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Abstract

We study an infinite urn scheme with probabilities corresponding to a power
function. Urns here represent words from an infinitely large vocabulary. We
propose asymptotically normal estimators of the exponent of the power func-
tion. The estimators use the number of different elements and a few similar
statistics. If we use only one of the statistics we need to know asymptotics
of a normalizing constant (a function of a parameter). All the estimators are
implicit in this case. If we use two statistics then the estimators are explicit,
but their rates of convergence are lower than those for estimators with the
known normalizing constant.
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1 Introduction

Zipf’s law (Zipf, 1949) states that sequential frequencies fi of words in a
text equal ci−1/θ, c > 0, θ ∈ (0, 1), i > i0 ≥ 0. Its modification is Mandel-
brot’s law (Mandelbrot, 1965) that states that fi = c(i+ β)−1/θ, β ≥ 0.

Probabilistic interpretation of these and similar laws is an infinite urn
scheme studied by Bahadur (1960) & Karlin (1967). There are n balls that
are distributed to urns independently and randomly; there are infinitely
many urns. Each ball goes to urn i with probability pi > 0, p1+p2+ . . . = 1
(frequencies converge a.s. to probabilities).

So, urns here represent words from an infinitely large vocabulary and
balls represent consecutive words of a text. In this model words in a text
are independent and match i-th word in the vocabulary with probability pi.
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We assume that p1 ≥ p2 ≥ . . . and one of the following asymptotics holds
(the second one is wider than the first):

pi = ci−1/θ(1 + o(i−1/2)), (1.1)

θ ∈ (0, 1), c = c(θ) (this assumption includes Zipf’s and Mandelbrot’s laws);

pi = i−1/θL0(i, θ), (1.2)

L0(x, θ) is a slowly varying function of x in Karamata’s sense for any fixed
θ ∈ (0, 1).

Our aim is to construct asymptotically normal estimators of θ under (1.1).
We state its strong consistency under (1.2). To do so we use statistics studied by
Bahadur (1960), Karlin (1967), Dutko (1989), Key (1992, 1996), Zakrevskaya
and Kovalevskii (2001), Gnedin et al. (2007), Boonta and Neammanee (2007),
Hwang and Janson (2008), Bogachev et al. (2008), Barbour (2009), Bar-
bour and Gnedin (2009), Ohannessian and Dahleh (2012), Chebunin (2014),
Chebunin and Kovalevskii (2016), Muratov and Zuyev (2016), Ben-Hamou
et al. (2017).

Nicholls (1987) collected a few classes of estimators and tested them on
sciencemetric data. But asymptotical normality of any of estimators had not
been proved. But one needs an asymptotic normality to calculate inference
for hypothesis of homogeneity of two texts. Our theorems state the necces-
sary convergencies and therefore give approaches to testing the homogeneity
of texts.

Let Ji(n) be the number of balls in the ith urn, Rn be the number of non-
empty urns, and R∗

n,k be the number of urns with not less than k ≥ 1 balls

Rn =
∞∑

i=1

I{Ji(n) > 0}, R∗
n,k =

∞∑

i=1

I(Ji(n) ≥ k).

Note that R∗
n,1 = Rn. The number of urns with exactly k balls: Rn,k =

R∗
n,k −R∗

n,k+1. The number of urns with odd number of balls:

Un =
∞∑

i=1

I(Ji(n) ≡ 1(mod 2)).

Karlin (1967) suggested studying a random sample with a random num-
ber of experiments Π(t). Here {Π(t), t ≥ 0} is a Poisson process with pa-
rameter 1. Random choice of an urn and Poisson process are independent.

Processes {Ji(Π(t))
def
= Πi(t), t ≥ 0} are independent Poisson processes

with parameters pi. Apart from being in the listed papers, the Poissoniza-
tion is used by Ben-Hamou et al. (2016) for estimating codes on countable
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alphabets, by Durieu and Wang (2016) in proof of functional CLT for some
randomization of statistics Rn and Un, by Grubel and Hitczenko (2009) in
studying limit distributions of gaps in discrete random samples, by Khmal-
adze (2011) for more general allocation schemes.

From definition,

R∗
Π(t),k =

∞∑

i=1

I(Πi(t) ≥ k), RΠ(t),k =
∞∑

i=1

I(Πi(t) = k),

UΠ(t) =
∞∑

i=1

I(Πi(t) ≡ 1(mod 2)).

Karlin (1967) introduced function α(x) = max{j| pj ≥ 1/x} and proved
that (1.2) implies α(x) = xθL(x, θ), and L(x, θ) is a slowly varying function
as x → ∞.

Karlin proved SLLNs for all the statistics under (1.2). Karlin proved
CLTs for Rn, Un and vector (Rn,1, . . . , Rn,d) for any finite d.

Karlin proved that asymptotics of expectations of all of the statistics are
proportional to α(n) with some coefficient depending on θ only. This law
was found for texts empirically (with L(x, θ) = L(θ)) by Herdan (1960) and
Heaps (1978, Sect. 3.7). It is interesting that modern large-scale studies
of languages show a deviation from this law (Petersen et al., 2012) that is
interpreted as a decrease in need of acquiring new words.

The authors do not know of any estimator of θ with proved asymptotic
normality. An estimator by Zakrevskaya and Kovalevskii (2001) found by a
substitution method is (we will see it) asymptotically normal for Zipf’s law
but authors proved consistency only. An estimator of Chebunin (2014) is
strongly consistent but is not asymptotically normal. We will prove asymp-
totic normality of estimators of Ohannessian and Dahleh (2012) under (1.1)
but authors proved only strong consistency under (1.2).

The rest of the paper is organized as follows. In Section 2 we construct
asymptotically normal estimators of θ using only one of the statistics. This is
possible only if constant C is known (it can be a differentiable function of θ)
in (1.1), and all the estimators are implicit in this case. In Section 3 we prove
asymptotic normality of estimators based on two statistics. We use mul-
tidimensional CLTs for (Rn,1, . . . , Rn,d) proved by Karlin (1967) and for
(Rn, Rn,1, . . . , Rn,d) proved in Appendix in a functional generalization.

We use designation ⇒ N0,σ2 for weak convergence to a normal distribu-
tion with zero mean and variance σ2. All convergencies are under n → ∞.
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2 Implicit Estimators Using One Statistics

We prove a general theorem for some abstract statistics Sn in infinite
urn scheme with required properties. Then we prove that these properties
are satisfied for all statistics under consideration if one assumes (1.1).

Let Sn/n
θl(n, θ)

a.s.→ 1 as n → ∞, where l(θ, n) is a slowly varying func-
tion. Let us define θ∗n ∈ (0, 1) as a solution of the equation

Sn = nθl(θ, n). (2.1)

As lnSn − θ lnn− ln l(θ, n) → 0, so

lnSn

lnn

a.s.→ θ, and
lnSn

lnn
− θ∗n =

ln l(θ∗n, n)

lnn

a.s.→ 0.

So θ∗n is a strongly consistent estimator of θ. We will study asymptotic
normality of θ∗n. Let

ESn = nθl(θ, n)+o(
√
ESn),

VarSn

ESn
→ σ2,

Sn

ESn

a.s.→ 1,
Sn −ESn√

VarSn
⇒ N0,1,

(2.2)
l(θ, n) is a slowly varying function as n → ∞.

Theorem 1. Suppose (2.2) holds and

ln l(θ∗n, n)− ln l(θ, n)

(θ∗n − θ) lnn

def
= l̃n

p→ 0,

θ∗n is a solution of (2.1). Then

lnn
√
Sn(θ

∗
n − θ) ⇒ N0,σ2 .

Proof. S0
n := Sn−nθl(θ,n)√

VarSn
⇒ N0,1. From (2.2)

lnSn − ln(nθl(θ, n)) = ln

(
1 +

Sn

nθl(θ, n)
− 1

)
a.s.∼ Sn

nθl(θ, n)
− 1

as n → ∞. Then

S0
n =

nθl(θ, n)√
VarSn

(
Sn

nθl(θ, n)
− 1

)
a.s.∼

√
nθl(θ, n)

σ2

(
Sn

nθl(θ, n)
− 1

)
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a.s.∼
√

Sn

σ2
(lnSn−θ lnn−ln l(θ, n))=

√
Sn

σ2
(θ∗n lnn+ln l(θ∗n, n)−θ lnn−ln l(θ, n))

=lnn

√
Sn

σ2
(θ∗n−θ)

(
1+

ln l(θ∗n, n)−ln l(θ, n)

(θ∗n−θ) lnn

)

∼ lnn

√
Sn

σ2
(θ∗n−θ)

in probability as n → ∞. The theorem is proved.

If l(θ, x) = l(θ) is differentiable on θ then l̃n
a.s.→ 0 as n → ∞. Really,

θ∗n
a.s.→ θ, and

l̃n =
ln l(θ∗n)− ln l(θ)

(θ∗n − θ) lnn

a.s.∼ l′θ(θ)

l(θ) lnn

a.s.→ 0.

Let θ ∈ (0, 1), (1.2) holds and L0(n, θ) → c(θ) as n → ∞. Then α(x) =
α(x, θ) ∼ xθcθ. For example,

pi(θ) =
(i− i0)

−1/θ

ζ(1/θ)
, i > i0,

i0 is integer, ζ(z) =
∑∞

j=1 j
−z is Riemann zeta function. In this case

α(θ, n) = [(nζ(1/θ))θ] + i0. From SLLN

lnRn − θ lnn− ln(Γ(1− θ)cθ) = lnn

(
lnRn

lnn
− θ

)
− ln(Γ(1− θ)cθ)

a.s.→ 0.

If we use estimator θ∗n = lnRn/ lnn (it is consistent, Chebunin 2014) then
lnn(θ∗n − θ) tends to some constant a.s. So we need an implicit estimators
for asymptotic normality. We construct implicit estimators based on Rn, Un

or Rn,k. Karlin (1967) proved

ERn ∼ Γ(1− θ)cθnθ, VarRn ∼
(
2θ − 1

)
Γ(1− θ)cθnθ,

VarRn

ERn
→ 2θ − 1,

EUn ∼ 2θ−1Γ(1− θ)cθnθ, VarUn ∼ 4θ−1Γ(1− θ)cθnθ,
VarUn

EUn
→ 2θ−1,

ERn,k ∼ θ
Γ(k − θ)

k!
cθnθ, VarRn,k ∼ θ

k!

(
Γ(k − θ)− 2θΓ(2k − θ)

22kk!

)
cθnθ,

VarRn,k

ERn,k
→ 1− 2θΓ(2k − θ)

22kk!Γ(k − θ)
.
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Lemma 1. If α(x) = (cx)θ + o(x
θ
2 ) then

ERn = Γ(1− θ)cθnθ + o(n
θ
2 ), EUn = 2θ−1Γ(1− θ)cθnθ + o(n

θ
2 ),

ERn,k = θ
Γ(k − θ)

k!
cθnθ + o(n

θ
2 ).

Proof. The following asymptotics hold under (2) (see Karlin 1967 and
Gnedin et al. 2007, Lemma 1)

E(Rn −RΠ(n)) → 0, E(Un − UΠ(n)) → 0, E(Rn,k −RΠ(n),k) → 0.

We use Karlin (1967) representation, integration by parts and substitution
nt = x to get

ERΠ(n)=

∫ ∞

0

(
1−e−n/x

)
dα(x)=

∫ ∞

0
α(x)nx−2e−n/xdx

=

∫ ∞

0
((cnt)θ+o((nt)

θ
2 ))t−2e−1/tdt=Γ(1−θ)cθnθ+o(n

θ
2 ).

Similarly for EUΠ(n) and ERΠ(n),k. The proof is complete.

Lemma 2. If (1.1) holds then α(x) = (cx)θ + o(x
θ
2 ).

Proof. For any fixed θ ∈ (0, 1), convergence i → ∞ takes place if and
only if x → ∞. Let us solve equation c·i−1/θ(1+β(i)) = 1

x for x large enough,

β(i) = o(i−
1
2 ). We have

i = (cx)θ(1 + β(i))θ = (cx)θ(1 + β̃(i)), (2.3)

β̃(i) = (1+β(i))θ−1 = i−1/2 ·o(1) = (cx)−θ/2(1+ β̃(i))−1/2 ·o(1) = o(x−θ/2).

From (2.3),

i = (cx)θ + o(x
θ
2 ).

The proof is complete.

Corollary 1. If (1.1) holds, c is known, dc
dθ exists, θ∗n,R, θ

∗
n,U , θ

∗
n,k are

the solutions of the equations

Rn = Γ(1− θ)(cn)θ, Un = 2θ−1Γ(1− θ)(cn)θ, Rn,k = θ
Γ(k − θ)

k!
(cn)θ

respectively, then

lnn
√
Rn(θ

∗
n,R − θ) ⇒ N0,2θ−1, lnn

√
Un(θ

∗
n,U − θ) ⇒ N0,2θ−1 ,

lnn
√
Rn,k(θ

∗
n,k − θ) ⇒ N0,σ2 , σ2 = 1− 2θΓ(2k − θ)

22kk!Γ(k − θ)
.
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Implicit equations of Corollary 1 rarely can be solved in explicit form.
An example of family of distributions with explicit estimator of θ is a family
with c = c1(Γ(1 − θ))−1/θ in (1.1). Here c1 is a known constant that does
not depend on θ. In this case θ∗n = lnRn/ ln(c1n).

Note that one can find similar implicit estimators in more general as-
sumptions than (1.1). For example, one can prove analogs of Theorem 1
and Corollary 1 for function

α(x) =

K∑

i=1

(cix)
βi + o(xθ/2)

with differentiable functions ci(θ) > 0, βi(θ) ∈ [θ/2, θ].

3 Explicit Estimators on a Base of Two Statistics

Let the parameter (function) c be unknown. In this case we need two
statistics to estimate θ. Some of the following estimators are proposed by
Ohannessian and Dahleh (2012). We prove their asymptotical normality.
Note that rates of convergence are lower in this case.

Theorem 2. If
ERn,1−θERn√

α(n)
→ 0 then

√
Rn

(
Rn,1

Rn
− θ

)
⇒ N0,σ2

0
,

σ2
0 = θ((9θ − 1)2θ−2 + 1− θ).

Proof. Using SLLN we have

√
Rn

(
Rn,1

Rn
− θ

)
=

Rn,1 − θRn√
Rn

a.s.∼ Rn,1 − θRn√
Γ(1− θ)α(n)

a.s.∼ Rn,1−ERn,1−θ(Rn −ERn)√
Γ(1−θ)α(n)

=
1√

Γ(1−θ)

(
Rn,1−ERn,1√

α(n)
−θ

Rn−ERn√
α(n)

)
.

Then we calculate limiting variance using Corollary 3. The proof is complete.

Note that σ2
0 < 4 for θ ∈ (0, 1).

Theorem 3. If
(k−θ)ERn,k−(k+1)ERn,k+1√

α(n)
→ 0 then

√
Rn,k

(
kRn,k − (k + 1)Rn,k+1

Rn,k
− θ

)
⇒ N0,σ2

k
,

σ2
k = (k − θ)(2k + 1− θ)− (2k − θ + θ2)

k22k+2−θB(k − θ, k)
,

B is a Beta function.
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Proof. Using SLLN we have

√
Rn,k

(
kRn,k − (k + 1)Rn,k+1

Rn,k
− θ

)
=

(k − θ)Rn,k − (k + 1)Rn,k+1√
Rn,k

a.s.∼ (k − θ)(Rn,k −ERn,k)− (k + 1)(Rn,k+1 −ERn,k+1)√
θΓ(k−θ)

k! α(n)

=
1√

θΓ(k−θ)
k!

(
(k − θ)

Rn,k −ERn,k√
α(n)

−(k + 1)
Rn,k+1 −ERn,k+1√

α(n)

)
.

Then we calculate limiting variance on the base of Theorem 5 in Karlin
(1967). The proof is complete.

From Lemmas 1 and 2 we obtain the following corollary.

Corollary 2. Assumptions of Theorems 2 and 3 are held under (1.1).
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Appendix: Functional Central Limit Theorem

Let for t ∈ [0, 1], k ≥ 1

Y ∗
n,k(t) =

R∗
[nt],k −ER∗

[nt],k

(α(n))1/2
, Yn,k(t) =

R[nt],k −ER[nt],k

(α(n))1/2
.

Theorem 4. Let us assume that (1.2) holds, ν ≥ 1 is integer. Then
random process

(
(Y ∗

n,1(t), Yn,1(t), . . . , Yn,ν(t)), 0 ≤ t ≤ 1
)
converges weakly
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in the uniform metrics in D(0, 1) to (ν + 1)-dimensional Gaussian pro-
cess with continuous sample paths, zero expectation and covariance function
(cij(τ, t))

ν
i,j=0,

cij(τ, t) =
θτ i(t− τ)j−itθ−jΓ(j − θ)

i!(j − i)!
− θτ itj(t+ τ)θ−i−jΓ(i+ j − θ)

i!j!

for 1 ≤ i ≤ j, τ ≤ t,

cij(τ, t) = −θτ itj(t+ τ)θ−i−jΓ(i+ j − θ)

i!j!
for i > j ≥ 1, τ ≤ t,

c00(τ, t) =
(
(t+ τ)θ − tθ

)
Γ(1− θ) for τ ≤ t,

ci0(τ, t) = −θτ i(t+ τ)θ−iΓ(i− θ)

i!
for i > 0, τ ≤ t,

c0j(τ, t) =
θ((t− τ)jtθ−j − tj(t+ τ)θ−j)Γ(j − θ)

j!
for j > 0, τ ≤ t,

cji(t, τ) = cij(τ, t).

Proof.

Theorem 3 by Chebunin and Kovalevskii (2016) states weak convergence
of vector random process

(
(Y ∗

n,1(t), . . . , Y
∗
n,ν(t)), 0 ≤ t ≤ 1

)
in the uniform

metrics in D(0, 1) to (ν + 1)-dimensional Gaussian process with continuous
sample paths, zero expectation and covariance function (c∗ij(τ, t))

ν
i,j=0.

The main focus of this paper was to prove tightness of components
(Y ∗

n,i(t), 0 ≤ t ≤ 1) by Poissonization and construction of an appropriate
inequality for covariances.

As Yn,i(t) = Y ∗
ni
(t)−Y ∗

n,i−1(t), we state tightness of components (Yn,i, 0 ≤
t ≤ 1) and calculate cij(τ, t) by formulas

cij(τ, t) = c∗ij(τ, t)− c∗i+1,j(τ, t)− c∗i,j+1(τ, t) + c∗i+1,j+1(τ, t),

c0j(τ, t) = c∗1j(τ, t)− c∗1,j+1(τ, t), ci0(τ, t) = c∗i1(τ, t)− c∗i+1,1(τ, t).

The proof is complete.

The limiting (ν + 1)-dimensional Gaussian process is self-similar with
Hurst parameter H = θ/2 < 1/2. Its first component coincides in distribu-
tion with the first component of the limiting process in Theorem 1 in Durieu
and Wang (2016).

We need some specific corollary to calculate limiting variance in Theorem 2.
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Corollary 3. In assumptions of Theorem 4, random vector ((Y ∗
n,1(1),

Yn,1(1)) converges weakly to a normal one with zero mean and covariance
matrix

Γ(1− θ)

(
2θ − 1 −θ2θ−1

−θ2θ−1 θ(1− 2θ−2(1− θ))

)
.
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