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Abstract

While spherical data arises in many contexts, including in directional statis-
tics, the current tools for density estimation and population comparison on
spheres are quite limited. Popular approaches for comparing populations (on
Euclidean domains) mostly involve a two-step procedure: (1) estimate proba-
bility density functions (pdf s) from their respective samples, most commonly
using the kernel density estimator, and (2) compare pdf s using a metric such
as the L

2 norm. However, both the estimated pdf s and their differences
depend heavily on the chosen kernels, bandwidths, and sample sizes. Here
we develop a framework for comparing spherical populations that is robust
to these choices. Essentially, we characterize pdf s on spherical domains by
quantifying their smoothness. Our framework uses a spectral representation,
with densities represented by their coefficients with respect to the eigenfunc-
tions of the Laplacian operator on a sphere. The change in smoothness,
akin to using different kernel bandwidths, is controlled by exponential de-
cays in coefficient values. Then we derive a proper distance for comparing pdf
coefficients while equalizing smoothness levels, negating influences of sam-
ple size and bandwidth. This signifies a fair and meaningful comparisons
of populations, despite vastly different sample sizes, and leads to a robust
and improved performance. We demonstrate this framework using examples
of variables on S

1 and S
2, and evaluate its performance using a number of

simulations and real data experiments.
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1 Introduction

The estimation of probability density functions (pdf s) and comparisons
of underlying populations are fundamental problems in statistics. In a vari-
ety of situations, where data satisfy some natural constraints, it is better to
view and analyze data as elements of a non-Euclidean manifold. A simple
example is directional statistics, where one deals with analysis of data on
a unit sphere. In order to understand the limitations of current solutions,
for estimating and comparing densities on spherical domains, we start with
a discussion of methods in Euclidean domains. The classical nonparametric
estimate of a pdf, given samples from that density, is a kernel density esti-
mate (Rosenblatt, 1956; Parzen, 1962). This approach is commonly used for
Euclidean domains but can be easily adapted to spheres also. There are two
key choices to be made in this estimation: (1) the kernel function, a sym-
metric unimodal function that integrates to one, and (2) the bandwidth. It
is widely acknowledged that the choice of bandwidth is more influential than
the choice of kernel in terms of pdf estimation performance. Henceforth, in
this paper, we will fix the kernel to be an isotropic (i.e., circularly symmet-
ric) Gaussian-type kernel and focus on the issues arising from using different
bandwidths. The choice of Gaussian kernel facilitates a group structure that
will be exploited later in this paper. To highlight the importance of band-
width in density estimation, Fig. 1 shows an example of pdf estimation in
R
1. The panel (a) shows several estimates of the pdf for different bandwidths

on the same data. Another factor that drastically affects the final estimate
is the sample size, as highlighted in Fig. 1b.

Our interest in this paper is more on comparing populations rather than
just estimating pdf. If we use kernel density estimates and compare them
using one of standard metrics, the results will naturally be very sensitive to
the choice of bandwidths and sample sizes. In order to make this comparison
robust to low sample size and different bandwidth choices, there are several
possibilities:

1. Use a fixed bandwidth. We can fix a bandwidth for all pdf esti-
mates, and then use any function norm (Cha, 2007) for comparison.
While this is a convenient strategy, it suffers from the problem that
the final answer will strongly depend on the sample size (Marron and
Schmitz, 1992) (also illustrated in Fig. 1). Different sample sizes can
lead to very different pdf estimates when using the same bandwidth
despite coming from the same underlying distribution.

2. Use an adaptive bandwidth. We can use one of bandwidth selection
methods (Jones et al. 1996a, b; Bowman 1984; Scott and Terrell 1987;
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Figure 1: Examples of kernel density estimation. a and b Kernel estimates
under different bandwidths and sample sizes. c and d Estimated densities
in (a) and (b) at the same smoothness level as the true density. Here, “bd”
indicates the bandwidth and “N” indicates the sample size

Turlach 1993; Botev et al. 2010) to estimate pdf s and then compare
them. However, there is no consensus on which approach works best
in general scenarios. Most bandwidth selection methods are based
on minimizing the integrated squared error or the mean integrated
squared error (MISE), but they often fail in practice because the true
pdf that is necessary for calculating these quantities is unknown.

3. Use a fixed smoothness level. Another solution, coming from a
very different perspective, is to focus on the smoothness of the esti-
mated pdf s rather than on the bandwidth, which is the main idea of
this paper. We want to quantify the level of smoothness of a pdf as
a function and use that in the following way. For any two estimated
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pdf s being compared, one can bring them to the same level of smooth-
ness, irrespective of their initial bandwidths and sample sizes. Since
even the classical estimation theory makes assumption about smooth-
ness of underlying density (Marron and Nolan, 1988; Chaudhuri and
Marron, 2000), it is a natural criterion to include in estimation. Fur-
thermore, this property can be easily manipulated, as described later,
and provides robustness against the choice of bandwidths and sample
sizes. Figure 1 bottom row shows pdf estimates from the top row after
they have been processed to equalize their smoothness level (details of
this process are presented later). Now these estimates appear far more
similar to each other than before, as they should be.

While comparisons of populations are needed everywhere, we consider
two important applications. The first application is in computer vision and
image analysis, where a variety of image analysis techniques rely on speci-
fying certain features of interest, e.g., Haar (Viola and Jones, 2001), HOG
(Dalal and Triggs, 2005), SIFT (Lowe, 2004) and so on, and comparing differ-
ences in estimated densities of these features. The second application is the
two-sample hypothesis testing. Any measure of difference between estimated
densities is a natural statistic for two-sample test, e.g. Kolmogorov-Smirnov
(KS) test (Smirnov, 1948). Such methods depend on kernel density esti-
mates, and the bandwidth parameter strongly influences final results. It will
be very useful to develop a metric that depends on something that is more
intrinsically related to the underlying densities rather than the bandwidth
parameter, and is robust to variability in sample size.

The kernel-based density estimation is essentially a problem of smoothing
data. Given a random sample {x1, x2, ..., xT }, the empirical density function
is given by fE(x) = T−1

∑T
i=1 δ(x − xi), where δ(x) denotes a point mass

at x. The convolution of fE(x) with a kernel function Kh(x) gives us an
estimated pdf (fE ∗ Kh)(x) = T−1

∑T
i=1Kh(x − xi), where ∗ denotes the

convolution operation. If Kh(x) is the Gaussian kernel with a bandwidth
h, the convolution process is called Gaussian smoothing or blurring. This
smoothing is similar to the Gaussian blur of images (Zhang et al., 2013). As
described there, one can study Gaussian blur as a solution of heat diffusion
equation with appropriate initial condition. It turns out that the set of
all isotropic Gaussian kernels, under all possible bandwidths, form a group.
The orbit of density functions under this group action defines an equivalence
class; in the current context, it can be viewed as the set of all pdf s estimated
from the same data but with different bandwidths. This solution naturally
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applies to spherical domains also and is therefore a good solution for density
estimation and population comparison on a sphere.

The novel contributions of this paper are as follows. (1) Given kernel
density estimates on a spherical domain, estimated using Gaussian kernel
with arbitrary bandwidths, our framework identifies the equivalence classes
to which they belong. It then compares these estimates by comparing their
equivalence classes, and thus is robust to the original bandwidth parameter.
(2) We define a function G that quantifies smoothness of pdf s, and use it
to specify the section of action of the blurring group. Two functions are
in the same section if they have the same level of smoothness. (3) This
framework is applied to develop a two-sample hypothesis test where pdf s
estimated from data with arbitrary sample sizes are brought to the same
smoothness level, i.e., the same section, and then compared via a manifold
distance.

The rest of the paper is organized as follows. In Section 2, we lay out
the mathematical foundation of our approach. In Section 3, we apply this
framework to the kernel density estimation and population comparison on
different spherical domains. In Section 4, we develop a two-sample hypoth-
esis test and in Section 5 we provide a variety of experimental results using
simulated and real data.

2 Mathematical Framework

We start by outlining mathematical details of our framework, including
Gaussian heat kernel, kernel density estimation, bandwidth selection, and a
metric for comparing estimated densities.

2.1. Heat Equation for Density Estimation Let F denote the set of
smooth, non-negative functions on a domain D, and F0 be the subset of
pdf s. That is, F = {f : D → R

+|f is smooth}, and F0 = {f ∈ F|
∫
D f = 1}.

Let L : F → F be the standard Laplacian operator on F . In this paper,
we consider the compact domains such as D = S

1 (a circle), S
1 × S

1 (a
torus) and S

2 (a sphere). For each of these compact domains, it is easy to
find an orthonormal Hilbert basis of L2(D,R) with the property that every
basis element is an eigenfunction of the Laplace operator. Extension to
Euclidean domains such as R1 and R

2 will be also discussed later although
the Laplacian operator is defined differently in such non-compact domains.

For D = S
1, we have L · f = −∂2f

∂x2 ; for D = S
1 × S

1, L · f = −∂2f
∂x2

1
− ∂2f

∂x2
2

for x = (x1, x2), and for D = S
2, L · f = − 1

sin2 ϕ
∂2

∂θ2
− 1

sinϕ
∂
∂ϕ

(
sinϕ ∂

∂ϕ

)
for

the spherical coordinate x = (θ, φ), where θ ∈ [0, π] is the polar angle and
ϕ ∈ [0, 2π) is the azimuthal angle.
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The kernel density estimator based on sample data {x1, x2, · · · , xT } with
xi ∈ D is f̂h(x) = T−1

∑T
i=1Kh(x−xi), where Kh(x) is the Gaussian kernel

on D, and h ∈ R
+ is the bandwidth. If we treat the bandwidth as time,

the smoothness of the estimated density will increase as the time increases.
Another way to state this is to use the classical heat diffusion equation:

∂f(t, x)

∂t
= −(L · f)(t, x), (2.1)

where L is the Laplacian operator. The Gaussian kernel Kh(x) used in this
paper needs to satisfy this heat equation (Hartman and Watson, 1974) . In
Eq. 2.1, the value of t has the same effect as h in the kernel estimate, and
therefore, the time parameter in heat diffusion resembles the bandwidth in
kernel density estimation. If we set the initial heat to be a given function say
f0(x) ∈ F0 (a kernel density estimate using a bandwidth h0), the solution
f(t, ·) for t > 0 is also a kernel density estimate with a larger bandwidth
h0+h for some h > 0. For more mathematical details on the heat equation,
readers are referred to Lindeberg (1990) and (Chaudhuri and Marron, 2000).

We represent a smooth pdf f0 ∈ F0 on the domain D via its coefficients
under a complete orthonormal basis set. Assuming that the domain D is
a compact domain, e.g., D = S

1, and using the L
2 metric on F , we define

a complete orthonormal Hilbert basis {φ0, φ1, φ2, ...}, where each φn is an
eigenfunction of L with eigenvalue λn, i.e., L ·φn = λnφn. Assuming that φ0

is a constant function, we have λ0 = 0, and all other λns are positive due to
the positive definiteness of L. Any element f0 ∈ F0 can then be expressed as
f0(x) =

∑∞
n=0 cnφn(x). In practice, we use a basis set of size N < ∞ to make

this representation finite. So f0 is (approximately) represented by a vector
c ≡ {cn, n = 0, ..., N} ∈ R

N+1. Note that for a rough density function, one
may need a large N to more accurately represent the function. We define a
mapping Π : F �→ R

N+1, i.e., Π(f) = c for c ∈ R
N+1. As specified thus far,

Π is a many-to-one map meaning that its inverse is set-valued. However, we
will use Π−1(c) to denote a specific density function given by

∑N
n=0 cnφn(x)

(because of the constraint of a density function, we slightly adjust c0 such
that

∫
D

∑N
n=0 cnφn(x)dx = 1).

The advantage of the chosen basis is that after expressing functions with
coefficients under this basis, we can easily express the solution for the heat
equation analytically. If f(t, x) is the solution of the heat equation, with the
initial heat distribution f0(x) =

∑
cnφn(x), then this solution takes the form
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f(t, x) =
∑N

n=0 e
−λntcnφn(x). Using simple calculus one can verify that the

right part of the heat equation is

−L · f(t, x) =
N∑

n=1

e−λntcn(L · φn) = −
N∑

n=1

e−λntcnλnφn,

and the left part of the heat equation is

∂f(t, x)

∂t
= −

N∑

n=0

λne
−λntcnφn .

Therefore,−(L·f)(t, x) exactly equals to ∂f(t, x)/∂t, and f(t, x)=
∑N

n=0 e
−λnt

cnφn(x) is the solution of the heat equation. In other words, f(t, x) =∑N
n=0 e

−λntcnφn(x) is another kernel estimated density with a bandwidth
larger than that of f0, and one can use a vector c̃ ∈ R

N+1, where c̃ ≡
{c̃n, n = 0, ..., N |c̃n = e−λntcn}, to represent the f(t, x).

2.2. Quantify Smoothness Levels using Sections Any smooth pdf can
now be (approximately) represented by an element of RN+1. We observe
that the set R of smoothing parameter t in Eq. 2.1 has a natural group
structure under addition operation (see Boothby (2003), Chapter 3), and its
action on R

N+1 is given by the mapping R× R
N+1 → R

N+1:

(t, {c0, c1, c2, ..., cN}) → {e−λ0tc0, e
−λ1tc1, e

−λ2tc2, ..., e
−λN tcN}. (2.2)

For f0 ∈ F , and its finite representation c ∈ R
N+1, the orbit under the

group action is:

[c] = {c̃ ∈ R
N+1|c̃n = e−λntcn, ∀n, for some t ∈ R}. (2.3)

In the kernel density estimation scenario, the group action in Eq. 2.2 can be
understood as follows. We first use a bandwidth h0 to estimate the density
(using a Gaussian kernel) and set the estimate as the initial heat, denoted
as f0 (represented by a vector {cn, n = 0, ..., N} ∈ R

N+1). For a positive
time t > 0, f(t, x) ≡ {e−λ0tc0, e

−λ1tc1, ..., e
−λN tcN} is the kernel estimate

with bandwidth h0 + |h| for some h; for a negative time t < 0, f(t, x) is the
kernel estimate with bandwidth h0−|h|. The orbit of f0 (defined in Eq. 2.3)
is the set of all possible smoothed versions of f0. It can be deemed as an
equivalence class for the purpose of comparing densities.
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Orthogonal Section Under Smoothing Action Under this geome-
try, the vector space R

N+1 becomes a disjoint union of orbits (equivalence
classes). Moving along each orbit, toward the direction of increasing t, the
kernel estimated densities become smoother and vice-versa. To compare
densities, we compare their orbits, i.e., define a distance between these equiv-
alence classes. However, since we do not have any metric under which the
group action is by isometries, i.e., the orbits are not parallel, we use the
concept of orthogonal section for comparisons. An orthogonal section of
R
N+1 under the group action is defined to be a set S such that: (1) one and

only one element of every orbit [c] in R
N+1 presents in S; (2) the set S is

perpendicular to every orbit at the point of intersection.
We construct an orthogonal section S as follows. First we define a func-

tional G : F → R by G(f0) =
∫
D f0(x)(L · f0)(x)dx. Using the integration

by parts, G can be rewritten as G(f0) =
∫
D 〈∇f0(x),∇f0(x)〉 dx. Since G

relates to the norm of the gradient, it measures the first order roughness of
function f0. Also, since f0 is represented by its coefficients as an element of
R
N+1, it is convenient to rewrite G as the mapping G : RN+1 → R given

by G(c) =
∑N

n=0 λn(cn)
2. In our paper, λ0 = 0 (because φ0 is a constant,

see Section 2.1), so the summation starts from n = 1. For a positive real
constant κ > 0, we define a section Sκ under the blurring group R as

Sκ = G−1(κ) ∈ R
N =

{

c ∈ R
N |

N∑

n=1

λn(cn)
2 = κ, κ > 0

}

. (2.4)

Each point in Sκ represents a pdf with smoothness level equal to κ (as
measured by the G function). By definition, Sκ is a set perpendicular to
every orbit and, therefore, one can think of Sκ as a level set containing pdf s
at the same level of smoothness. A formal proof is presented in the Appendix.
Since the λns are all positive, Sκ is actually an (N − 1)-dimension ellipsoid
in R

N . A cartoon illustration of the orbit [c] and level set Sκ are shown in
Fig. 2a.

To help understand these abstract concepts, we use a concrete example.
From a random sample {x1, x2, ..., xT }(xi ∈ D, drawn from a density func-
tion f), we construct two estimates, using the Gaussian kernel in D and
different bandwidths h1, h2, denoted as f̂h1 and f̂h2 . We use their finite rep-
resentations c1, c2 ∈ R

N+1 for analysis (Π(f̂h1) = c1 and Π(f̂h2) = c2), and
let G(c1) = κ1 and G(c2) = κ2. f̂h2(x) lies in the same orbit as f̂h1 , but
has a different smoothness level (κ2 �= κ1 if h1 �= h2). Now we want to bring
f̂h1 and f̂h2 to the same smoothness level. Without loss of generality, let us
assume h2 > h1. In this case we smooth f̂h1 (i.e., increase h1) to increase its
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Figure 2: a Cartoon illustration of geometry of the representation space
R
N+1. [ci]’s represent radial orbits, and Sκ’s represent the ellipsoidal level

sets defined in Eq. 2.4. b Illustration of calculating dκ using Algorithm 1. c1

and c2 are initially estimated densities. c̃1 and c̃2 in set Sκ1 have the same
smoothness level κ1. dκ1 denotes the geodesic distance between c̃1 and c̃2.
We also can select another smoothness level κ2 to calculate their distance
dκ2

smoothness level to κ2. The precise amount of smoothing required can be
solved by finding a t∗ ∈ R such that:

G((t∗, c1)) =
N∑

n=1

λne
−2λnt∗(c1n)

2 = κ2, where
N∑

n=1

λn(c
1
n)

2 = κ1.

This is the same as finding the intersection of the orbit [c1] with the level set
Sκ2 . Due to the monotonicity of the equation with respect to the parameter
t, we can use the bisection method to solve for t∗. If we have more than two
pdf estimates at different smoothness levels, we can always choose a certain
smoothness level, say κ, and bring them all to this level.

2.3. Measure Difference using Geodesic Distance The next problem is
how to quantify the difference between the two estimates after we bring
them to the same section. An idea is to use the L

2 distance: d(f̃1, f̃2) =
(
∫
D |f̃1(x)− f̃2(x)|2dx)1/2. However, note that Sκ has an ellipsoidal structure

in terms of the coefficient vector c ∈ R
N+1. A natural way is to treat Sκ

as a manifold, and quantify differences between points using geodesic dis-
tances. Although it is possible to have analytical expressions for geodesics
on ellipsoids in low dimensions, these formulas get very complicated as
the dimension grows. In this paper, we use a numerical method called
path-straightening algorithm (Klassen and Srivastava, 2006) to calculate the
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geodesic distance on an ellipsoid Sκ, and denote it as dκ. Details of this al-
gorithm are presented in the Appendix. Given a numerical tool to compute
these geodesic distances, we can now outline the full procedure for comparing
any two samples on the domain D.

Algorithm 1 (Numerical Calculation of dκ): Given any two arbitrary
kernel estimates f̂1, f̂2, and a smoothness level κ, the defined dκ(f̂1, f̂2) is
calculated in the following way:

1. Represent f̂1, f̂2 using coefficients under the defined orthonormal basis
{φ0, φ1, ..., φN}: f̂1 =

∑N
n=0 c

1
nφn(x), f̂2 =

∑N
n=0 c

2
nφi(x), and let ci ≡

{cin, n = 0, ..., N}, i = 1, 2. The orthonormal basis used is discussed in
Section 3.2.

2. Find t∗1, t
∗
2 to bring f̂1, f̂2 to the set (orthogonal section) Sκ by solving

equations:

N∑

n=1

λne
−2λnt∗1(c1n)

2 = κ,
N∑

n=1

λne
−2λnt∗2(c2n)

2 = κ.

Then, let c̃i ≡ {e−λnt∗i cin, n = 0, ..., N}, i = 1, 2.

3. Calculate dκ(f̂1, f̂2) on the ellipsoid Sκ using path-straightening algo-
rithm between two points c̃1 and c̃2.

Figure 2b illustrates Algorithm 1 in a cartoon form. It shows two orbits
[c1] and [c2] associated with two densities f̂1, f̂2. It also shows the actual
densities at different levels of smoothing (κ1 > κ2), for each orbit.

3 Kernel Density Estimation and Comparison

In this section, we present the complete framework for kernel density
estimation, representation and comparison on a unit sphere S

d, and discuss
its extensions to R

n.
3.1. Densities on Domain D = S

d To apply our framework to densities
on S

d, we need a Gaussian distribution that can be used as the kernel function
to estimate densities. In this paper, we focus on d = 1 and 2 but the
construction can be generalized to any d in principle. Our method assumes
that the Gaussian kernel used in estimation must be a heat kernel, i.e.,
the kernel itself is the solution of the heat equation. Hartman and Watson
(1974) pointed out that the widely used Fisher distribution which often plays
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the role of normal distribution on S
d is not a heat kernel. The heat kernel

Gaussian distribution on the circle S
1 is given as:

f(θ;μ, h) = (2π)−1

(

1 + 2
∞∑

m=0

exp(−m2h)cos(m(θ − μ))

)

, (3.1)

where θ ∈ [−π, π) is a point on S
1 and θ = 0 represents the “north” pole of

S
1, μ is the center of the distribution and h controls the variation. We can

easily verify that this distribution is a solution of the heat equation. When
d > 1, we have a d-sphere S

d = {x ∈ R
d+1 : |x| = 1}, the Gaussian kernel is

defined as:

f(x;μ, h) = A−1
d

∞∑

m=0

Ndm exp[−m(m+ d− 1)h]Pdm(〈x, μ〉),

where:

• Ad is the area of the sphere S
d, which equals 2π(d+1)/2/Γ((d+ 1)/2),

• m(m+ d− 1), for m = 0, 1, ...,∞, are the eigenvalues of the Laplacian
on S

d,

• Pdm is the Legendre polynomial of order m for Rd+1,

• Ndm is the number of linearly independent homogeneous spherical har-
monics of degree m in R

d+1, and

• 〈, 〉 indicates the inner product.

Taking d = 2 as one example, we haveNdm = (2m+1), the Legendre polynomial
can be expressed using Rodrigues’ formula: P2m(x)= 1

2mm!
dm

dxm

[
(x2 − 1)m

]
,

and A2 = 4π. So the heat kernel normal distribution on a unit 2-sphere is:

f(x;μ, h) =
1

4π

∞∑

m=0

(2m+ 1) exp[−m(m+ 1)h]P2m(〈x, μ〉). (3.2)

To estimate the density from a sample {x1, x2, ..., xT } on S
2, the kernel den-

sity estimation is given as f̂h(x) = (4Tπ)−1
∑T

i=1

∑∞
m=0(2m+1) exp[−m(m+

1)h]P2m(〈x, xi〉), where h is the bandwidth parameter.
To apply our framework, we need to find an orthonormal basis{φ0, φ1, φ2, ...}

for smooth functions on S
n. For this, we focus on two spheres, with d =

1 and 2. For S
1, we use the Fourier basis (L2([−π, π],R)): { 1√

2π
, cos θ√

π
,
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sin θ√
π
, cos 2θ√

π
, sin 2θ√

π
, ..., sinmθ√

π
, cosmθ√

π
}. With the Laplace operator L in domain

L
2([−π, π],R), we have Lφn = 
(n + 1)/2�2φn, and thus the eigenvalue

of φn is λn = 
(n + 1)/2�2. For d = 2, we use the spherical harmonics
basis as follows. Let θ ∈ [0, π] and ϕ ∈ [0, 2π) be the spherical coordi-
nates (to apply the kernel in Eq. 3.2, we need to represent both x and μ
in spherical coordinates). The spherical harmonics basis of degree l and
order m is denoted by Y m

l (θ, ϕ), where m = −l, ..., 0, ..., l. On the unit
sphere S

2, we have L ·Y m
l (θ, ϕ) = l(l+1)Y m

l (θ, ϕ), and thus if we rearrange
the spherical harmonics in the order of {Y 0

0 , Y
−1
1 , Y 0

1 , Y
1
1 , Y

−2
2 , ...}, the cor-

responding eigenvalue λn are {0, 2, 2, 2, 6, ...}. With the bases established,
each density can now be represented as the linear combination of the ba-
sis functions and coefficients, and Algorithm 1 can be applied to compare
densities.

3.2. Extension to Euclidean Domains D = R
n This method can be

easily extended to Euclidean domains such as R1 and R
2 for broader appli-

cability. Gaussian kernels satisfying the heat equation are readily available
for these domains (Lafferty and Lebanon, 2005). However, there is a techni-
cal issue in that these domains are not compact. Even we restrict to intervals
such as [0, 1] and [0, 1]2, there are some technical problems in directly apply-
ing the previously developed framework. Note that to represent a density
function in D we need an orthonormal Hilbert basis of L2(D,R) with the
property that L ·φn = λnφn, where φn is one of the basis functions. In terms
of this basis, the heat equation can be solved explicitly; by flowing this solu-
tion in the time direction, we obtain an R action that provides a very natural
way to “spread out” Gaussian type functions. If D is non-compact or has a
boundary, all of this is either impossible, or much more difficult (requiring
a choice of boundary conditions).

In this paper, to handle data in domains such as D = R
1 and R

2, we
first apply a state-of-the-art kernel density estimator in the original do-
main, and then detect the boundaries of the estimated densities. With
these boundaries, we map the estimated domain to S

1 or S1 × S
1, and thus

wrapping the estimated density onto these spherical domains. To be more
specific, for x ∈ R

d, the Gaussian kernel used is Kh(x). Let {x1, x2, ..., xT }
be a sample of d-variate random vectors drawn from an unknown distri-
bution with density function f . The Gaussian kernel density estimate is
f̂h(x) = T−1

∑n
i=iKh(x− xi). We then detect the boundary of f̂h in D,

wrap the function to [−π, π]d, and rescale all estimated densities to this
domain. If we have multiple functions, we detect their boundaries simulta-
neously and select an large interval that encloses all individual boundary as
the shared boundary for all functions. According to the final boundary, we
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wrap all functions to [−π, π]d for comparison. For d = 1, we use Fourier
basis on S

1 to represent functions in this space.

4 Two-sample Hypothesis Test

Since dκ measures the difference between estimated densities from two
samples, it is a natural statistic for a two-sample hypothesis test. Here we
develop a formal procedure using dκ.

Let f̂1 and f̂2 be two estimated densities from samples {x1, ..., xT1} and
{y1, ..., yT2} in D using the bandwidth h1 and h2, and let cj = {cji , i =

1, ...,∞}, j = 1, 2 denotes the finite representation for f̂j . The statistic

dκ(f̂1, f̂2) is calculated by the geodesic length between c̃1 and c̃2 on the
section Sκ, for a chosen κ. Under the assumptions T1, T2 → ∞, 0 < T1/T2 <
∞, h1 = h2 and null hypothesis H0 that f1 = f2, it is possible to simplify the
test statistic dκ by replacing it with the Euclidean distance (chord length)

between c1 and c2: dκ(f̂1, f̂2) ≈
√∑∞

i=1(c
1
i − c2i )

2. Using Parseval’s identity

it becomes
∑∞

i=1(c
1
i − c2i )

2 =
∫
D(f̂1 − f̂2)

2dx. For the simplest case, where
D = S

1 and h1 = h2 = 1, according to Anderson et al. (1994), the asymptotic
expected value and variance of the test statistic Γ =

∫ π
−π(f̂1 − f̂2)

2dx are

given by EH0(Γ) = (T−1
1 + T−1

2 )J1 and varH0(Γ) ∼ (T−1
1 + T−1

2 )J2, where
J1 =

∫
K(x)2 −

∫
f2, J2 =

∫ ∫
M(x1, x2)

2f(x1)f(x2)dx1dx2, f = f1 = f2,
M(x1, x2) =

∫
{K(x − x1) − f(x)}{K(x − x2) − f(x)}dx, and K(x) is the

kernel function.
An asymptotic test may be based on the value of dκ, by rejecting the

null hypothesis if dκ exceeds the appropriate critical point. However, even
if use the aforementioned simplification, d2κ ≈ Γ, the distribution of d2κ is
not clear (Anderson et al., 1994). Furthermore, the explicit asymptotic
distribution of the actual statistic dκ (the arc-length on the ellipsoid) is even
harder to obtain. Thus, a more practical approach to the perform two-
sample test using dκ is to use the bootstrap method. Fixing a value of κ
for the whole experiment and letting {x∗1, ..., x∗T1

} and {y∗1, ..., y∗T2
} denote

independent re-samples drawn randomly with replacement from the pooled
sample set {x1, ..., xT1 , y1, ..., yT2}, the bootstrap approach is as follows:

i. Calculate the geodesic distance between kernel estimated densities
from the original two samples {x1, ..., xT1} and {y1, ..., yT2} on a chosen
section Sκ, denoted as d0κ.

ii. Draw bootstrap samples {x∗1, ..., x∗T1
} and {y∗1, ..., y∗T2

}, and calculate
the geodesic distance between kernel estimated densities from these
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samples on the section Sκ, denoted as dbκ. Repeat this procedure many
times and obtain an empirical distribution of dbκ.

iii. Given 0 < α < 1 (the significance level), if P (d0κ > dbκ) ≤ α, we reject
the null hypothesis.

5 Selection of Tuning Parameter κ

Given any constant κ > 0, we can construct an orthogonal section Sκ =
G−1(κ), where κ denotes the level of smoothness. Thus, it is important for
us to choose a proper κ and the corresponding section Sκ for comparing
densities.

Let us consider a scenario of comparing two densities f̂1 and f̂2, and their
finite representations c1 and c2 ∈ R

N+1. Let G(f̂1) = κ1 and G(f̂2) = κ2
(assume κ1 > κ2). We can choose a κ ∈ [κ1, κ2] or even a value outside this
interval for evaluating their difference. If we choose a κ > κ2, we need a t < 0
to bring c2 to κ, i.e., G((t, c2)) = κ. However, this process is susceptible to
noise because the action is given by (t, c2) = {c20, e−λ1tc21, ..., e

−λN tc2N}. For
a negative t, this amounts to inflating the coefficients exponentially. Take
the basis for S

1 as one example, where we have λN = 
(N + 1)/2�, and
e−λN t can be a large number even for a small t < 0. If there is some noise in
cN (which is hard to avoid in real data due to numerical errors), such noise
will be amplified after multiplying e−λN t. Actually, this process is called
deblurring in image processing (Liu et al., 2014). Keeping this principle in
mind, we propose the following strategies to selected κ for the two focused
applications:

1. Two-sample hypothesis test: In this case, we have only two sam-
ples. We first estimate their nonparametric densities with some initial
bandwidths which can be obtained by using one of the automatic band-
width selection methods. Then, we choose the smaller of two κs to be
the smoothness level for performing the hypothesis testing.

2. Comparison of multiple samples: Given a set of samples, we first
use one of the automatic bandwidth selection methods to estimate
their densities. If training data are available, we will select κ by cross
validation. If training data are not available, we recommend to choose
κ such that the G-values (smoothness) of most estimated densities
(e.g., 90%) are larger than the selected κ.
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6 Experimental Results

In this section, we demonstrate our approach on some selected domains
using both simulated and real data.

6.1. Simulated Studies on S
1 or R

1

Comparing Densities Usins dκ We first consider the domain D = S
1.

Densities on S
1 can also be treated as those on an interval in R

1 via wrap-
ping S

1 for analysis. We started from two densities, f1 and f2, shown in
Fig. 3a. We then sampled n = 600 points from each and estimated densities
from samples using the kernel method (bandwidths were selected using the
method given in Botev et al. (2010)), with estimates shown in panel (b).
These functions were wrapped on to the domain S

1 and were represented
using basis functions with coefficients. We then manipulated their smooth-
ness levels according to the group action defined in Eq. 2.2. Figure 3c and d
show the two estimates after we matched their smoothness levels to κ = 7.4
and κ = 5, respectively. The corresponding geodesic distances between these
densities are 0.779 and 0.764.

Utilizing Known Smoothness to Improve Estimatation In this pa-
per, we have introduced a function G to quantify smoothness of an estimated
density function. As we know, for kernel density estimates, the bandwidth
also controls smoothness of an estimated density. Here we illustrate the con-
nections and differences of these two ways of governing smoothness. We sim-
ulated a density function f and sampled T points from it. Next, we estimated
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Figure 3: Illustration of using dκ for comparing two kernel estimated densi-
ties in R

1. a True densities, f1 and f2. b Kernel estimated densities from
their random samples (each with 600 samples). c and d After bringing them
to the same smoothness level (κ = 7.4 and 5, respectively). Their distances
are dκ = 0.779 and dκ = 0.746
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the density in two different ways: (a) use the optimal bandwidth that mini-
mizes the asymptotic MISE (Scott and Terrell, 1987) to estimate the density,
denoted as f̂ ; (b) first estimate the density using a smaller bandwidth and
then smooth it to the same smoothness level as that of the underlying true
density, denoted as f̃ . To compare these two estimates, we used the L2 norm
to measure the difference between the estimated density and the true density,
and the results are presented in Fig. 4. One can see that the L

2 differences
between the estimated density and the true density in both methods con-
verge to zero when the sample size increases. However, the latter solution
has smaller error and it converges at a faster rate. Notably, for small sample
sizes, one still can get a very good estimate after bringing the estimated
function to the correct smoothness level. The reason is that the smoothness
(as quantified by the function G) is an intrinsic property of a density func-
tion. If any prior information about the smoothness of the true density is
available, the proposed framework can more efficiently incorporate this prior
into the density estimation.

dκ as Test Statistic for Two-sample Test We are interested in using dκ
as a statistic for two-sample hypothesis testing and, further, in investigating
the effect of κ on the power of that test. We performed an experiment
where we simulated five pairs of densities f1 and f2 with similar smoothness
levels, and sampled n = 600 points from each density. The L1 norm between
these five pairs of functions are 0, 0.06, 0.14, 0.17, and 0.26, respectively.
The initial estimates were formed using an automatic bandwidth selection
method given in Botev et al. (2010). We then brought them to different pre-
specified smoothness levels for testing. Figure 5a shows the results, where the
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Figure 4: Comparison of density estimation using the optimal bandwidth
and optimal smoothness (evaluated by the G-value)
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Figure 5: Effects of κ on test performance. a κ value in x-axis and per-
centage of rejecting null hypothesis in y-axis. b Distributions of G-values of
estimated densities using Botev et al. (2010) in the simulation

x-axis is the smoothness level κ, and the y-axis shows the percentage (based
on 500 tests) of rejecting the null hypothesis. From the results, we can see
that the selection of κ is important. A big κ will smooth the estimated
densities too much, and therefore, eliminates their difference and reduces
the power of the test. Fortunately, in a relatively large range ([1.8, 2.6]), we
obtain a very good test performance. In panel (b), we show the histogram of
smoothness levels of estimated densities (of the 500 runs) using an automatic
bandwidth selection method (Botev et al., 2010) for each pair of simulated
functions. Following the second procedure of selecting κ in Section 5, we can
select κ ≈ 1.8 for all the five pairs for the hypothesis testing. This κ will
result in good performance: a small type I error (see pair 1), and a good
test power (see pairs 2, 3, and 4).

We also performed an extensive experiment to compare our results with
other two-sample test methods. We consider two different scenarios in this
experiment: (1) a case where the difference between f1 and f2 lies in the
tail; and (2) a case where the difference lies in the middle. Figure 6 col-
umn (a) shows the simulated densities (the first row shows scenario (1) and
the second row shows scenario (2)). We sampled 600 points from each den-
sity, and used them for the testing. We compared with four other tests: (i)
Kolmogorov-Smirnov (KS) test; (ii) test based on L

2 distance between es-
timated densities using a unit bandwidth (Fix BD) (Anderson et al., 1994)
and (ii) the optimal bandwidth (Opt BD) (Botev et al., 2010); and (iv)
maximum mean discrepancy (MMD) method (Gretton et al., 2012; 2007)
(a Gaussian kernel with a recommended bandwidth by Gretton et al. (2012)
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Figure 6: Two-sample hypothesis test in R
1. a shows one example of the

true densities f1 and f2. b shows the test performance.

was used). The κ in our method was chosen to be fixed at 2. In scenario (1),
our method outperforms the statistics of KS, Fix BD and Opt BD. When
the difference between f1 and f2 is small, our method has a smaller chance of
rejecting the null hypothesis (a lower type II error) compared to MMD and,
when the difference is large, our method has a bigger chance of rejecting the
null hypothesis (a higher test power) relative to MMD. In scenario (2), the
proposed method has a similar test power with MMD, but outperforms KS,
Fix BD and Opt BD.

6.2. Real Data Application in S
1 or R1 The geodesic distance dκ is not

only a statistic for the two-sample hypothesis testing but also a metric to
quantify differences between non-parametric densities. One potential ap-
plication is in the computer vision area, where features are extracted and
compared using their distributions (Liu and Wang, 2003; Chaudhry et al.,
2009; Osada et al., 2002), e.g., histograms. However, the choice of the num-
ber of bins has a large influence on the shapes of histograms. Instead of
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comparing the histograms, a better way of comparing two features is to
compare their kernel estimated densities, especially when using the distance
dκ.

We performed an experiment involving classification of images to illus-
trate advantages of dκ in comparing image features. According to Liu and
Wang (2003), the spectral histograms, which are nothing but marginal dis-
tributions of the image after convolving with some filters, can be used to
represent and classify texture images. Motivated by this argument, we con-
volved each texture image with 6 Gabor filters (Liu and Wang, 2003) of
size of 8 × 8, and the corresponding kernel estimated marginal distribu-
tions were computed and used as features to classify the texture images.
Figure 7 illustrates one example of comparing two texture images using dκ
(dκ=500 = 0.7793). Our classification dataset contains 54 texture images
from 6 different categories: leaves, food, fabric, buildings, brick, bark. Each
category has 9 images, and each image has size of 128×128. Some examples
of these images are shown in Fig. 8. In the classification experiment, we
chose these images one-by-one as queries and found their nearest neighbor
under the metric mentioned above. If the nearest neighbor image belongs
to the same category as the query image, we consider it as a success re-
trieval, otherwise as a failed one. We performed this process for every image
in the dataset. Table 1 shows the classification result. The numbers in the
table are number of successful retrievals for each category. We compared our

−100 −50 0 50 100
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0.15

0.2
Bark
Water

(a) Original texture images (b) Features (c) Kernel estimated densities

Figure 7: Comparison of features using dκ. Estimated densities in (c) were
brought to the same smoothness level
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Food Leaves Fabric Food

Figure 8: Example images in texture classification dataset

method with other five similarity measures. Assuming hist1 and hist2 repre-
sent two histograms of features, while f̂1 and f̂2 represent the corresponding
estimated densities, these similarity measures are:

1. Hist. (20): L
2 distance between histograms with 20 bins, defined as

D(hist1, hist2) = ‖hist1 − hist2‖2.

2. Hist. (100): L2 distance between histograms with 100 bins.

3. L
2: L

2 distance between estimated densities, defined as D(f̂1, f̂2) =
(
∫
(f̂1 − f̂2)

2dx)1/2.

4. χ2: χ2 distance, defined as D(f̂1, f̂2) =
∫
(f̂1 − f̂2)

2/(f̂1 + f̂2)dx.

5. Bhatt.: Bhattacharyya distance, defined asD(f̂1, f̂2) = 1−
∫
(f̂1f̂2)

1/2dx.

The kernel densities in this experiment were estimated with an auto-
mated bandwidth selection method in Botev et al. (2010). For each retrieval,
we used a different κ, which was selected based on the strategy presented in
Section 5 (by assuming that no training data are available). From this result,
we can see that, the proposed method outperforms the compared similarity

Table 1: Classification result of texture images
Categories Hist. (20) Hist. (100) L

2 χ2 Bhatt. dκ
Leaves(9) 3 3 5 5 4 9
Food(9) 6 6 6 7 6 7
Fabric(9) 2 2 3 3 3 3
Buildings(9) 5 6 6 7 7 7
Brick(9) 3 3 5 5 4 5
Bark(9) 4 4 5 5 3 5
Total (%) 23 (42.6) 24 (44.4) 30 (55.6) 32 (59.3) 27 (50.0) 36 (66.7)
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measures. Since this classification is only based on 6 features, with more fea-
tures, one can potentially improve the classification result by adding more
features.

6.3. Simulation Studies on S
2 Now we consider the unit two-sphere as

the domain of interest. We first compare the kernel densities estimated from
different random samples. We drew two sets of samples from two different
mixtures of Von Mises-Fisher distributions, with sample size of 200 for each
sets. The heat kernel on S

2 in Eq. 3.2 was used to estimate densities. Note
that the summation in Eq. 3.2 has to be truncated in practice; only the first
M (a large integer) terms were kept to get an approximate Gaussian kernel.
In the simulation process, a sphere was parametrized using a 100 × 100
grid, and a kernel estimated density was fitted using 36 spherical harmonics
basis (up to the degree of 5). Since the data were simulated from smooth
distributions, those spherical harmonic functions are enough to represent
the estimated density. If we have a rougher function, more basis elements
become necessary. In Fig. 9 left panel shows a true density function that
we used to sample data, and the estimates with the bandwidths h = 0.1
and h = 0.3. Next, we compare dκ with the Fisher-Rao metric, which is
defined as dfr(g1, g2) = cos−1

(∫
D

√
g1
√
g2ds

)
for any densities g1, g2 on S

2.
The experiment results are shown in Table 2. Here we used κ = 0.2 for
our approach. This experiment shows that the proposed distance is almost
constant and not affected by the selected bandwidth, in contrast to the
Fisher-Rao distance that changes significantly with the bandwidth used.
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Two-sample hypothesis test on domain S
2
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Table 2: Comparison of dκ with Fisher-Rao distance
dκ Fisher-Rao (dfr)

Bandwidth (f2) Bandwidth (f2)

Bandwidth (f1) 0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2

0.05 0.1470 0.1478 0.1485 0.1492 0.4485 0.3857 0.3937 0.4275
0.1 0.1453 0.1461 0.1467 0.1475 0.4727 0.3466 0.2998 0.3015
0.15 0.1440 0.1447 0.1453 0.1459 0.5218 0.3699 0.2847 0.2489
0.2 0.1423 0.1429 0.1435 0.1439 0.5695 0.4089 0.3045 0.2413

Next, we used dκ to perform a two-sample hypothesis testing on S
2. We

simulated 16 pairs of density functions on S
2 with increasing L

1 distances
and sampled 500 data points from each of them. The bandwidth for density
estimation can be selected using a data driven method given in Klemelä
(2000). The test results are shown in Fig. 9 right panel. We have selected
a constant κ = 0.4 in the experiment (similar to the S

1 case). We only
compared with the L

2 metric since other testing methods (e.g., KS and
MMD) are not directly applicable for data on S

2.
6.4. Real Data Application on S

2 An interesting application of our ap-
proach on D = S

2 is in analyzing hurricane data for studying patterns of hur-
ricanes. In the result reported here, we used the Atlantic hurricane database
(HURDAT2) (Landsea et al., 2015), which contains hurricanes starting from
north Atlantic ocean and Gulf of Mexico. The database contains six-hourly
information on the location, maximum winds, central pressure and so on,
for each of the relevant hurricanes.

First, we are interested in analyzing the location distributions of hur-
ricanes starting from two different regions. In Fig. 10a shows two sets of
hurricanes according to their starting locations (in different colors), panel
(b) shows locations of these hurricanes after 60 hours, and panel (c) shows

(a) Starting points (b) After 60 hours (c) Ending points

Figure 10: Location distribution of hurricanes starting from different regions
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the ending points of them. Using dκ, we can measure the difference between
location distributions of these two sets of hurricanes after a certain period
of development. We can also perform a two-sample hypothesis testing to
see if the hurricane location distributions are different after a certain period
development. We randomly chose three pairs of sets of hurricanes and cal-
culated dκ for each pair. Table 3 shows the experiment result, where “1”
represents rejecting the null hypothesis and “0” represents failing to reject
the null hypothesis (based on the significance level α = 0.05). All dκ and
two-sample hypothesis tests were calculated on the section Sκ=1. From the
table we can see that the short-term evolution of hurricanes depends on their
starting points; however, as the time lag increases the dependence naturally
decreases, and eventually does not depend on the initial locations (e.g., the
first and second pair). However, when the initial locations are significantly
different, the ending points also are discriminative (e.g., the third pair). The
p-values of two-sample hypothesis tests for the three pairs at the ending stage
are p = 0.42, p = 0.07 and p = 0.00, respectively.

Next, we divided hurricanes starting from the Gulf of Mexico into two cat-
egories: (1) hurricanes started in [May, August], and (2) hurricanes started in
[September, December], and analyzed their ending points. Figure 11 shows
these two categories of hurricanes in yellow and green color, respectively.
In Fig. 11a shows the starting points of these hurricanes, panel (b) shows
the hurricane locations after 60 hours and panel (c) shows the ending points
of these hurricanes. Our results indicate that the distributions of starting
points of these two sets of hurricanes have no statistical difference. But after
60 hours’ development, the distributions of them are significantly different,
and the distributions of their ending points are also different. From Fig. 11,
we can see that most hurricanes proceed along the east coast of America,
and hurricanes in [May, August] in generate spread out faster and farther
than hurricanes in [September, December].

Table 3: Comparison of hurricanes starting at different locations on section
Sκ=1 (1 - reject the null hypothesis; 0 - fail to reject the null hypothesis)
Temporal info 0-h 6-h 12-h 18-h 24-h 30-h 60-h Ending

First pair dκ 0.1574 0.1527 0.1476 0.1423 0.1370 0.1318 0.1111 0.0341
Test 1 1 1 1 1 1 1 0

Second pair dκ 0.2331 0.2253 0.2176 0.2095 0.2020 0.1948 0.1682 0.0416
Test 1 1 1 1 1 1 1 0

Third pair dκ 0.4512 0.4403 0.4277 0.4169 0.4035 0.3915 0.3419 0.1417
Test 1 1 1 1 1 1 1 1
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(a) Starting points (b) After 60 hours (c) Ending points

Figure 11: Distribution of two sets of hurricanes in Gulf of Mexico. Hurri-
canes between [May, August] are marked in yellow and hurricanes between
[September, December] are marked in green

7 Summary

We have introduced a framework for metric-based comparison of den-
sities that have been estimated using an isotropic Gaussian kernel. This
comparison is based on quantifying the smoothness levels of density func-
tions and bringing them to the same level before performing comparisons.
The quantification and manipulation of the smoothing levels of pdf s are built
on an action of a smoothing group on the space of functions. This action
is implemented with the help of the heat equation whose solutions corre-
spond to a Gaussian isotopic smoothing of an initial function. A section of
this action is a set of all functions that have the same level of smoothness
and this set can be identified with an ellipsoid. Geodesic distances on this
ellipsoid provide a measure for comparing estimated densities. We use this
framework to derive a two-sample hypothesis test using geodesic distance as
a test statistic and bootstrap method for approximating distribution for this
test statistic. Through a variety of experiments and studies involving both
real and simulated data, we test the validity of this approach on several
domains including a unit circle, a unit interval, and two-dimensional unit
sphere. It is observed that the task of bringing estimated densities to the
same smoothness level reduces the effect of bandwidth and/or sample size
on density comparisons and significantly improves the test results.

Appendix

Proof that Sκ is an Orthogonal Section

An orthogonal section Sκ is a subset of RN+1 (coefficient representation
of densities) under the action of the group R (defined in Eq. 2.3 in the main
paper) if: (i) one and only one element of every orbit [c] in R

N+1 presents
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in Sκ, and (ii) the set Sκ is perpendicular to every orbit at the point of
intersection. The last property means that if Sκ intersects an orbit [c] at
c̃, then Tc̃(Sκ) ⊥ Tc̃([c]). We need to verify the two properties: (1) The
function t �→

∑
n e

−2λntλnc
2
n is a strictly monotonically-decreasing function

that ranges (+∞, 0). Thus, for any c ∈ R
N+1 and κ > 0, there exists a

unique t∗ such that
∑

n e
−2λnt∗λnc

2
n = κ. (2) At any point c ∈ Sκ, the space

normal to Sκ (inside R
N , notice that λ0 = 0) is a one-dimensional space

spanned by the vector nc = {λ1c1, λ2c2, . . . , λNcN}. Let uc denote the unit
vector in the normal direction uc = nc/‖nc‖. Since Sκ is a level set of G, it
is automatically perpendicular to uc and Tc([c]). In other words, the orbits
are just the flow lines for the gradient vector field of the function G and since
the level sets of a functional are perpendicular to the flow lines of gradient
of that function, it follows that the Sκ is perpendicular to these orbits.

Path Straightening Algorithm on Sκ

Here we present the path straightening algorithm for calculating dis-
tances on Sκ. We first list the following basic tools for the path straightening
algorithm.

1. Projection onto Mainfold Sκ: For any arbitrary point c ∈ R
N ,

we need a tool to project c to the nearest point in Sκ. One can find
this nearest point by iteratively updating c according to c �→ c+(κ−
G(c))uc, until G(c) = κ.

2. Projection onto the Tangent Space Tc(Sk): Given a vector w ∈
R
N , we need to project w onto Tc(Sκ). Since the unit normal to Sκ at

c is uc, the projection of w on Tc(Sκ) is given by w → (w−〈w,uc〉uc).

3. Covariant Derivative and Integral: Let α be a given path on Sκ,
i.e., α : [0, 1] → Sκ, and let w be a vector field along α, i.e., for each
τ ∈ [0, 1], w(τ) ∈ Tα(τ)(Sκ). We define the covariant derivative of w

along α, denoted Dw
dτ , to be the vector field obtained by projecting

dw
dτ (τ) ∈ R

N onto the tangent space Tα(τ)(Sκ). Covariant integral is
the inverse procedure of covariant derivative. A vector field u is called
a covariant integral of w along α if the covariant derivative of u is w,
i.e., Du

dτ = w. Using the previous item on projection, one can derive
tools for computing covariant derivatives and integrals of any given
vector field.

4. Parallel Translation: We will also need tools for forward and back-
ward parallel translation of tangent vectors along a given path α on
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Sκ. A forward parallel translation of a tangent vector w ∈ Tα(0)(Sκ), is
a vector field along α, denoted w̃, such that the covariant derivative of
w̃ is 0 for all τ ∈ [0, 1], i.e., Dw̃(τ)

dτ = 0, and w̃(0) = w. Similarly, back-
ward parallel translation of a tangent vector w ∈ Tα(1)(Sκ), satisfies

that w̃(1) = w and Dw̃(τ)
dτ = 0 for all τ ∈ [0, 1].

Algorithm (Path Straightening in Sκ): Given two points p1 and p2 in Sκ.
Suppose p1, p2 ∈ R

N , and τ = 0, 1, 2, ..., k.

1. Initilize a path α: for all τ = 0, 1, 2, ...k, using a straight line (τ/k)p1+
(1−(τ/k))p2 in R

N . Project each of these points to their nearest points
in Sκ to obtain α(τ/k).

2. Compute dα
dτ along α: let τ = 1, 2, ..., k and v(0) = 0. Compute v(τ/k) =

k(α(τ/k) − α((τ − 1)/k)) in R
N . Project v(τ/k) into Tα(τ/k)(Sκ) to

get dα
dt (τ/k).

3. Compute covariant integral of dα
dτ , with zero initial condition, along α

to obtain a vector field u along α.

4. Backward parallel translate u(1) along α to obtain ũ.

5. Compute gradient vector field of E according to w(τ/k) = u(τ/k) −
(τ/k)(ũ(τ/k)) for all τ .

6. Update path α̃(τ/k) = α(τ/k) − εw(τ/k) by selecting a small ε > 0.
Then project α̃(τ/k) to Sκ to obtain the updated path α(τ/k).

7. Return to step 2 unless ‖w‖ is small enough or max iteration times
reached.
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