, considering the point z = (1, 1, 0). We
have, evaluating at this point,

p̂00 + p̂10 + p̂01 = 2

(
1− 1

k(c+ 1)

)
−
(
1− 1

kc

)(
1− 1

k(c+ 1)

)

= 1 +
1

kc
− 1

k(c+ 1)
− 1

k2c(c+ 1)

= 1 +
1

kc

(
1− (c+ 1/k)

c+ 1

)

> 1,

for any c and k > 1.
As in Theorem 2, this property can be shown to hold for any unbiased

estimator under any multinomial sampling plan.

Theorem 3. Let S3 be a multinomial sampling plan in four dimensions with
boundary points BS3 such that at each step the ith coordinate, i = 0, 1, 2, 3,
is increased with probability θi as in Eqs. 5.1 and 5.2. Then, there exists no
proper unbiased estimator of p under S3.

6 Two Disease Case with Misclassification

In this section we consider the two disease testing problem when misclas-
sification is present, by looking at two models for incorporating such testing
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errors. In both cases we will assume the misclassification parameters to be
known a priori, although the results on non-proper estimators will hold more
generally.

The first model, as introduced in Li et al. (2017), is very general, requir-
ing no assumptions on how the marginal testing errors are combined. The
downside, as we shall see, is that this requires a large number of parameters,
knowledge of which may not be available for many of the assays used in
applications. Let ϕ̃a, a ∈ {00, 10, 01, 11} be the true latent value of the ob-
served random variable ϕa. Then, we have the misclassification parameters
πa|b = P (ϕa|ϕ̃b), a, b ∈ {00, 10, 01, 11}. While this indicates 16 parameters,
each one can be expressed as a linear combination of three others, so that
the model consists of twelve extra parameters.

If we again let Z be the sum of the ϑ
(k)
i s until c groups are observed

without either disease then, with the above misclassification values, and θ
as in Eqs. 5.1 and 5.2, we now have Z ∼ IMN3(c,η) where η = (η10, η01, η11)
and η00 = 1− 1′η with

ηa = πa|00θ00 + πa|10θ10 + πa|01θ01 + πa|11θ11, a ∈ {00, 10, 01, 11}.

With π00 = (π10|00, π01|00, π11|00)
′, and

Φ =

⎛
⎝ π10|10 − π10|00 π10|01 − π10|00 π10|11 − π10|00

π01|10 − π01|00 π01|01 − π01|00 π01|11 − π01|00
π11|10 − π11|00 π11|01 − π11|00 π11|11 − π11|00

⎞
⎠ ,

the parameter vector for this model can be expressed succinctly as

η = π00 +Φθ. (6.1)

6.1. Independent Misclassification Errors An alternative, simplified,
model to the above assumes there are only four misclassification parame-
ters, specificity and sensitivity for each marginal disease, and that the joint
errors can be found assuming independence. Examples of this model can be
found in Pfeiffer et al. (2002) and Tebbs et al. (2013), among others. For-

mally, if π
(i)
0 and π

(i)
1 are the specificity and sensitivity, respectively, for the

test under the ith disease, i = 1, 2, then we assume π10|00 = (1 − π
(1)
0 )π

(2)
0 ,

π10|10 = π
(1)
1 π

(2)
0 , and so on for all twelve parameters above.

6.2. Identifiability of Model Before addressing the question of unbiased
estimation, we first consider conditions to ensure the models presented above
are identifiable. This is an important question which has yet to be dealt with
explicitly in the literature.
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Theorem 4. Let Z ∼ IMN3(c,η) with η as in Eq. 6.1. Then, the model is
identifiable if and only if the determinant of Φ is non-zero, that is

|Φ| =

∣∣∣∣∣∣
π10|10 − π10|00 π10|01 − π10|00 π10|11 − π10|00
π01|10 − π01|00 π01|01 − π01|00 π01|11 − π01|00
π11|10 − π11|00 π11|01 − π11|00 π11|11 − π11|00

∣∣∣∣∣∣ �= 0.

Corollary 3. For the independent errors model given in Section 6.1, the

model is identifiable if and only if both π
(1)
0 + π

(1)
1 �= 1 and π

(2)
0 + π

(2)
1 �= 1.

Similar to the one-disease case, the conditions of Corollary 3 will always
be satisfied if we make the reasonable assumption that all misclassification
parameters are greater than 0.5. The more general case, as presented in
Theorem 4, is easy to check in a given situation, but does not easily yield
itself to simplified conditions.

6.3. Non-Properness of Unbiased Estimator for Two Diseases with Mis-
classification As in the case with no misclassification, Theorem 1 can be
used to construct an unbiased estimator under either of the misclassifica-
tion models presented above. Since this construction is merely a technical
generalization of the previous two cases, it is excluded here.

Likewise, as in the previous cases, we can generalize Theorem 3 to show
that this holds under any multinomial sampling plan when misclassification
is present. The proof of this result follows directly from Theorem 3 since,
assuming the conditions of Theorem 4 hold, η is a full rank affine transfor-
mation of θ.

Theorem 5. Let S3 be a multinomial sampling plan in four dimensions with
boundary points BS3 such that at each step the ith coordinate, i = 0, 1, 2, 3,
is increased with probability ηi, where η is as given in Eq. 6.1. Then, there
exists no proper unbiased estimator of p under S3.

7 Discussion

We have shown that, outside of the standard case when testing one dis-
ease with no misclassification, it is impossible to get a proper unbiased esti-
mator in the group testing problem. This result holds very generally, under
any design from the classes of binomial or multinomial sampling plans, not
only those previously considered in the literature. While, for the multino-
mial case, we have provided proofs only for two diseases, the same techniques
can be applied to show this result holds for any number of traits.

Of course, such scenarios are the norm in applications, so the question
remains as to how estimation should best be carried out in light of the
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present bias. For one disease with misclassification, there do exist limited
results for this problem. For example, under fixed binomial sampling, the
first order bias correction given in Tu et al. (1995) can be used to construct
a debiased estimator. Still, much more work is needed in this area, analo-
gous to the wide array of estimators in the literature for one disease when
no misclassification is assumed. One possible approach is to construct min-
imal bias estimators as described in Sirazhdinov (1956) and Hall (1963),
although approaches minimizing the risk are generally more favored in the
statistical literature. Alternatively, approaches such as those found in Bilder
and Tebbs (2005) and Hepworth and Biggerstaff (2017), among others, could
possibly be extended to include misclassification. More work is needed to
understand how such approaches might generalize, and what the properties
of the resultant estimators will be.

For the two disease case, unfortunately, it is much more difficult to give
recommendations at this time. The problem in this case is much harder since
it is both multivariate and has a restricted parameter space, even without
misclassification. There currently exist no results in the literature related
to bias reduction for the the two disease group testing scenario. This will
be an important area for future research if group testing methods are to be
applied in such cases.

8 Proofs

8.1. Proof of Theorem 1 Since h is analytic, both h and g(μ) = h(μ)
μc
0

can be expanded as a Taylor series over an appropriate region, say R. This
expansion has the form,

g(μ) =
∞∑

x1,...,xt=0

1

x1! · · ·xt!
∂
∑t

i=1 xig(μ)

∂μx1
1 · · · ∂μxt

t

∣∣∣∣∣
μ=0

t∏
i=1

μxi
i .

Then, we have

E (f(X)) =
∞∑

x1,...,xt=0

f(x)

(
c+

∑t
i=1 xi − 1

c− 1, x1, . . . , xt

)
μc
0

t∏
i=1

μxi
i

= μc
0

∞∑
x1,...,xt=0

1

x1! · · ·xt!
∂
∑t

i=1 xig(μ)

∂μx1
1 · · · ∂μxt

t

∣∣∣∣∣
μ=0

t∏
i=1

μxi
i

= μc
0g(μ)

= h(μ),
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for all μ ∈ int(Ψ).
Conversely, if h is estimable unbiasedly, we have for a function δ(x) and

any μ ∈ int(M)

h(μ) =
∞∑

x1,...,xt=0

δ(x)

(
c+

∑t
i=1 xi − 1

c− 1, x1, . . . , xt

)
μc
0

t∏
i=1

μxi
i .

Since this holds for any μ ∈ int(Ψ), h is an analytic function on R, hence
has a unique Taylor expansion. It follows then that

g(μ) =
∞∑

x1,...,xt=0

1

x1! · · ·xt!
∂
∑t

i=1 xig(μ)

∂μx1
1 · · · ∂μxt

t

∣∣∣∣∣
μ=0

t∏
i=1

μxi
i

=
∞∑

x1,...,xt=0

δ(x)

(
c+

∑t
i=1 xi − 1

c− 1, x1, . . . , xt

) t∏
i=1

μxi
i ,

and equating terms yields

δ(x) =
(c− 1)!

(c+
∑t

i=1 xi − 1)!

∂
∑t

i=1 xig(μ)

∂μx1
1 · · · ∂μxt

t

∣∣∣∣∣
μ=0

= f(x)

for each x.
8.2. Proof of Result 1 To apply Theorem 1 in this case, we will require

the following lemma.

Lemma 2. Let g(θ) =
(π1 − θ)ξ

(1− θ)c
, where ξ = 1/k. Then, for any non-

negative integer t,

dtg(θ)

dθt
=

t∑
i=0

(
t

i

)
(π1 − θ)ξ+i−t

(1− θ)c+i

(c+ i− 1)!

(c− 1)!

t∏
j=i

(t− j − ξ)

(t− i− ξ)
.

Proof. For t = 0 and t = 1 the result is a straightforward calculation,
and we prove the general case using induction. Suppose the statement holds
for t = m so that

dm+1g(θ)

dθm+1
=

m∑
i=0

(
m

i

)
(c+ i− 1)!

(c− 1)!

m∏
j=i

(m− j − ξ)

(m− i− ξ)

d

dθ

(
(π1 − θ)ξ+i−m

(1− θ)c+i

)
,
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and, for each i,

d

dθ

(
(π1 − θ)ξ+i−m

(1− θ)c+i

)
=

(m− i− ξ)(π1 − θ)ξ+i−m−1

(1− θ)c+i
+
(c+ i)(π1 − θ)ξ+i−m

(1− θ)c+i+1
.

We now look at the resultant coefficients of the terms
(π1 − θ)ξ+i−(m+1)

(1− θ)c+i

for each i.

For i = 0 and i = m+ 1 we have, respectively,

m+1∏
j=0

(m+ 1− j − ξ)

(m+ 1− ξ)
and

(c+m+ 1− 1)!

(c− 1)!
.

For 1 ≤ i ≤ m we have(
m

i

)
(c+ i− 1)!

(c− 1)!

m∏
j=i

(m− j − ξ)

(m− i− ξ)
(m− i− ξ)

+

(
m

i− 1

)
(c+ i− 2)!

(c− 1)!

m∏
j=i−1

(m− j − ξ)

(m− i+ 1− ξ)
(c+ i− 1)

=

[(
m

i

)
+

(
m

i− 1

)]
(c+ i− 1)!

(c− 1)!

m+1∏
j=i

(m+ 1− j − ξ)

(m+ 1− i− ξ)

=

(
m+ 1

i

)
(c+ i− 1)!

(c− 1)!

m+1∏
j=i

(m+ 1− j − ξ)

(m+ 1− i− ξ)
.

Combining yields

dm+1g(θ)

dθm+1
=

m+1∑
i=0

(
m+1

i

)
(π1−θ)ξ+i−(m+1)

(1−θ)c+i

(c+ i− 1)!

(c− 1)!

m+1∏
j=i

(m+ 1− j − ξ)

(m+ 1− i− ξ)
.

Now, to apply Theorem 1, we have g(θ) =
(π1 − θ)ξ

νξ(1− θ)c
, with ξ = 1/k,

which, by Lemma 2 has tth derivative

dtg(θ)

dθt
=

1

νξ

t∑
i=0

(
t

i

)
(π1 − θ)ξ+i−t

(1− θ)c+i

(c+ i− 1)!

(c− 1)!

t∏
j=i

(t− j − ξ)

(t− i− ξ)
.

Evaluating at θ = 0 yields

dtg(θ)

dθt

∣∣∣∣
θ=0

=
(π1
ν

)ξ
t∑

i=0

(
t

i

)
1

πt−i
1

(c+ i− 1)!

(c− 1)!

t∏
j=i

(t− j − ξ)

(t− i− ξ)
, t = 0, 1, 2, . . .
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Then, direct application of Theorem 1 yields

q̂UB(y) =
(c− 1)!

(c+ y − 1)!

(π1
ν

)ξ
y∑

i=0

(
y

i

)
1

πy−i
1

(c+ i− 1)!

(c− 1)!

y∏
j=i

(y − j − ξ)

(y − i− ξ)

=
(π1
ν

)ξ
y∑

i=0

(
y

i

)
1

πy−i
1

(c+ i− 1)!

(c+ y − 1)!

y∏
j=i

(y − j − ξ)

(y − i− ξ)
.

Subtracting the above from one gives the desired unbiased estimator of p.
8.3. Proof of Corollary 1 While it is possible to derive this result alge-

braically from Result 1, we provide here a much simpler direct proof using
Theorem 1. We have q = h(θ) = (1 − θ)ξ, where ξ = 1/k, so we set

g(θ) =
(1− θ)ξ

(1− θ)c
= (1− θ)ξ−c. Differentiating t times with respect to θ yields

g(t)(θ) = (−1)t(ξ − c)(ξ − c− 1)× · · · × (ξ − c− t+ 1)(1− θ)ξ−c−t

=
1

(c+ t− ξ)

t∏
i=0

(c+ i− ξ)(1− θ)ξ−c−m, t = 0, 1, 2, . . .

Evaluating this derivative at θ = 0 and applying Theorem 1 yields

q̂UB(y) =
(c− 1)!

(c+ y − 1)!

1

(c+ y − ξ)

y∏
i=0

(c+ i− ξ)

=
1(

1− 1
k(c+y)

)
y∏

i=0

(
1− 1

k(c+ i)

)
, y = 0, 1, 2, . . .

As above, the unbiased estimator of p is then found by subtracting this value
from 1.

8.4. Proof of Theorem 2 For each (x, y) ∈ B, let K(x, y) be the number
of ways to reach the given point, and suppose that f(x, y) is an unbiased
estimator of h(θ) = q. Then, we have

h(θ) =
∞∑
i=0

1

i!

∂ih(θ)

∂θi

∣∣∣∣
θ=0

θi =
∑

(x,y)∈B
f(x, y)K(x, y)θx(1−θ)y for all θ. (8.1)

Since the coefficients for each power of θ on both sides of the equality must
be the same, there must exist a point (0, y∗) ∈ B such that f(0, y∗)K(0, y∗) =
h(0). Now, there is at most one path to any point on the y-axis so, since
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(0, y∗) ∈ B, we have K(0, y∗) = 1. This yields, f(0, y∗) = h(0) =(
π1

π1 + π0 − 1

)1/k

> 1 whenever π0 < 1.

Suppose now that π0 = 1 and π1 < 1. From the above argument, the
term on the right hand side of Eq. 8.1 associated with the point (0, y∗)
reduces to (1− θ)y

∗
, so that

∑
(x,y)∈B\{(0,y∗)}

f(x, y)K(x, y)θx(1− θ)y = q − (1− θ)y
∗
for all θ.

Allowing q → 0, which is equivalent to θ → π1, we have

∑
(x,y)∈B\{(0,y∗)}

f(x, y)K(x, y)θx(1− θ)y → −(1− π1)
y∗ < 0,

which implies f(x, y) < 0 for at least one point.
8.5. Proof of Corollary 2 From Eq. 8.1 in the proof of Theorem 2, we see

that any sampling plan yielding an unbiased estimator must have exactly one
point on the y axis among its boundary points. If Y ∼ IMN1(c, 1−θ) is the
number of negatives until c positives are observed, however, then sampling
stops if and only if a point on the line x = c is reached. This implies that
there is no stopping point along the y axis for the random variable Y , hence
no unbiased estimator can exist.

8.6. Proof of Result 2 As in Result 1, to apply Theorem 1 we require
the following lemma giving derivatives of the function g(θ).

Lemma 3. Let g(θ) =
h (θ)

θc00
. Then, for non-negative integers z10, z01, z11

and θ ∈ ΨZ ,

(i)
∂z10+z01+z11g00(θ)

∂θz1010 ∂θz0101 ∂θz1111

=

z10+z01+z11∏
j=0

(c+ j − 1/k)

(c+ z10 + z01 + z11 − 1/k)
(1

−1′θ)1/k−c−z10−z01−z11 ;

(ii)
∂z10+z01+z11g10(θ)

∂θz1010 ∂θz0101 ∂θz1111

=
(c+ z10 − 1)!

(c− 1)!
(1− θ01 − θ11)

1/k−z01−z11

×
z01+z11∑
j=0

θj10
(1− 1′θ)c+z10+j

(
z01 + z11

j

)
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×(c+ z10 + j − 1)!

(c+ z10 − 1)!

×
z01+z11∏

i=j

(c+ z10 + i− 1/k)

(c+ z10 + z01 + z11 − 1/k)

−∂z10+z01+z11g00(θ)

∂θz1010 ∂θz0101 ∂θz1111

;

(iii)
∂z10+z01+z11g01(θ)

∂θz1010 ∂θz0101 ∂θz1111

=
(c+ z01 − 1)!

(c− 1)!
(1− θ10 − θ11)

1/k−z10−z11

×
z10+z11∑
j=0

θj01
(1− 1′θ)c+z01+j

(
z10 + z11

j

)

×(c+ z01 + j − 1)!

(c+ z01 − 1)!

×
z10+z11∏

i=j

(c+ z01 + i− 1/k)

(c+ z10 + z01 + z11 − 1/k)

−∂z10+z01+z11g00(θ)

∂θz1010 ∂θz0101 ∂θz1111

.

Proof. Let ξ = 1/k. For derivatives of g00(θ) = (1 − 1′θ)ξ−c, we can
use the fact that the function is symmetric in θ10, θ01, and θ11 and that
the partial derivatives can be computed in any order to show the first part
iteratively. This is done identically as in the proof of Corollary 1.

For g10(θ) =
(1− θ01 − θ11)

ξ

θc00
− g00(θ), we need only find the partial

derivative of the first term. Note that this term is symmetric in θ01 and θ11

so that the problem is equivalent to finding
∂z10+rb(θ10, γ)

∂θz1010 ∂γr
, where b(θ10, γ)

=
(1− γ)ξ

(1− θ10 − γ)c
, which we do by induction.

For the base case, note that for (z10, γ) = (0, 0) the result is straightfor-
ward. Assume then the result for (z10, γ) = (z, 0), so that

∂zb(θ10, γ)

∂θz10
=

(c+ z − 1)!

(c− 1)!

(1− γ)ξ

(1− θ10 − γ)c+z
.

Differentiating with respect to θ10 yields

∂z+1b(θ10, γ)

∂θz+1
10

=
(c+ z + 1− 1)!

(c− 1)!

(1− γ)ξ

(1− θ10 − γ)c+z+1
,
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so the result holds here as well.
Assume now that the result holds for (z10, γ) = (z10, r) so that

∂z10+rb(θ10, γ)

∂θz1010 ∂γr
=

(c+ z10 − 1)!

(c− 1)!
(1− γ)ξ−r

×
r∑

j=0

θj10
(1− θ10 − γ)c+z10+j

(
r

j

)
(c+ z10 + j − 1)!

(c+ z10 − 1)!

×
r∏

i=j

(c+ z10 + i− ξ)

(c+ z10 + r − ξ)
.

Differentiating with respect to γ yields

∂z10+r+1b(θ10, γ)

∂θz1010 ∂γr+1
=

(c+ z10 − 1)!

(c− 1)!

r∑
j=0

θj10

(
r

j

)
(c+ z10 + j − 1)!

(c+ z10 − 1)!

×
r∏

i=j

(c+ z10 + i− ξ)

(c+ z10 + r − ξ)

∂

∂γ

(
(1− γ)ξ−r

(1− θ10 − γ)c+z10+j

)
,

with

∂

∂γ

(
(1− γ)ξ−r

(1− θ10 − γ)c+z10+j

)
=

(c+ z10 + j + r − ξ)(1− γ)ξ−r−1

(1− θ10 − γ)c+z10+j

+
θ10(c+ z10 + j)(1− γ)ξ−r−1

(1− θ10 − γ)c+z10+j+1
.

For the coefficient of the term
(1− γ)ξ−r−1

(1− θ10 − γ)c+z10
this yields

r∏
i=0

(c+ z10 + i− ξ)

(c+ z10 + r − ξ)
(c+ z10 + r − ξ) =

r+1∏
i=0

(c+ z10 + i− ξ)

(c+ z10 + r + 1− ξ)
.

Likewise, for the coefficients of the terms (1−γ)ξ−r−1

(1−θ10−γ)c+z10+j , j = 1, 2, . . . , r,this

yields

θj10
(
r
j

) (c+z10+j−1)!
(c+z10−1)!

∏r
i=j

(c+z10+i−ξ)
(c+z10+r−ξ) × (c+ z10 + j + r − ξ)

+θj−1
10

(
r

j−1

) (c+z10+j−1−1)!
(c+z10−1)!

∏r
i=j−1

(c+z10+i−ξ)
(c+z10+r−ξ) × θ10(c+ z10 + j − 1),

which simplifies to

θj10
(
r+1
j

) (c+z10+j−1)!
(c+z10−1)!

∏r
i=j

(c+z10+i−ξ)
(c+z10+r−ξ)
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×
[
(r+1−j)(c+z10+j+r−ξ)

r+1 + j(c+z10+j−1−ξ)
r+1

]

and finally to

θj10

(
r + 1

j

)
(c+ z10 + j − 1)!

(c+ z10 − 1)!

r+1∏
i=j

(c+ z10 + i− ξ)

(c+ z10 + r + 1− ξ)
.

Finally, we have a coefficient for the term
(1− γ)ξ−r−1

(1− θ10 − γ)c+z10+r+1

θr10
(c+ z10 + r − 1)!

(c+ z10 − 1)!
× θ10(c+ z10 + r) = θr+1

10

(c+ z10 + r + 1− 1)!

(c+ z10 − 1)!
.

Combining yields the desired result.
Since b(θ10, γ) is a smooth function on the indicated space, the order of

derivatives is immaterial and so the above completes the proof by induction.
The result for g01(θ) is identical and omitted.

Now, to find an unbiased estimator of p00 = h00(θ), we evaluate the
derivative from Lemma 3 at θ = 0 and use Theorem 1 to get

p̂00 =
(c− 1)!

(c+ z10 + z01 + z11)!

z10+z01+z11∏
j=0

(c+ j − ξ)

(c+ z10 + z01 + z11 − ξ)

=
(c+ z10 + z01 + z11)

(c+ z10 + z01 + z11 − ξ)

z10+z01+z11∏
j=0

(c+ j − ξ)

(c+ j)

=
1(

1− ξ
(c+z10+z01+z11)

) z10+z01+z11∏
j=0

(
1− ξ

(c+ j)

)
.

The proofs for p̂10 and p̂01 are nearly identical and are omitted here.
8.7. Proof of Theorem 3 Let h∗(θ) be the first three components of h

and ĥ∗(θ) an unbiased estimator under S. Now, there exist values of θ ∈ Ψθ

such that 1′h∗(θ) > 1 (for example, θ = (.45, .45, .05)). However, h∗(θ) is
analytic on all values Ψθ, and so, by the uniqueness of the multivariate

Taylor expansion, ES(ĥ∗(θ)) = h∗(θ) for all θ ∈ Ψθ, even those outside

of ΨZ . Then, if ĥ∗(θ) were a proper estimator under S, we would have

ES(1′ĥ∗(θ)) ≤ 1 for all θ, so that ĥ∗(θ) is not unbiased.
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8.8. Proof of Theorem 4 Since the Multinomial is a full rank exponen-
tial family (for four class data in three dimensions), it is sufficient to show
that there exists a one-to-one mapping from p to η. Since, From Lemma
1, θ is a one-to-one function of p, we need only show that such a mapping
exists from θ to η. However, from Eq. 6.1 the correspondence is one-to-one
if and only if Φ is non-singular, which is equivalent to the given condition.

8.9. Proof of Corollary 3 Let ν1 = π
(1)
0 +π

(1)
1 −1 and ν2 = π

(2)
0 +π

(2)
1 −1.

Then, φ from Theorem 4 reduces to

∣∣∣∣∣∣∣
ν1π

(2)
0 −ν2(1− π

(1)
0 ) ν1π

(2)
0 − ν2π

(1)
1

−ν1(1− π
(2)
0 ) ν2π

(1)
0 ν2π

(1)
0 − ν1π

(2)
1

ν1(1− π
(2)
0 ) ν2(1− π

(1)
0 ) ν1(1− π

(2)
0 ) + ν2π

(1)
1

∣∣∣∣∣∣∣
= (ν1ν2)

2.

Then, φ �= 0 if and only if both ν1 �= 0 and ν2 �= 0.
8.10. Proof of Theorem 5 From Eq. 6.1 we have θ = g(η) = Φ−1η +

Φ−1π00, so that θ can be achieved by a full rank affine transformation of
η. But, this implies that the function p = h(g(η)) is analytic at the same
points θ /∈ ΨZ as noted in the proof of Theorem 3. The proof then follows
exactly as in the previous theorem.
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